
Guide - Win32

© 2011 Providence Software, Inc. All rights reserved. Using XVT for Windows® and Mac OS

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished under license and may be used or copied
only in accordance with the terms of such license. Except as permitted by any such license, no part of this guide may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of Providence Software Incorporated. Please note that the content in
this guide is protected under copyright law even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Providence Software
Incorporated. Providence Software Incorporated assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this
guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The unauthorized incorporation of such
material into your new work could be a violation of the rights of the copyright owner. Please be sure to obtain any permission required from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any actual organization. XVT, the XVT logo, XVT DSP,
XVT DSC, and XVTnet are either registered trademarks or trademarks of Providence Software Incorporated in the United States and/or other countries.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Macintosh is a trademark of Apple Inc.
registered in the U.S. and other countries. All other trademarks are the property of their respective owners.

Table of Contents

iii

XVT/WIN32
CONTENTS

Preface ... 1-vii
Chapter 1: Introduction .. 1-1

1.1. Changes to Existing Features ... 1-1
1.2. Compilers Supported by XVT/Win32/64 1-2
1.3. XVT Implementations and Operating Systems 1-2

Chapter 2: Using XVT/Win32/64 ... 2-1
2.1. Introduction .. 2-1
2.2. Extensibility ... 2-1
2.2.1. Conditional Compilation .. 2-1 2.2.2.

Multiple Document Interface (MDI) 2-2
2.2.3. Accessing Window Device Contexts

and Handles .. 2-3
2.3. Invoking an Input Method Editor ... 2-3
2.4. XVT/Win32/64 Resource Specifics ... 2-4

2.4.1. Module Name and Icon .. 2-5
2.4.2. Cursor Resources .. 2-6
2.4.3. Menu Resources.. 2-7

2.5. XVT’s Encapsulated Font Model... 2-9
2.5.1. Font Terminology ... 2-9
2.5.2. Native Font Descriptors .. 2-9
2.5.3. XVT/Win32/64 Font Descriptor Version Identifier . 2-10
2.5.4. XVT/Win32/64 Font Fields 2-10

2.6. Window Geometry ... 2-11
2.7. Focus Behavior Using WinExec .. 2-14
2.7.1. Sample Code for Modal Dialogs 2-15 2.7.2.

Sample Code for Modeless Dialogs 2-16
2.7.3. Calling WinExec with Dynamic Data

Exchange (DDE)..2-18

XVT Platform-Specific Book for Win32

iv

2.8. Multi-threaded Applications with XVT/Win32/64 2-19

Chapter 3: Development Environment .. 3-1
3.1. Introduction ..3-1

3.1.1. Include Files ..3-1
3.1.2. Libraries ..3-2

3.2. Microsoft Visual Studio Development Environment3-3
3.2.1. Compiling: Microsoft cl...3-3
3.2.2. Link Libraries...3-5
3.2.3. Linking as an Application Executable:

Microsoft link...3-7
3.2.4. Building as an Application

Dynamic Link Library ..3-8
3.2.5. Building Application Resource

Dynamic Link Libraries ..3-8
3.2.6. Building Utility Programs..3-9
3.2.7. For Source Customers Only:

XVT/Win32/64 Development Environment.............3-10
3.3. Compiling Resources..3-12

3.3.1. Using xrc ...3-12
3.3.2. Using the Native Resource Compiler (rc).................3-12

3.4. Building Your Application with the Help System3-13
3.4.1. Portable Viewer ..3-14 3.4.2.
Win32/64 Help Viewer ...3-14 3.4.3. Object

Click Mode..3-15

Appendix A:
Non-portable Attributes,
Escape Codes, and Functions.. A-1

A.1. Non-portable Attributes ... A-1
ATTR_WIN_CMD_LINE ... A-2
ATTR_WIN_CREATEWINDOW_HOOK A-2
ATTR_WIN_DELAY_FOCUS_EVENTS A-3
ATTR_WIN_DRAWABLE_TWIN_BACKGRND A-4
ATTR_WIN_ENHANCED_COMBOBOX A-5
ATTR_WIN_ENHANCED_LISTBOX A-6
ATTR_WIN_FCN_PRINT_INIT .. A-6
ATTR_WIN_HTML_EVENT_HANDLER A-7
ATTR_WIN_INSTANCE ... A-9
ATTR_WIN_MDI ... A-9
ATTR_WIN_MDI_CLIENT_HWND A-9
ATTR_WIN_MENU_CACHE_COUNT_MAX A-10

Table of Contents

v

ATTR_WIN_NATIVE_HTML_REFERENCE A-10
ATTR_WIN_NO_PRINT_THREAD A-11
ATTR_WIN_OPENFILENAME_HOOK A-11
ATTR_WIN_PM_CLASS_ICON ... A-13
ATTR_WIN_PM_DRAWABLE_TWIN A-13
ATTR_WIN_PM_NO_TWIN ... A-14
ATTR_WIN_PM_SPECIAL_1ST_DOC A-14
ATTR_WIN_PM_TWIN_FRAME_WINDOW A-14
ATTR_WIN_PM_TWIN_MARGIN_TOP A-15
ATTR_WIN_PM_TWIN_MARGIN_BOTTOM A-15
ATTR_WIN_PM_TWIN_MARGIN_LEFT A-15
ATTR_WIN_PM_TWIN_MARGIN_RIGHT A-15
ATTR_WIN_PM_TWIN_STARTUP_DATA A-15
ATTR_WIN_PM_TWIN_STARTUP_MASK A-16
ATTR_WIN_PM_TWIN_STARTUP_RCT A-16
ATTR_WIN_PM_TWIN_STARTUP_STYLE A-16
ATTR_WIN_POPUP_DETACHED A-17
ATTR_WIN_PREV_INSTANCE ... A-17
ATTR_WIN_R3_DIALOG_PLACEMENT A-18
ATTR_WIN_RAW_EVENT_HOOK A-19
ATTR_WIN_TIMER_HI_GRANULARITY A-19
ATTR_WIN_USE_PCL_RECTS .. A-20
ATTR_WIN_USE_PRINT_BANDING A-21
ATTR_WIN_WCLASSREG_HOOK A-21

A.2. Variations on Portable Attributes .. A-23
ATTR_EVENT_HOOK .. A-23
ATTR_KEY_HOOK ... A-24
ATTR_NATIVE_GRAPHIC_CONTEXT A-26
ATTR_NATIVE_WINDOW ... A-27

A.3. Non-portable Escape Codes .. A-27 XVT_ESC_
WIN_TERMINATE .. A-27

A.4. Non-portable Functions... A-28
xvtwi_hwnd_to_window ... A-28

Appendix B:
Frequently Asked Questions ..B-1

XVT Platform-Specific Book for Win32

vi

Preface

vii

XVT/WIN32/64
PREFACE

About This Manual
XVT takes pride in its documentation, and continually seeks to
improve it. If you find a documentation error, please contact
Customer Support. They will forward your suggestion to XVT’s
documentation team.

Conventions Used in This Manual
In this manual, the following typographic and code conventions
indicate different types of information.

General Conventions
code

This typestyle is used for code and code elements (names of
functions, data types and values, attributes, options, flags,
events, and so on). It also is used for environment variables and
commands.

code bold
This typestyle is used for elements that you see in the user
interface of applications, such as compilers and debuggers. An
arrow separates each successive level of selection that you need
to make through a series of menus, e.g., Edit=>Font=>Size.

bold
Bold type is used for filenames, directory names, and program
names (utilities, compilers, and other executables).

italics
Italics are used for emphasis and the names of documents.

XVT Platform-Specific Book for Win32

viii

Tip: This marks the beginning of a procedure having one or more steps.
Tips can help you quickly locate “how-to” information.

Note: An italic heading like this marks a standard kind of information: a
Note, Caution, Example, Tip, or See Also (cross-reference).

This symbol and typestyle highlight information specific to using
XVT-Design, XVT’s visual programming tool and code generator.

Code Conventions
<non-literal element> or non_literal_element

Angle brackets or italics indicate a non-literal element, for
which you would type a substitute.

[optional element]
Square brackets indicate an optional element.

...
Ellipses in data values and data types indicate that these values
and types are opaque. You should not depend upon the actual
values and data types that may be defined.

�

Introduction

1-1

1
INTRODUCTION

Welcome to XVT/Win32/64/. This platform-specific book (PSB)
contains information about using the latest release of the XVT
Portability Toolkit (XVT/Win32/64) on your particular platform.

Your release media will have instructions for installing XVT/
Win32/64. Once you have XVT/Win32/64 installed, XVT
recommends that you try the sample programs that come with the
product.

Note: Before writing your application, read the XVT Portability Toolkit
Guide. The Guide focuses on strategies for developing portable
applications.

See Also: For an alphabetical listing of all XVT functions and other API
elements, refer to the XVT Portability Toolkit Reference.
For additional information not documented in this platform-specific
book, see the readme file in the doc directory.

1.1. Changes to Existing Features
For this release of XVT/Win32/64, XVT has made the following
changes to existing features:

• The compile constant, used for compiling XVT/Win32/64/
64/64/64 platform-specific code, NTWS, has been changed to
Win32/64WS. (For backward compatibility, NTWS will continue
to work.) See section 2.2.1 of this manual and XVTWS in the
online
XVT Portability Toolkit Reference for more information.

• XVT/Win32/64 applications may now specify resource
Dynamic Link Libraries (DLLs) at execution startup. This
feature is useful in internationalizing your application and
for selecting locale-sensitive application resources. Refer to
section 3 of this manual and to ATTR_RESOURCE_FILENAME
in the online XVT Portability Toolkit Reference for more
information.

XVT Platform-Specific Book for Win32

1-2

See Also: For a complete listing of XVT/Win32/64 non-portable attributes and
escape codes, see Appendix A.

1.2. Compilers Supported by XVT/Win32/64
XVT/Win32/64 supports the following compiler:

• Microsoft Visual Studio 7 (i.e. Visual Studio .NET)

Note: In transitioning to this version of the Microsoft Visual Studio tool,
we have worked very hard to maintain backward compatibility with
Visual Studio 6.

See Also: Changes to compiler support may be listed in the readme file in
your doc directory.

1.3. XVT Implementations and Operating Systems
The XVT library is currently available for several different window
systems and operating systems:

XVT Product: Window Systems: Operating Systems:

XVT/Mac Carbon MacOS 8.6 and above
with CarbonLib installed,
Mac OS X 10.1 and above

XVT/Win32/ 64/64/64/64
Win32/64/64/64/64 Windows (all),

Windows (all)
XVT/XM X and Motif UNIX

Development Environment

3-1

3
DEVELOPMENT ENVIRONMENT

3.1. Introduction
If you are using XVT-Design, you will rarely, if ever, need to deal
directly with makefiles, include files, compiler options, libraries and
linkers. Unless you need to modify the makefile templates supplied
by XVT-Design, you’ll only need to refer to the information in this
section (3.1).

This chapter gives detailed information on building XVT/Win32/
64Win32/64 applications.

3.1.1. Include Files

XVT-Design generates code that automatically includes all
necessary header files.

To build XVT applications, you must include the XVT-specific
header file xvt.h in addition to any other application-specific header
files.

When writing native code, you can define the platform-specific
macro XVT_INCL_NATIVE prior to including xvt.h. XVT/Win32/64
then includes the Win32/64 header file windows.h for you.

Example: This code fragment shows the proper sequence for calling the
macro:

#define XVT_INCL_NATIVE #include "xvt.h"

�

�

XVT Platform-Specific Book for Win32

3-2

3.1.2. Libraries
XVT/Win32/64 uses the following types of libraries:
Static libraries

Linked with your application code to produce the application’s
executable file. They provide the startup functionality for your
application’s executable and a roster of entry points for
accessing the Dynamic Link Libraries. XVT/Win32/64 requires
you to compile and link your applications with the static library
appropriate to your compiler.

Dynamic Link Libraries (DLLs)
Dynamically bound to your application at runtime. The entry
points linked into your application with the static libraries are
resolved to function calls into these libraries at runtime. XVT/
Win32/64 requires you to compile and link your applications
with the static libraries appropriate for your development
environment and application.

See Also: For more information about the DLLs that you must ship with your
application, see section 3.2.2.2.

Development Environment

3-3

3.2. Microsoft Visual Studio Development
Environment

If you use XVT-Design, you will rarely, if ever, need to deal directly
with compiler options, libraries, and linkers. Read this section only if
you need to modify the makefile templates supplied by XVT-Design.

This section describes how to build XVT/Win32/64/64/64/64
applications on the Intel x86 platform. The information in this
section assumes that you already know how to compile and link non-
XVT applications on your platform(s). If you don’t, see the
Microsoft Visual Studio online documentation for more information.

3.2.1. Compiling: Microsoft cl

When generating makefiles, XVT-Design supplies the appropriate
compiler options.

You can compile your XVT/Win32/64 application just as if you
were compiling a non-XVT/Win32/64 application. You can use any
Microsoft Visual Studio (cl) compiler options that are compatible
with the $(cvarsmt) and $(cflags) environment variables. These
environment variables are pre-defined for the Microsoft nmake
utility for Win32/64 by including the file ntWin32/64.mak.

For the Microsoft Visual Studio compiler, XVT recommends a
command line similar to this:

cl $(cvarsmt) $(cflags) -I. -I..\include -Fosample sample.c

Note: Although the command line shown here is printed on several lines,
you should enter a command line as one line.

Compiler Options
$(cvarsmt)

Microsoft multi-thread options (recommended).
$(cflags)

Microsoft C compile options (required).
-D

Define macro STRICT for strict type checking (recommended).

�

�

XVT Platform-Specific Book for Win32

3-4

-I
Include paths (required).

-Fo
Output filename.

Compiler Optimization Flag

XVT provides a compiler optimization flag, XVT_OPT, for runtime
optimization of the PTK. This flag is described further in the XVT
Portability Toolkit Guide. To use the flag with the Microsoft Visual
Studio compiler, you must add a define for the XVT_OPT symbol on
the compiler line:
cl $(cvarsmt) $(cflags) -DXVT_OPT -I. -I..\include -Fosample sample.c

Now recompile and link your application.

Note: All callback functions (event hooks, event handlers, etc.) must use
the __cdecl linkage convention. XVT recommends using the XVT_
CALLCONV1 macro (defined in xvt_env.h and set in xvt_plat.h) in
your prototypes and headers for callback functions.

See Also: For examples of how to use the XVT_CALLCONV1 macro, see the
XVT header files and the online XVT Portability Toolkit Reference.

Development Environment

3-5

3.2.2. Link Libraries

XVT-Design’s makefile templates supply a default configuration that
links the appropriate libraries automatically.

3.2.2.1. Static Libraries
XVT/Win32/64 requires you to compile and link your applications
with the static libraries appropriate for your development
environment and application.

XVT supplies the following static libraries for Microsoft
Visual Studio:

You must link the base library, xvtn*api.lib, with every XVT/
Win32/64/64/64/64 application. If your application uses the XVT
online help system, you must link one (and only one) of the help
static libraries (xvtn*h*.lib) with it. (You are not required to link a
help library if your application does not use a help viewer.) If your
application does not use text edit objects, you can link the text edit
stub (xvtn*tes.obj) to resolve internal references to the text edit
DLL.

If you are linking with msvcrt.lib (the dynamically-linked C-
runtime library), you must also link the new object xvtn*dcr.obj
(dcr for D_ll _C_R_untime). Linking this object corrects external
references not exported by the dynamically-linked C-runtime
library.

Note: XVT/Win32/64currently supports only the XVT bound help viewer
and the native standalone help viewer. At this time, XVT/Win32/
64does not support the XVT portable standalone help viewer,
helpview.

Library: Functionality of Library:

xvtnmapi.lib Base XVT library
xvtnmhb.lib Portable bound help viewer

library
xvtnmhn.lib Native standalone help

viewer library
xvtnmtes.obj Text edit stub
xvtnmdll.obj DLL stub
xvtnmdcr.obj Dynamically-linked

C-runtime object

�

XVT Platform-Specific Book for Win32

3-6

See Also: For use of the DLL stub xvtn*dll.obj, see section 3.2.4.

3.2.2.2. Dynamic Link Libraries
XVT provides a version-named copy of each of the DLLs, built with
the Microsoft Visual Studio compiler. The version-unique naming
of the DLLs allows multiple versions of XVT/Win32/64/64/64/64-
based applications to run on the same system.

The base DLL, xn*ba560.dll, is required for all XVT/Win32/64/64/
64/64 applications and must be shipped with your application.

Depending upon which help system viewer is used (see section
3.2.2.1), you must ship one of the help viewer DLLs (xn*h*560.dll)
with your application. Ship only the help viewer DLL that is needed.
If your application does not use a help system viewer, you do not
need to ship any of the help viewer DLLs.

If your application uses text edit objects and/or the portable help
viewer, you must ship the text edit DLL (xn*te560.dll) with your
application. If you have linked the text edit stub, you don’t have to
ship this DLL.

Note: Win32/64 does not permit DLLs to be renamed once they are built.

Library: Purpose of DLL:

xnmba560.dll Base DLL
xnmhb560.dll Portable bound help

viewer DLL
xnmhn560.dll Native standalone help

viewer DLL
xnmte560.dll Text edit DLL

Development Environment

3-7

3.2.3. Linking as an Application Executable:
Microsoft link

XVT-Design generates the appropriate command line for you.

Your XVT/Win32/64 applications link in the usual way for
Microsoft Visual Studio, using link. As it does for compiling, the
Microsoft nmake utility provides macros for command line options.

Here is a typical makefile command line for an XVT application:
$(link) $(guiflags) -out:sample.exe sample.obj sample.res xvtnmapi.lib
$(guilibsmt)

Note: Although the command line shown here is printed on several lines,
you should enter a command line as a single line.

Link Options
$(link)

Microsoft linker (required).
$(guiflags)

Microsoft Visual Studio link flags (required).
$(guilibsmt)

Win32/64 multi-thread link libraries (recommended).

To build an XVT/Win32/64 application with a help viewer included:
$(link) $(guiflags) -out:sample.exe sample.obj sample.res xvtnmhn.lib
xvtnmapi.lib $(guilibsmt)

To build an XVT/Win32/64 application that does not require text
edit objects:

$(link) $(guiflags) -out:sample.exe xvtnmtes.obj sample.obj sample.res
xvtnmhn.lib xvtnmapi.lib $(guilibsmt)

To build an XVT/Win32/64 application that uses dynamically-
bound C-runtimes:

$(link) $(guiflags) -out:sample.exe xvtnmdcr.obj sample.obj sample.res
xvtnmhn.lib xvtnmapi.lib $(guilibsdll)

�

XVT Platform-Specific Book for Win32

3-8

3.2.4. Building as an Application
Dynamic Link Library
You can link the XVT/Win32/64 static libraries into your
application DLLs using the DLL stub xvtn*dll.obj; however, you
must call the function xvt_app_create from the application executable
(.exe file). If your application will be executing under Win32/64’s
(Intel x86), you will be required to replace the compiler flag
$(cvarsmt) in section 3.2.1 with $(cvarsdll) and to replace the link flag
$(guilibsmt) in section 3.2.3 with $(guilibsdll).

To link your module for use with the XVT/Win32/64 libraries in an
application Dynamic Link Library (DLL):

Use a link line similar to the following:
$(link) -DLL -machine:$(CPU) -out:sample.dll sample.exp

xvtnmdll.obj xvtnmtes.obj sample.obj xvtnmhn.lib
xvtnmapi.lib $(guilibsdll)

where sample.exp is generated from building the sample.lib
import library:
lib -machine:$(CPU) -def:sample.def -out:sample.lib

3.2.5. Building Application Resource
Dynamic Link Libraries
Application Resource Dynamic Link Libraries may be used to bind
locale-specific resources to your internationalized applications.

3.2.5.1. Resource Localization
All XVT Portability Toolkits have moved internal English strings to
external resource files to accommodate localization. Each platform
defines constants for string resource IDs. The default file uengasc.h
in the include directory contains the XVT/Win32/64 English string
constants (other language and character code set localizations will
be found there as well).

Development Environment

3-9

3.2.5.2. Building Localized Resource Files
To build a resource DLL for use with an XVT/Win32/64
application, create an empty DLL with a binding of your localized
resources.

Enter a command line similar to the following:
link -dll -machine:$(CPU) -noentry -out:sample.dll sample.res

3.2.5.3. Using a Resource DLL
A resource DLL may be bound to your XVT/Win32/64 application
at startup time by setting the resource filename prior to calling xvt_
app_create:

int XVT_CALLCONV1
main (int argc, char *argv[])) {

...
xvt_vobj_set_attr(NULL_WIN,

ATTR_RESOURCE_FILENAME, (long) “sample.dll”); ...
xvt_app_create(argc, argv, 0L, task_eh, &config); ...

}

3.2.6. Building Utility Programs
XVT/Win32/64 supplies makefiles for the errscan utility program.

To build a utility program using the Microsoft Visual Studio
compiler:

1. Move to the appropriate subdirectory. For
example, if you are using Intel x86:

cd \xvtdsc56\w32_x86\src\errscan

2. Type: nmake /f makemsc

3. To install a utility program, copy the .exe to the bin directory
like this:

nmake /f makemsc install

XVT Platform-Specific Book for Win32

3-10

3.2.7. For Source Customers Only: XVT/
Win32/64/64/64/64 Development

Environment
This section contains information pertinent to XVT/Win32/64
source customers. If you have purchased the XVT/Win32/64 binary
product, you can skip this section.

3.2.7.1. Makefiles
XVT/Win32/64provides makefiles with the source code for building
the XVT/Win32/64 base and text edit libraries, and the help viewer
libraries.

Note: XVT/Win32/64 does not currently support the XVT portable
standalone help viewer, helpview, and does not ship it in binary
form. The source code for the portable standalone help viewer is
provided to source customers, but will require modification before it
can be used.

The makefiles for the XVT/Win32/64 library are compiler-specific.
The makefiles for the XVT libraries have variables that identify the
compiler and linker to be used.

3.2.7.2. Building Utility Programs
For source customers, XVT/Win32/64 supplies makefiles for the
utility programs xrc and helpc.

To build a utility program using the Microsoft Visual Studio
compiler:

1. Move to the appropriate subdirectory. For
example, if you are using Intel x86:

cd \xvtdsc56\w32_x86\src\xrc

2. Type: nmake /f makemsc

3. To install a utility program, copy the .exe to the bin directory
using the following command:

nmake /f makemsc install

Development Environment

3-11

3.2.7.3. Building the XVT/Win32/64/64/64/64 Libraries

Static Libraries

To build the static libraries:

1. Move to the appropriate subdirectory. For
example, if you are using Intel x86:

cd \xvtdsc56\w32_x86\src\ptk

2. Run the nmake utility:
nmake -f makemsc cleanlib nmake -f makemsc lib

Dynamic Link Libraries

To build the Dynamic Link Libraries:

1. Move to the appropriate subdirectory. For
example, if you are using Intel x86:

cd \xvtdsc56\w32_x86\src\ptk

2. Run the nmake utility:
nmake -f makemsc cleandll nmake -f makemsc dll

Static Libraries and Dynamic Link Libraries

To build the static libraries and the Dynamic Link Libraries:

1. Move to the appropriate subdirectory. For
example, if you are using Intel x86:

cd \xvtdsc56\w32_x86\src\ptk

2. Run the nmake utility:
nmake -f makemsc clean nmake -f makemsc

See Also: For more information, see the makefiles and your compiler
documentation.

XVT Platform-Specific Book for Win32

3-12

3.3. Compiling Resources
If you use XVT-Design, you will probably never need to deal directly
with resource compiler options. XVT-Design and the xrc compiler
code resources automatically. The information here is provided for
reference purposes only.

3.3.1. Using xrc

XVT-Design can be configured to invoke xrc for you, either directly
as part of the code generation process or via a generated makefile.

To compile XVT URL resources with xrc:
Use a command line similar to the following:

xrc -r rcnt -i..\..\include -dLIBDIR=.\..\..\lib sample.url

See Also: For more information about using xrc, see the “Resources and URL”
chapter in the XVT Portability Toolkit Guide.
For a list of xrc options, see the online XVT Portability Toolkit
Reference.

3.3.2. Using the Native Resource Compiler (rc)
The Win32/64 resource compiler rc compiles resource scripts into
resource files that have an extension of .res. The rc compiler can
also bind a .res file to the executable file that the linker makes.

Compile your resource scripts (*.rc files) with the rc command, just
as you do for non-XVT applications.

To compile resource scripts:
Use a command line similar to the following:

rc -r sample.rc

This creates a file named sample.res that will be combined into your
.exe file by the linker. The best way to generate the resource script
file is with xrc.

Normally, you use xrc to compile menus, dialogs, windows, and
strings. Its output is in the form of RC input, so you then have to run
rc. If a resource can’t be written in URL, you’ll have to code it

�

�

Development Environment

3-13

directly in RC’s language, then embed it in your URL script with a
#transparent statement.

The XVT-Design tag User_Url lets you add resource definitions to
your application resource file.

See Also: For more information on using rc, see the Microsoft Visual Studio
online documentation.

3.4. Building Your Application with the Help System
XVT-Design supplies a default configuration in its makefile template
that links with the Win32/64 help viewer, Winhelp. If necessary, you
can modify this configuration to suit your needs.

XVT’s hypertext online help system requires a help viewer. For
XVT/Win32/64, you can bind the bound (portable) viewer to the
application. Alternatively, you can run theWin32/64 help viewer,
Winhelp.

An application should link with only one of the two help libraries
discussed below.

Note: XVT/Win32/64 currently supports only the XVT bound help viewer
and the native standalone help viewer. At this time, XVT/Win32/64
does not support the XVT portable standalone help viewer,
helpview.

See Also: For information on the help viewers, see the “Hypertext Online
Help” chapter in the XVT Portability Toolkit Guide.
For information on the portable help compiler command options,
refer to the online XVT Portability Toolkit Reference .
For information about the DLLs you must ship if your application
uses a portable help viewer, see section 3.2.2.2.

�

�

XVT Platform-Specific Book for Win32

3-14

3.4.1. Portable Viewer
XVT/Win32/64 provides the XVT portable hypertext help viewer in
bound form. You must use XVT help compiler helpc to produce
XVT-portable binary help files for the help viewer to use.

To compile help text source files for use with a portable viewer:
Use a command line similar to the following:
helpc -f xvt -I..\..\include sample.csh

To bind the help viewer to your application:
Link with the following library (in addition to the base XVT
library):

xvtnmhb.lib Bound help viewer library for
Microsoft Visual Studio (Intel x86)

Caution: If you are providing context-sensitive help from modal XVT
windows or dialogs, XVT strongly recommends that you use the
native Winhelp viewer. The bound viewer is a modeless window in
XVT. Opening a modeless window from a modal object may result
in undefined behavior.

3.4.2. Win32/64/64/64/64 Help Viewer
XVT also provides a portable interface to the Win32/64 help viewer,
Winhelp. The API is the same as if you were to make function calls
to the portable XVT help viewer. For this form of XVT-supported
help, you must use the XVT help compiler helpc to produce Win32/
64 help text source files for the native compiler hcrtf to compile.

To compile XVT-format help text source files for use in Winhelp:
Use command lines similar to the following:
helpc -f win -I..\..\include sample.csh hcrtf -x sample.hpj

Note: You must use hcrtf to compile the Win32/64 help source files
produced by helpc. Microsoft Visual Studio no longer provides the
hc3* help compilers that you previously used to compile help files.

Caution:

To use Winhelp with your application:
Link your application with the following library (in addition to
the base XVT library):

Development Environment

3-15

xvtnmhn.lib XVT to Winhelp communication
library for Microsoft Visual Studio
(Intel x86)

See Also: For more information on using Winhelp, see theMicrosoft Win32/
64/64/64/64 Programmer’s Reference and the Microsoft Visual
Studio online documentation.

3.4.3. Object Click Mode
Object click mode for XVT’s hypertext online help system is not
standard look-and-feel for Win32/64. Therefore, XVT/Win32/64
does not automatically provide an application menu item which
enables this feature for users. If your XVT/Win32/64 application
requires context sensitive help using object click mode, you must
define the macro, XVT_HELP_OBJCLICK, for compiling URL
resources. When this macro is defined, XVT/Win32/64 xrc includes
the resource for the Object Click Mode menu item in the standard
menu. Use a command line similar to the following for compiling
URL resources:

xrcxrc -r rcnt -i..\..\include
-dLIBDIR=.\..\..\lib -dXVT_HELP_OBJCLICK sample.url

Note: Although the command shown here is printed on several lines,
you should enter a command line as a single line.

Alternatively, you may define the macro prior to including url.h in
your application URL resources:

#define XVT_HELP_OBJCLICK #include "url.h"

XVT Platform-Specific Book for Win32

3-16

Using XVT/Win32

2-1

2
USING XVT/WIN32/64

2.1. Introduction
This chapter addresses various platform-specific issues that you may
need to consider while using XVT/Win32/64. The information here
assumes you are familiar with developing Win32/64 applications
from a general standpoint. If not, see your compiler’s documentation
for more information.

2.2. Extensibility

2.2.1. Conditional Compilation
If, in your application, you need to provide some native-platform
GUI functionality not available in the XVT Portability Toolkit, then
the small percentage of your code that provides that functionality
will be non-portable. In this case, you must include the native header
file windows.h. You must also compile your code conditionally,
based on the compilers, the window systems, file systems, and the
operating system on which your non-portable code will run.

The XVT Portability Toolkit automatically determines the
environment in which the application is running. The XVT header
files automatically sense the environment-specific variables that are
set implicitly by the compiler.

See Also: For more information on a platform-specific macro,
XVT_INCL_NATIVE, that you can call to simplify the process of
writing native code, see section 3.1.1.
For more information on environment variables, see the “Symbols
for Conditional Compilation” section in the “About the XVT API”
chapter of the XVT Portability Toolkit Guide, and the file xvt_env.h
in the include directory.

XVT Platform-Specific Book for Win32

2-2

Tip: It’s best to consolidate the non-portable code into a few separate files
so that most of your application is portable XVT code. Separating
your non-portable code makes it easier to change your program
when the capability you need is added to a future version of XVT.

Tip: To compile Win32/64-specific code conditionally:

Use the following preprocessor statements to compile window-
system-specific code:

#if XVTWS == Win32/64WS
/* window-system-specific code goes here */ #endif

Use the following preprocessor statements to compile
file-system-specific code:

#if XVT_FILESYS_NTFS || \
XVT_FILESYS_DOS || \ XVT_FILESYS_HPFS

/* file-system-specific code goes here */ #endif

2.2.2. Multiple Document Interface (MDI)
XVT recommends that you use the Multiple Document Interface
(MDI) by setting the attribute ATTR_WIN_MDI. This interface
standard specifies a way to design and write application programs
that require multiple document windows in Win32/64.

The advantage of MDI is that you can enclose document windows
within what is called a “task window”. This gives your application a
uniform look-and-feel for MS-Windows. The task window has a
titlebar, a menu, a sizing border, a system menu icon, a maximize
icon, and a minimize icon. MDI also lets you hierarchically enclose
document windows and icons.

XVT-Design provides a special tag, Main_Code, that lets you supply
code in the Action Code Editor (ACE) before calling xvt_app_create.
This enables you to set the ATTR_WIN_MDI attribute before the XVT
library assumes control.

See Also: For more information, see theMicrosoft Win32/64/64/64/64/64
Programmer’s Reference. Also, see the description of the ATTR_
WIN_MDI attribute
in Appendix A.

�

Using XVT/Win32

2-3

2.2.3. Accessing Window Device Contexts
and Handles
Given an XVT WINDOW, your application can access its native
window handle (HWND), bitmap handle (HBITMAP), or window
device context handle (HDC).

Tip: To get the Win32/64 HWND associated with an XVT WINDOW
(excluding windows of type W_PIXMAP, W_PRINT and W_SCREEN):

Call:
(HWND)xvt_vobj_get_attr(win, ATTR_NATIVE_WINDOW)

Tip: To get the Win32/64 HDC associated with an XVT WINDOW
(includes only drawable windows of typeW_DOC,W_PLAIN,W_DBL,
W_MODAL, W_PIXMAP, W_TASK, and W_NO_BORDER):

Call:
(HDC)xvt_vobj_get_attr(win,

ATTR_NATIVE_GRAPHIC_CONTEXT)

Note: You should obtain the ATTR_NATIVE_GRAPHIC_CONTEXT attribute
before every use, since the device context is not permanently
associated with a WINDOW, and XVT can overwrite it at any time.
Also, it is not necessary to delete any retrieved HDC—XVT/Win32/
64 does this automatically.

2.3. Invoking an Input Method Editor
The XVT Portability Toolkit is fully compatible with the native
Win32/64 Input Method Editor.

An Input Method Editor (IME) is provided by multibyte versions of
Win32/64 to allow application users to enter multibyte or other non-
ASCII characters from a keyboard that does not support these
characters.

On Win32/64, users may invoke the IME by typing Alt + ‘ (Alt key
depressed simultaneously with the backquote key). The IME appears
as a special entry field at the bottom of the screen except for controls
that support IMEs directly (such as text entries and list edits). In
IMEs that use composed characters (for example in the conversion
from Katakana to Kanji), the space bar is used to perform the
composition of selected characters. The IME is disabled when the
user is finished entering characters (Enter key) or by toggling with
Alt + ‘.

Character events are sent at appropriate times as determined by the
IME. If the user composes a character, a character event is sent only

XVT Platform-Specific Book for Win32

2-4

after the conversion—only the composed character is sent in the
event. This means that there may be a delay between when
characters are typed and when your application receives an event.
Several characters may be typed before any character event is
received.

2.4. XVT/Win32/64/64/64/64/64 Resource Specifics
If you use XVT-Design or XVT-Architect, you probably won’t need to
code native resources directly. XVT-Design, XVT-Architect, and the
xrc compiler code resources automatically. The information here is
provided for reference purposes only.

This section tells you how to code Win32/64-specific resources.
Your Win32/64 resources will be correct if you follow the URL
coding guidelines in the “Resources and URL” chapter in the XVT
Portability Toolkit Guide, because the xrc compiler generates native
code that adheres to these guidelines.

You can code all menus, dialogs, windows, and strings in URL. Or,
you can create them directly in RC. If you must code them in RC,
study the output of xrc (in RC format) for the resources in the XVT
Example Set (..\samples\design) to see how they are coded.

Caution: With some Win32/64 controls, you might encounter native (not
XVT-imposed) memory limitations. These limitations apply either
to individual controls or to all controls in a class of controls. For
example, the number of items you can add to a list box, list button,
or list edit is determined in Win32/64 by the combined size of the
items.

Note: Before reading the rest of this section, familiarize yourself with the
rc compiler documentation in your compiler’s documentation.

�

Using XVT/Win32

2-5

2.4.1. Module Name and Icon

XVT-Design, XVT-Architect, and the xrc compiler include the
resource definitions in this section automatically. In addition, XVT-
Design ensures that the application’s module name matches the
name specified in the XVT_CONFIG structure.

The module name for your application must be the same as the
application name in your XVT_CONFIG structure. This name must
also be the definition for a string resource whose ID is STR_
APPNAME:

STRINGTABLE DISCARDABLE BEGIN
STR_APPNAME, "SAMPLE" END

You must define your application’s icon ID as ICON_RSRC, like this:
ICON_RSRC ICON DISCARDABLE SAMPLE.ICO

The symbols STR_APPNAME and ICON_RSRC are defined in other
headers included in xvt.h (xvt_plat.h, xvt_defs.h, and url_plat.h).

You also should use the module name for the base name of your
executable file (e.g., sample).

Icons are stored in a file with an extension of .ico. XVT requires an
icon file with the name appname.ico, where appname is the name of
your application. The base name of the icon file is the same as the
definition you’ve supplied for the symbol APPNAME. For example, if
your URL file has these lines:

#define APPNAME SAMPLE #define
QAPPNAME "SAMPLE" #include "url.h"

you must have an icon in a file named sample.ico.

You can have additional icons for inclusion in dialog boxes; they can
be drawn in an XVT window with xvt_dwin_draw_icon.

If you’re coding in URL and have followed the instructions in the
“Resources and URL” chapter in the XVT Portability Toolkit Guide,
these resources are defined automatically.

Caution: If you don’t use the module name consistently, your application may
not link or it may be unable to find its icon.

See Also: For more information, see the description of the ATTR_
WIN_PM_CLASS_ICON attribute in Appendix A.

�

XVT Platform-Specific Book for Win32

2-6

2.4.2. Cursor Resources

XVT-Design automatically generates an URL file for your application
that includes the CURSOR_CROSS and CURSOR_HELP
resources. The XVT-Design tag User_Url lets you add cursor
resource definitions to your application resource file.

XVT/Win32/64/64/64/64/64 provides the files croshair.cur and
objhelp.cur, which define the XVT portable cursors CURSOR_CROSS
and CURSOR_HELP (not supported directly by Win32/64),
respectively.

If you want these resources in your application, croshair.cur and
objhelp.cur must be referenced by your URL file, which happens
automatically if you include url_plat.h. If you do not plan to use
these resources, you can remove references to them from the cursors
section of url_plat.h.

You can also add other cursors to your application resource file.
They should have the extension .cur.

The following code shows how to add cursors to your URL file:
#transparent $$$
1234 CURSOR DISCARDABLE sample.cur $$$

�

Using XVT/Win32

2-7

2.4.3. Menu Resources

XVT-Design produces menu resources for you. Unless you need to
use native menu features unsupported by XVT, you do not have to
code menu resources natively.

The best way to learn how to code menus is to lay out a sample
menubar in XVT-Design, then let XVT-Design invoke xrc.

XVT-Design allows you to put items on the menubar that generate a
command when activated, instead of popping up a menu. XVT-
Design will warn you that a menubar created in this way is non-
portable.

You can code menus in native RC syntax by using xrc to generate a
Win32/64 RC file, then studying it.

When coding resources natively, you can add items to the top-level
menubar, and have them generate a command when activated
(although this isn’t a good idea because it confuses users).

Additionally, you can use native menu features. For instance, you
might want to write native menubar resources that allow a label on a
menu to be a bitmap instead of text. Or, you might want to define a
submenu with multiple columns.

2.4.3.1. Submenu Tag Assignments
A native RC menu resource does not have tags on its submenus.
Since XVT uses tags on both submenus and menu items, it will
assign a tag if none exists.

When an application calls an XVT function that requires a menubar,
XVT/Win32/64 looks first for a menubar that was described in URL.
The submenus on these portable menus have the menu tags that were
specified in the URL description.

If XVT/Win32/64 fails to find an URL-generated menubar, it
attempts to find a native menu resource. If it finds one, XVT/Win32/
64 automatically assigns tags to all the submenus.

�

XVT Platform-Specific Book for Win32

2-8

2.4.3.2. Creating Non-portable Menubars
You create non-portable menubars by writing them in RC.

Tip: To create a non-portable menubar:

1. Write an RC menu resource using the RC syntax. When this
resource is loaded at runtime, XVT synthesizes a submenu tag
for each submenu in the menu. The submenu tag is assumed to
be the tag of the first item in the submenu, minus one. For
example, if the first item of a submenu has a tag of 157, then
calling xvt_menu_set_item_enabled(win, 156, FALSE) disables that
submenu.

2. Embed the entire RC resource in a #transparent URL construct in
your URL file. You can either put the RC resource directly in
your URL file, or use the #include directive inside the #transparent
construct.

3. Make sure that no menubar exists in your URL file with the
same ID as the RC menubar. If two menubars have the same ID,
XVT/Win32/64 preferentially loads the portable one, and you
will never see the non-portable menubar.

2.4.3.3. Using a Non-portable Menubar Resource ID
You can use the resource ID of a non-portable menubar to specify
the menu for a window created with either xvt_win_create or xvt_win_
create_def. However, you cannot pass this resource ID
to xvt_res_get_menu, because this function always looks for a portable
menubar resource, and ignores any non-portable menubars.

Using XVT/Win32

2-9

2.5. XVT’s Encapsulated Font Model

2.5.1. Font Terminology
This section uses the following XVT-defined terms to describe
XVT’s encapsulated font model:
Physical font

A particular implementation of a font as installed on the window
system on which an application is running.

Logical font
A description of a desired physical font, to a degree of
specificity ranging from just a typeface family name or size to a
complete description that specifies a particular physical font. A
logical font has both portable and non-portable attributes. It is
identified by an object of type XVT_FNTID.

In XVT-Design, the job of querying the user for a logical font selection
is easy and straightforward. Within any event tag that allows
connections, you simply specify a connection to the standard Font
selection dialog.

2.5.2. Native Font Descriptors
To specify a particular physical font, your application can use a
native font descriptor, which is a string of data fields. You can
include this string as a parameter to xvt_font_set_native_desc,
or in URL as part of a FONT or FONT_MAP statement.

The native font descriptor string contains the following fields:
• The native window system and version of the XVT

encapsulated font model (the current version is “01”).
• Platform-specific fields that the XVT Portability Toolkit

decodes and uses to uniquely specify a native font. The fields
describe specific attributes of a native font. Each field is
separated by a slash, “/”.

The native font descriptor string, then, has this format:
"<system and version>/<field1>/<field2>/<field3>/ ...<fieldn>"

See Also: For more information about specifying fonts, see the “Fonts and
Text” chapter in the XVT Portability Toolkit Guide.

�

XVT Platform-Specific Book for Win32

2-10

2.5.3. XVT/Win32/64/64/64/64/64 Font Descriptor
Version Identifier

For XVT/Win32/64, the font descriptor version identifier format is
NT_<vers>. In this release of XVT/Win32/64, the font descriptor
version number is “01,” so the font descriptor version identifier is
NT_01.

2.5.4. XVT/Win32/64/64/64/64/64 Font Fields
For XVT/Win32/64, the native font descriptor string must contain
enough information to populate a LOGFONT structure, which is a
14-part font specification. The following table shows the
information from the LOGFONT structure used to map a logical font.

lfHeight Desired height in logical units
lfWidth Desired average width in logical units
lfEscapement Angle of text baseline in tenths of degrees
lfOrientation Single character orientation in tenths of

degrees
lfWeight Desired weight of character
lfItalic Italicized text
lfUnderline Underlined text
lfStrikeout Struck-out text
lfCharSet Character set (mapping) desired
lfOutPrecision Desired precision in matching fonts
lfClipPrecision Desired clipping of font
lfQuality Desired font quality
lfPitchAndFamily General font family and font pitch categories
lfFaceName Desired font face name

For XVT/Win32/64, the native font descriptor string has this
structure:
"NT_01/<lfHeight>/<lfWidth>/<lfEscapement>/

<lfOrientation>/<lfWeight>/<lfItalic>/<lfUnderline>/
<lfStrikeOut>/<lfCharSet>/<lfOutPrecision>/
<lfClipPrecision>/<lfQuality>/<lfPitchAndFamily>/ <lfFaceName>"

Example: This string shows a valid XVT/Win32/64 native font descriptor
string:

"NT_01/*/0/0/0/FW_BOLD/1/0/0/ANSI_CHARSET/ OUT_
DEFAULT_PRECIS/CLIP_DEFAULT_PRECIS/ PROOF_
QUALITY/DEFAULT_PITCH-FF_ROMAN/*"

Using XVT/Win32

2-11

Note: An asterisk (*) in a native font descriptor string indicates a wildcard
condition in which any value is acceptable for that particular field.
A hyphen (-) in a font descriptor string cues the font mapper to OR
the values.

See Also: For detailed descriptions of the LOGFONT fields, see the Microsoft
Win32/64 Programmer’s Reference.

2.6. Window Geometry
In XVT/Win32/64, you can retrieve information about window
geometry by querying attributes using xvt_vobj_get_attr, or through
xvt_vobj_get_client_rect and xvt_vobj_get_outer_rect. The following
example demonstrates how the values obtained from these attributes
and functions are related.

Example: This example was generated from an application running with a
SuperVGA device driver. Depending on the device driver you are
using, your values will differ.

All numbers are in units of pixels. To facilitate comparison with
outer rectangles, client rectangles have been converted into parent-
relative coordinates using xvt_vobj_translate_points.

Window Frame Attributes

Using xvt_vobj_get_attr, you obtain the following attribute values:

ATTR_CTL_HORZ_SBAR_HEIGHT 2 2
ATTR_CTL_VERT_SBAR_WIDTH 2 1
ATTR_DBLFRAME_HEIGHT 4
ATTR_DBLFRAME_WIDTH 4
ATTR_DOCFRAME_HEIGHT 4
ATTR_DOCFRAME_WIDTH 4
ATTR_FRAME_HEIGHT 1
ATTR_FRAME_WIDTH 1
ATTR_MENU_HEIGHT 26
ATTR_TITLE_HEIGHT 28

XVT Platform-Specific Book for Win32

2-12

W_DOC (Document) Window Without Scrollbars

Querying the dimensions of a simple W_DOC window (without
scrollbars) with xvt_vobj_get_client_rect and xvt_vobj_get_outer_rect, you
obtain the following values:

Left: Top: Right: Bottom:

client rectangle 40 40 240 240
outer rectangle 36 9 244 244

On the left and right of the window, the difference between the outer
and client rectangles is the offset ATTR_DOCFRAME_WIDTH, shown in
the following relationships:
outer.left = client.left - ATTR_DOCFRAME_WIDTH outer.
right = client.right + ATTR_DOCFRAME_WIDTH

W_DOC (Document) Window With Scrollbars

Attaching scrollbars to the window frame using the creation flags
WSF_HSCROLL and WSF_VSCROLL produces these values:

Left: Top: Right: Bottom:

client rectangle 40 40 240 240
outer rectangle 36 9 264 265

Width

On the right, the difference between the client and outer rectangles is
24, although the sum of ATTR_CTL_VERT_SBAR_WIDTH + ATTR_
DOCFRAME_WIDTH is 25. The one-pixel difference occurs because
the scrollbar has a frame of width ATTR_FRAME_WIDTH and is
overlapped by the window’s frame on the right side. This
overlapping prevents a thick line from appearing between the
scrollbar and the window’s frame. Thus the correct relationship is as
follows:
outer.right = client.right + ATTR_CTL_VERT_SBAR_WIDTH +

ATTR_DOCFRAME_WIDTH - ATTR_FRAME_WIDTH

Using XVT/Win32

2-13

Height

A similar situation occurs for the window height. The difference on
the bottom is 25, although you might expect it to be 26 (the sum of
ATTR_CTL_HORZ_SBAR_HEIGHT + ATTR_DOCFRAME_HEIGHT). In this
case, the scrollbar’s frame is overlapped by the window’s frame at
the bottom of the window. The relationship is as follows:
outer.bottom = client.bottom + ATTR_CTL_HORZ_SBAR_HEIGHT +

ATTR_DOCFRAME_HEIGHT - ATTR_FRAME_HEIGHT

On the top, the difference is 31, although the sum of
ATTR_TITLE_HEIGHT + ATTR_DOCFRAME_HEIGHT is 32. As with
scrollbars, the titlebar has a frame of height ATTR_FRAME_HEIGHT,
which is overlapped by the window’s frame at the top.

The relationship is as follows:
outer.top = client.top - ATTR_TITLE_HEIGHT -

ATTR_DOCFRAME_HEIGHT + ATTR_FRAME_HEIGHT

W_DBL (Double-bordered) Window

Modal dialogs andW_DBLwindows have double borders. The values
for a W_DBL window are as follows:

Left: Top: Right: Bottom:

client rectangle 40 40 240 240
outer rectangle 35 35 245 245

Although ATTR_DBLFRAME_WIDTH is 4, the actual difference
between the client and outer rectangles on the left and right sides is
5. This difference occurs because modal dialogs and W_DBL
windows have a regular frame outside the double border. (You can
see this when you drag a dialog by its titlebar; the outline that
follows the movement of the pointer has the dimensions of the
regular frame.) Thus the correct relationships are:
outer.left =

client.left - ATTR_DBLFRAME_WIDTH - ATTR_FRAME_WIDTH

outer.right =
client.right + ATTR_DBLFRAME_WIDTH + ATTR_FRAME_WIDTH

outer.top =
client.top - ATTR_DBLFRAME_HEIGHT - ATTR_FRAME_HEIGHT

XVT Platform-Specific Book for Win32

2-14

outer.bottom =
client.bottom + ATTR_DBLFRAME_HEIGHT + ATTR_FRAME_HEIGHT

Window with a Menubar

The last case is a window having a menubar. This could be either
TASK_WIN, or a W_DOC window whose parent is the SCREEN_WIN.
The values for a W_DOC window are as follows:

Left: Top: Right: Bottom:

client rectangle 500 100 800 3 0 0
outer rectangle 496 42 824 325

The difference between the client and outer rectangles on the top
takes into account the frame, titlebar, and menubar. This difference
is 58, although the expected value is 57 (ATTR_DOCFRAME_HEIGHT +
ATTR_TITLE_HEIGHT - ATTR_FRAME_HEIGHT + ATTR_MENU_HEIGHT).
The ATTR_FRAME_HEIGHT border, which appears between the
menubar and the client area, creates the one-pixel discrepancy.
Unlike scrollbars and titlebars, ATTR_MENU_HEIGHT does not
account for any surrounding borders, so its value must be added
when calculating the height of a window having a menubar. The
relationship is:
outer.top = client.top - ATTR_DOCFRAME_HEIGHT -

ATTR_TITLE_HEIGHT - ATTR_MENU_HEIGHT

2.7. Focus Behavior Using WinExec
In XVT/Win32/64, a call to the Win32/64 function WinExec followed
by a call to the XVT function xvt_vobj_destroy can cause an XVT
application window to receive focus. However, the window
belonging to the task started with WinExec should receive the focus.
This section presents two code examples to solve this problem, one
for modal dialogs and another for modeless dialogs.

Using XVT-Design, you enter the code for the events in the Action
Code Editor (ACE). XVT-Design automatically generates the switch
statement along with its cases. The examples in sections 2.7.1 and
2.7.2 show you how you would write the dialog and window handlers
yourself.

�

Using XVT/Win32

2-15

2.7.1. Sample Code for Modal Dialogs
One solution to the focus problem is to close the window before
calling WinExec. The following example illustrates a modal dialog
that prompts for the name of a program to run, and then runs it:
typedef struct {

char buf[RESULT_SIZE]; BOOLEAN ok;
} RESULT;

long XVT_CALLCONV1
dlgHandler(WINDOW win, EVENT *ep) {

RESULT *rp;

switch (ep->type) { case E_CREATE:?
rp = (void *)xvt_vobj_get_data(win);
rp->ok = FALSE;
rp->buf[0] = 0;
break;

case E_CONTROL: switch(ep->v.ctl.id) { case DLG_OK:
rp = (void *)xvt_vobj_get_data(win); get_
title(xvt_win_get_ctl(win, EDIT_FIELD),

rp->buf, RESULT_SIZE); rp->ok = TRUE;
case DLG_CANCEL: xvt_vobj_destroy(win); break;
}
break;

}
return 0;

}

XVT Platform-Specific Book for Win32

2-16

long XVT_CALLCONV1
winHandler(WINDOW win, EVENT *ep) {

RESULT res;

switch (ep->type) {
case E_MOUSE_DOWN:

xvt_dlg_create_res(WD_MODAL, RUN_DIALOG, EM_ALL,

dlgHandler, (long)&res);
if (res.ok)

WinExec(res.buf, SW_SHOW);
break;

}
return 0;

}

In this example, the dialog obtains the program name from the user,
and records whether the user chose OK or Cancel. The modal dialog
gathers this information and passes it to the calling function so that
the calling function can carry out the selection. This is accomplished
by passing a pointer to the RESULT structure as the initial application
data for the dialog window. If the user chose OK, the calling code
uses WinExec to run the program. Notice that WinExec is not called in
the dialog event handler. This technique works only for a modal
dialog, because the struct is filled in before the call to xvt_dlg_create_res
returns.

2.7.2. Sample Code for Modeless Dialogs
For a modeless dialog or a window containing controls, the solution
to the focus problem is slightly different:

typedef struct {
char buf[RESULT_SIZE];
BOOLEAN ok;
WINDOW notify;

} RESULT;

Using XVT/Win32

2-17

long XVT_CALLCONV1
dlgHandler(WINDOW win, EVENT *ep) {

RESULT *rp; EVENT e;

switch (ep->type) { case E_CREATE:
rp = (void *)xvt_vobj_get_data(win); rp->ok = FALSE;
break;

case E_CONTROL:
switch (ep->v.ctl.id) { case DLG_OK:

rp = (void *)xvt_vobj_get_data(win); get_
title(xvt_win_get_ctl(win, EDIT_FIELD),

rp->buf, RESULT_SIZE); rp->ok = TRUE;
case DLG_CANCEL: xvt_vobj_destroy(win) break;
}
break;

case E_DESTROY:

rp = (void *)xvt_vobj_get_data(win); if (rp->ok) {
e.type = E_USER; e.v.user.id = DO_EXEC;
xvt_win_dispatch_event(rp->notify, &e);

}
break;

}
return 0;

}
long XVT_CALLCONV1
winHandler(WINDOW win, EVENT *ep) {

static RESULT res;

switch (ep->type) {
case E_MOUSE_DOWN:

res.notify = win;
xvt_dlg_create_res(WD_MODELESS, RUN_DIALOG,

EM_ALL, dlgHandler, (long)&res);
break;

case E_USER:
if (ep->v.user.id == DO_EXEC) {

WinExec(res.buf, SW_SHOW);
}
break;

}
return 0;

}

XVT Platform-Specific Book for Win32

2-18

Again, the dialog event handler obtains the program name from the
user and records whether the user chose OK or Cancel. Then, when
the dialog event handler receives an E_DESTROY event, it uses xvt_
win_dispatch_event to notify the window that created the dialog. If the
user chose OK, the calling function uses WinExec to run the program.

Notice that WinExec is not called in the dialog event handler, and the
dialog does not actually perform any action. This ensures that the
dialog goes away before WinExec is called. (In the dialog event
handler, it is acceptable to have the EVENT on the stack because xvt_
win_dispatch_event is just a function call to the window event
handler—it doesn’t queue an EVENT.)

2.7.3. Calling WinExec with Dynamic Data
Exchange (DDE)
In some cases, DDE and WinExec are used together. DDE messages
are not XVT events. To handle DDE messages in XVT, you must
use an event hook function. First, write the event hook function to
process the non-portable DDE messages. Then register the function
with XVT using xvt_vobj_set_attr and ATTR_EVENT_HOOK. This event
hook function creates corresponding E_USER events and dispatches
them to the invisible window’s XVT event handler.

Tip: It’s generally a good idea to create an invisible, disabled window
and register it as the recipient of DDE messages, rather than use one
of the visible windows. This technique guarantees that no spurious
events will appear for some window as a result of DDE messages,
and it isolates all DDE processing to the invisible window’s event
handler.

If you use some other inter-process communication mechanism on
another platform, the only part of the application that needs to
change is the event hook function. The introduction of the E_USER
layer isolates this change from the rest of the program. Likewise, all
processing of the E_USER events is confined to the invisible
window’s event handler, rather than being interspersed with the
event handling for other windows.

Using XVT/Win32

2-19

2.8. Multi-threaded Applications with XVT/Win32/64/
64/64/64/64

XVT/Win32/64 is not thread-safe. However, XVT/Win32/64 builds
its libraries with Win32/64 multi-thread capabilities. Using the
following guidelines, you can build XVT/Win32/64 applications
that are multi-threaded:

• All calls to XVT functions must be in a single thread;
XVT strongly recommends you use the main thread.

• To communicate with the thread containing XVT function
calls from secondary threads, post (PostMessage) native WM_
USER messages to the XVT thread, notifying it that you need
to make an XVT call.

• Use native user messages in the range 0–999.

XVT Platform-Specific Book for Win32

2-20

Appendix A

A-1

AWin32/
64

APPENDIX A:
NON-PORTABLE ATTRIBUTES,
ESCAPE CODES, AND FUNCTIONS

A.1. Non-portable Attributes
The xvt_vobj_set_attr and xvt_vobj_get_attr functions allow you to
manipulate XVT attributes. Non-portable attributes let you fine-tune
your application to make it more closely adhere to the look-and-feel
of the underlying platform, or to add functionality not provided by
the XVT application interface. This section provides a list of non-
portable attributes for use with XVT/Win32/64.

See Also: Additional non-portable attributes may be listed in the readme file
in the doc directory.
For detailed interpretation of Win32/64 messages and parameters,
see the Microsoft Visual C++ online documentation.

XVT-Design provides a special tag, SPCL:Main_Code, that lets you
supply code in the Action Code Editor (ACE) before calling xvt_app_
create. This enables you to set or get system attributes before the
XVT library assumes control.

�

XVT Platform-Specific Book for Win32

A-2

ATTR_WIN_CMD_LINE
Description: NULL-terminated string containing the command line parameters.

Uses win argument: No
xvt_vobj_get_attr returns: NULL-terminated string
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Argument type: STR

ATTR_WIN_CREATEWINDOW_HOOK
Description: A pointer to a function called before the native function

CreateWindowEx is called to create a new window. Each parameter is
a pointer to a parameter that is passed to CreateWindowEx. Your
application can change any parameter before it is passed to the
creation function to obtain non-portable window attributes.

Prototype: void XVT_CALLCONV1 createwindow_hook(DWORD * dwExStyle,
LPCSTR * lpszClassName, LPCSTR * lpszWindowName,
DWORD * dwStyle, int * x, int * y, int * nWidth,
int * nHeight, HWND * hwnd, HMENU * hMenu, HINSTANCE *
hInst, void ** lpvCreateParams)

DWORD * dwExStyle
Native extended window style.

LPCSTR * lpszClassName
Native class name.

LPCSTR * lpszWindowName
Native window title.

DWORD * dwStyle
Native creation style flags.

int * x
Native x-coordinate (left-side).

int * y
Native y-coordinate (right-side).

int * nWidth
Native window width (device units).

int * nHeight
Native window height (device units).

HWND * hwnd
Native parent or owner window handle (depending upon style).

HMENU * hMenu
Native menu or child window handle (depending upon style).

Appendix A

A-3

HINSTANCE * hInst
Native instance data module handle.

void ** lpvCreateParams
Native application-specific creation parameters.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Installs hook function, or

uninstalls hook if value is zero
xvt_app_create use: Can use either before or after
Default value: Zero

ATTR_WIN_DELAY_FOCUS_EVENTS
Description: Setting this value to TRUE causes E_FOCUS events to be delayed

slightly, so that they are more likely to occur after the native focus
events have been processed by the windowing system. This in turn
ensures that the application’s GUI will be in a more stable state
before objects are destroyed, moved, and so forth. The value of this
attribute (initially FALSE) can be changed at any time.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Causes E_FOCUS events to be

delayed slightly
xvt_app_create use: Can use either before or after
Default value: FALSE
Argument type: BOOLEAN

XVT Platform-Specific Book for Win32

A-4

ATTR_WIN_DRAWABLE_TWIN_BACKGRND
Description: Determines whether a drawable task window is automatically filled

with the WINDOW background brush.

Uses win argument: No
xvt_vobj_get_attr returns: Current value
xvt_vobj_set_attr effect: Window background is

automatically filled if value is
TRUE

xvt_app_create use: Must use before
Default value: FALSE

Appendix A

A-5

ATTR_WIN_ENHANCED_COMBOBOX
Description: Enables the platform-specific CBS_HASSTRINGS and

CBS_OWNERDRAWFIXED attributes. These attributes allow the
developer to set font and color properties for individual items in the
list. CBS_HASSTRINGS - An owner-draw combo box contains
items consisting of strings. The combo box maintains the memory
and pointers for the strings so the application can use the GetText
member function to retrieve the text for a particular item. CBS_
OWNERDRAWFIXED - The owner of the list box is responsible
for drawing its contents; the items in the list box are all the same
height.

Uses win argument: No
xvt_vobj_get_attr returns: Current value
xvt_vobj_set_attr effect: Window background is

automatically filled if value is
TRUE

xvt_app_create use: Must use before
Default value: FALSE

XVT Platform-Specific Book for Win32

A-6

ATTR_WIN_ENHANCED_LISTBOX
Description: Enables the platform-specific LBS_HASSTRINGS and

LBS_OWNERDRAWFIXED attributes. These attributes allow the
developer to set font and color properties for individual items in the
list. LBS_HASSTRINGS - An owner-draw list box contains items
consisting of strings. The list box maintains the memory and
pointers for the strings so the application can use the GetText
member function to retrieve the text for a particular item. LBS_
OWNERDRAWFIXED - The owner of the list box is responsible
for drawing its contents; the items in the list box are all the same
height.

Uses win argument: No
xvt_vobj_get_attr returns: Current value
xvt_vobj_set_attr effect: Window background is

automatically filled if value is
TRUE

xvt_app_create use: Must use before
Default value: FALSE

ATTR_WIN_FCN_PRINT_INIT
Description: A pointer to a function that is called by xvt_print_create_win after the

print window is created, but before printing is started. This is useful
in applications needing custom printer initialization.

Prototype: void XVT_CALLCONV1 fcn_print_init(HDC print_DC)

HDC print_DC
Print window device context.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Installs hook function, or

uninstalls hook if value is zero
xvt_app_create use: Must use after
Default value: Zero

Appendix A

A-7

ATTR_WIN_HTML_EVENT_HANDLER
Description: A pointer to the HTML window event handler. The event handler

must be derived from IHtmlEvent Handler class to receive events.
The IHtmlEventHandler is based on DWebBrowserEvents2, an
event sink interface used to receive event notifications from a
WebBrowser control or Internet Explorer application (see MSDN).

Uses win argument: Yes
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Installs the HTML event

handler function, or uninstalls
function if value is zero

xvt_app_create use: Must use after
Default value: Zero

See Also: The attribute ATTR_WIN_NATIVE_HTML_REFERENCE on page A-10.

Example: Below is sample code showing an implementation in C++.
========================== derrived_eh.h
==========================

// must define XVT_INCL_NATIVE to get IHtmlEventHandler definition
#define XVT_INCL_NATIVE
#include "xvt.h"

extern "C"
{

void *create_my_eh();
void destroy_my_eh(void *eh); }

class CMyHtmlEh : public IHtmlEventHandler {
public:

CMyHtmlEH();
virtual ~CMyHtmlEH();

virtual void eventBeforeNavigate2(IDispatch* pDispatch,
BSTR url,
void * reserved,
BSTR targetFrameName,
SAFEARRAY* postData,
BSTR headers, VARIANT_BOOL* cancel);

virtual void eventCommandStateChange(LONG lCommand, BOOL fEnable)

XVT Platform-Specific Book for Win32

A-8

{} // all unneeded events must have empty body .
.
.

};

========================== derrived_eh.cpp
==========================

void *create_my_eh() {
return new CMyHtmlEH; }

void destroy_my_eh(void *pi) {
delete (CMyHtmlEH *)pi; }

void CMyHtmlEh::eventBeforeNavigate2(IDispatch* pDispatch,

BSTR url,
void * reserved,
BSTR targetFrameName,
SAFEARRAY* postData,
BSTR headers, VARIANT_
BOOL* cancel)

{
OutputDebugStringW(L"MY eventBeforeNavigate2 - ");
OutputDebugStringW(url);
OutputDebugStringW(L"\r\n");

}

==========================
anxvtapp.c
==========================

...
void *create_my_eh();
void destroy_my_eh(void *eh); static void * my_htmlEH;
...

E_CREATE:
my_htmlEH = create_my_eh();
xvt_vobj_set_attr(ctl, ATTR_WIN_HTML_EVENT_HANDLER,

my_htmlEH);
break;

E_DESTROY:

xvt_vobj_set_attr(ctl, ATTR_WIN_HTML_EVENT_HANDLER,
NULL);

destroy_my_eh(my_htmlEH); my_htmlEH = NULL;
break;

...

Appendix A

A-9

ATTR_WIN_INSTANCE
Description: Instance handle HINSTANCE of the current application.

Uses win argument: No
xvt_vobj_get_attr returns: The current application HINST
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Argument type: HINSTANCE

ATTR_WIN_MDI
Description: Determines whether the task window uses Multiple Document

Interface (MDI).

Caution: This attribute cannot be used (set to TRUE) when using drawable task
windows (ATTR_WIN_PM_DRAWABLE_TWIN set to TRUE).

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Brings application up in MDI

mode if TRUE
xvt_app_create use: Must use before
Default value: FALSE
Argument type: BOOLEAN

See Also: The attribute ATTR_WIN_PM_DRAWABLE_TWIN on page A-13.

ATTR_WIN_MDI_CLIENT_HWND
Description: Gets the handle for the MDI client window when ATTR_WIN_MDI has

been set.

Uses win argument: No
xvt_vobj_get_attr returns: The MDI client window HWND
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Must use after
Argument type: HWND

XVT Platform-Specific Book for Win32

A-10

ATTR_WIN_MENU_CACHE_COUNT_MAX
Description: An XVT/Win32/64 application can control how Win32/64 resources

are used for menus by specifying the maximum number of menus to
be retained or cached in a fully expanded, displayable form.
Limiting the resources dedicated to menus can substantially increase
the number of windows that an application can create. Menus that
are not cached are retained in a more compact form, then converted
to a displayable form when the associated window is activated.

For larger and more complex menus, you might have to reduce the
cache count maximum. Setting the attribute value to zero turns off
the caching feature.

Uses win argument: No
xvt_vobj_get_attr returns: Current value
xvt_vobj_set_attr effect: Sets the maximum number of

complete menus retained in
displayable form

xvt_app_create use: Can use either before or after
Default value: 7
Argument type: long

ATTR_WIN_NATIVE_HTML_REFERENCE
Description: Gets the handle to the COM interface used by the native Web

browser, IWebBrowser2 (see MSDN).

Note: IWebBrowser2::Release() must be called when finished with the
pointer.

See Also: The attribute ATTR_WIN_HTML_EVENT_HANDLER on page A-7.

Uses win argument: Yes
xvt_vobj_get_attr returns: Pointer to native Web browser

window
xvt_vobj_set_attr effect: None
xvt_app_create use: Must use after
Default value: Zero
Argument type: IWebBrowser2

Appendix A

A-11

Example: Code sample for using the IWebBrowser2 COM object in C.
#define CINTERFACE #define COBJMACROS #include <exdisp.h>

....

IWebBrowser2*pWebBrowser;

pWebBrowser = (IWebBrowser2*)xvt_vobj_get_attr(ctl,
ATTR_WIN_NATIVE_HTML_REFERENCE);

IWebBrowser2_GoSearch(pWebBrowser);

IWebBrowser2_Release(pWebBrowser); pWebBrowser = NULL;

....

ATTR_WIN_NO_PRINT_THREAD
Description: Provides a method of printing without requiring the application to

create a print thread. Normally, XVT forces printing functionality to
be centralized into a specific function call (thread). ATTR_WIN_NO_
PRINT_THREAD allows xvt_print_create_win to be called without having
the function defined. If set to TRUE then print thread is not required.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Toggles requirement of specific

print function
xvt_app_create use: After
Default value: FALSE
Argument type: BOOLEAN

ATTR_WIN_OPENFILENAME_HOOK
Description: A pointer to a function that is called before the common open file

(GetOpenFileName) or save file (GetSaveFileName) dialog is displayed.
You can change the OPENFILENAME structure to control the behavior
of the common dialogs.

Prototype: void XVT_CALLCONV1 openfilename_hook (OPENFILENAME * lpofn)

OPENFILENAME * lpofn
Native filename structure.

XVT Platform-Specific Book for Win32

A-12

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Installs hook function, or

uninstalls hook if value is zero
xvt_app_create use: Must use after
Default value: Zero

Appendix A

A-13

ATTR_WIN_PM_CLASS_ICON
Description: Stores an icon resource ID that identifies the icon used to represent a

minimized window.

This attribute is valid only for iconizable windows; it must be set
immediately before window creation. Setting this attribute sets the
icon for all subsequent window creations. You will want to reset this
attribute immediately after window creation to avoid accidentally
creating other windows with the same icon.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets icon ID for next top-level

window created
xvt_app_create use: Must use after
Default value: Zero
Argument type: int

ATTR_WIN_PM_DRAWABLE_TWIN
Description: Controls whether the task window is drawable.

Caution: This attribute cannot be used (set to TRUE) when using Multiple
Document Interface mode (ATTR_WIN_MDI set to TRUE).

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Makes task window drawable if

TRUE, or non-drawable if FALSE
xvt_app_create use: Must use before
Argument type: BOOLEAN
Default value: FALSE

See Also: The attribute ATTR_WIN_MDI on page A-9.

XVT Platform-Specific Book for Win32

A-14

ATTR_WIN_PM_NO_TWIN
Description: Setting to TRUE disables the creation of a physical TASK_WIN so that

TASK_WIN maps to the screen. This is recommended for applications
with one top-level window.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Controls creation of physical

TASK_WIN
xvt_app_create use: Must use before
Default value: FALSE
Argument type: BOOLEAN

ATTR_WIN_PM_SPECIAL_1ST_DOC
Description: Causes the first document window to be expanded to completely fill

the task window. This directive overrides the RCT parameter to any of
the window creation calls for the first window only.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets special “first doc” state
xvt_app_create use: Can use either before or after
Default value: FALSE
Argument type: BOOLEAN

ATTR_WIN_PM_TWIN_FRAME_WINDOW
Description: The WINDOW value for the MDI frame window. Parenting portable

(XVT) and native (non-XVT) windows to the MDI frame window is
how you create frame-parented objects such as toolbars and status
bars and ensure they do not get overlapped by other windows when
the application is operating in MDI mode.

Uses win argument: No
xvt_vobj_get_attr returns: The window for the MDI frame
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Must use after
Argument type: WINDOW

Appendix A

A-15

ATTR_WIN_PM_TWIN_MARGIN_TOP
ATTR_WIN_PM_TWIN_MARGIN_BOTTOM
ATTR_WIN_PM_TWIN_MARGIN_LEFT
ATTR_WIN_PM_TWIN_MARGIN_RIGHT

Description: Setting these attributes defines a “buffer zone” of pixels inside the
decorations of the MDI frame window that will not be included in
the MDI client area when the application enables MDI mode. (In
MDI mode, all windows parented to the task window are natively
parented to the MDI client window.)

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets the top or bottom,

left or right margin inside
MDI frame window

xvt_app_create use: Either before or after
Default value: Zero
Argument type: long

ATTR_WIN_PM_TWIN_STARTUP_DATA
Description: Initial application data for TASK_WIN. You can change it with

xvt_vobj_set_data and retrieve it with xvt_vobj_get_data.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Specifies application data for

TASK_WIN
xvt_app_create use: Must use before
Default value: Zero
Argument type: long

XVT Platform-Specific Book for Win32

A-16

ATTR_WIN_PM_TWIN_STARTUP_MASK
Description: Initial application mask for TASK_WIN. You can change it

with xvt_win_set_event_mask and retrieve it with xvt_win_get_event_mask.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets task window event mask
xvt_app_create use: Must use before
Default value: EM_ALL
Argument type: EVENT_MASK

ATTR_WIN_PM_TWIN_STARTUP_RCT
Description: Sets creation rectangle for TASK_WIN, which otherwise uses system

defaults.

Uses win argument: No
xvt_vobj_get_attr returns: Invalid
xvt_vobj_set_attr effect: Sets the initial TASK_WIN size

and position
xvt_app_create use: Must use before
Default value: System default
Argument type: (RCT*)

ATTR_WIN_PM_TWIN_STARTUP_STYLE
Description: Sets WSF_* flags for TASK_WIN.

Uses win argument: No
xvt_vobj_get_attr returns: Invalid
xvt_vobj_set_attr effect: Sets TASK_WIN style
xvt_app_create use: Must use before
Default value: WSF_ICONIZABLE|WSF_SIZE|

WSF_CLOSE
Argument type: long

Appendix A

A-17

ATTR_WIN_POPUP_DETACHED
Description: Setting this value to TRUE causes subsequently created windows

whose parent is SCREEN_WIN to have a pop-up style instead of an
overlapped style.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets style of next detached

window
xvt_app_create use: Must use after
Default value: FALSE
Argument type: BOOLEAN

ATTR_WIN_PREV_INSTANCE
Description: The handle of the previous instance of the application, if one is

running. If no other instances are running, this attribute’s value is
zero.

Note: XVT/Win32/64/64/64 will always return NULL for this attribute. The
attribute is provided to maintain consistency with XVT/Win16.

Uses win argument: No
xvt_vobj_get_attr returns: NULL
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Argument type: HINSTANCE

XVT Platform-Specific Book for Win32

A-18

ATTR_WIN_R3_DIALOG_PLACEMENT
Description: This attribute determines whether dialogs are placed according to

the rules of XVT Release 3.x (R3) or XVT Release 4.x (R4). In
Release 4.0 of XVT/NT, now XVT/Win32/64, dialog placement
was normalized to be consistent with other platforms and the way
they are documented. As long as
ATTR_WIN_R3_DIALOG_PLACEMENT is FALSE, initial dialog creation
coordinates are relative to SCREEN_WIN, not TASK_WIN. On the other
hand, when this attribute is set to TRUE, to simulate R3 dialog
placement, dialogs are initially placed relative to TASK_WIN.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Changes paradigm by which

dialogs are placed on the screen
xvt_app_create use: Can use either before or after
Default value: FALSE
Argument type: BOOLEAN

Example: The sample code shown below sets this attribute in the function main
so that all dialogs created by the application are affected:
int XVT_CALLCONV1

main XVT_CALLCONV2 (int argc, char * argv[]) {

#if (XVTWS == WINWS) || (XVTWS == NTWS)
xvt_vobj_set_attr(NULL_WIN,

ATTR_WIN_R3_DIALOG_PLACEMENT, TRUE); #endif

xvt_app_create(argc, argv, 0L, task_eh,

&xvt_config);
return 0;

}

Note: When set to TRUE, ATTR_WIN_R3_DIALOG_PLACEMENT also disables
the centering of all standard dialogs, which was also a characteristic
of dialog placement in XVT/NT R3.

Appendix A

A-19

ATTR_WIN_RAW_EVENT_HOOK
Description: A pointer to a hook function that is called before a native message is

translated and dispatched via TranslateMessage and DispatchMessage from
the Win32/64 native message queue. The phwnd and pmsg parameters
are pointers to data passed internally to Win32/ 64 message
procedures.

Your application can process this message data in any appropriate
manner. If your hook function returns FALSE, XVT does not translate
or dispatch the event. If your hook function returns TRUE, XVT
processes the event normally.

Prototype: BOOLEAN XVT_CALLCONV1 raw_event_hook(MSG * pmsg, HWND * phwnd)

MSG * pmsg
Native message.

HWND * phwnd
Intended window.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Installs hook function, or

uninstalls hook if value is zero
xvt_app_create use: Can use either before or after
Default value: Zero

ATTR_WIN_TIMER_HI_GRANULARITY
Description: Controls the interval between internal timer events used to process

user-requested timer intervals greater than 64K milliseconds. This
affects the accuracy with which timer events having long intervals
are sent.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets the granularity
xvt_app_create use: Must use before
Default value: 1000
Argument type: long

XVT Platform-Specific Book for Win32

A-20

ATTR_WIN_USE_PCL_RECTS
Description: When XVT/Win32/64 prints to an HP LaserJet printer, it normally

uses a special escape provided by Win32/64 to optimize the printing
of rectangles with solid or empty interiors. This applies only to HP
LaserJet (and possibly Inkjet) printers that use PCL, not to HP
LaserJet printers with PostScript extensions.

The Win32/64 HP LaserJet device driver uses two passes to print a
page. Normally, the first pass prints text and the second pass prints
graphics. The text output is small, since text is encoded by
characters, and the graphics output is large, since it is represented by
raster images.

If you don’t use this attribute, rectangles, vertical lines, and
horizontal lines are output as raster graphics. This approach has
three drawbacks:

• It creates potentially enormous spool files
• The HP driver sometimes produces garbage output if too

much graphical data is generated
• It is slow

XVT uses the special HP escape to reduce drawing time, reduce
spool file size, and improve reliability. However, be aware of the
following trade-off. Rectangles drawn with this escape are
effectively OR’d with the raster output of other drawing functions,
which means that if you draw a rectangle, and then draw an
overlapping oval, the rectangle “shows through” the oval.

To disable this behavior, and produce correct but much larger
output, disable the attribute (set it to FALSE).

Tip: You can enable or disable this attribute at any time, including during
printing. For most programs, XVT recommends that you leave this
attribute enabled, as it can greatly reduce output size and increase
printing speed. For example, a page of “spreadsheet” output, where
cells of text are separated by grid lines, is reduced from about
1300KB to about 60KB.

Appendix A

A-21

Uses win argument: No
xvt_vobj_get_attr returns: Previous setting
xvt_vobj_set_attr effect: Sets drawing mode for HP

printers
xvt_app_create use: Must use after
Default value: TRUE
Argument type: BOOLEAN

ATTR_WIN_USE_PRINT_BANDING
Description: This attribute controls whether XVT/Win32/64 uses the banding or

non-banding native APIs when printing. Note that this attribute can
only be set before starting the print job (when the application calls
xvt_print_create_win).

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Can use either before or after
Argument type: BOOLEAN
Default value: TRUE

ATTR_WIN_WCLASSREG_HOOK
Description: A pointer to a function that is called before every window class

registration (i.e., every call to the RegisterClass function). The
application can change the WNDCLASS structure.

Prototype: void XVT_CALLCONV1 wclassreg_hook(WNDCLASS * pwc)

WNDCLASS * pwc
Window class.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Installs hook function, or

uninstalls hook if value is zero
xvt_app_create use: Can use either before or after
Default value: Zero

XVT Platform-Specific Book for Win32

A-22

Valid Class Names and Corresponding Window Types

Class Name: Window Type:

mdidoc MDI document
mditask MDI frame
task non-drawable task
drawtask drawable task
detdoc detached document
doc nested document
child child
dialog dialog

In XVT-Design, you supply the class hook definition by means of the
Obj_Decl tag in the ACE. You then supply the extra code in the main
function (the code prior to the call to xvt_app_create) by means of the
Main_Code tag in the Action Code Editor (ACE).

Example: This example shows how to update the icon in a drawable task
window using a simple class registration hook:
#define TESTNAME "icon example"

void XVT_CALLCONV1 classHook(WNDCLASS far * pwc) {

if (strncmp(pwc->lpszClassName, "drawtask", 8) == 0) { pwc-
>hbrBackground = COLOR_APPWORKSPACE+1;

}
}

void XVT_CALLCONV1
main(int argc, char * argv[])
{

XVT_CONFIG c;

memset(&c, 0, sizeof(c));
c.menu_bar_ID = MENU_BAR_RID;
c.base_appl_name = TESTNAME;
c.appl_name = TESTNAME; c.taskwin_title = TESTNAME;

xvt_vobj_set_attr(NULL_WIN,
ATTR_WIN_PM_DRAWABLE_TWIN, TRUE);

xvt_vobj_set_attr(NULL_WIN,
ATTR_WIN_WCLASSREG_HOOK, (long)classHook)

xvt_app_create(argc, argv, 0L, taskHandler, &c);

}

�

Appendix A

A-23

The main function does the normal initialization of an XVT_CONFIG
struct. It also calls xvt_vobj_set_attr twice; the first call makes the task
window drawable, and the second sets up the class registration hook
function.

The hook function detects when the drawable task window’s class is
being registered by checking the class name. XVT appends some
additional information to the class name. For this reason, you should
use the function strncmp to test just the relevant part of the name.

A.2. Variations on Portable Attributes
These portable attributes have slight variations in meaning in order
to support differences between the native Win32/64 platform and
other platforms.

ATTR_EVENT_HOOK
Description: A pointer to a hook function that is called whenever a native Win32/

64 event is received for a window or dialog in your application. The
hwnd, msg, wparam, and lparam parameters are copies of data passed
internally to Win32/64 message procedures by XVT/Win32/64. The
ret parameter is the return value from XVT used in the native
message-handling procedure. In almost all cases, your event hook
function should set ret to zero.

Your application can process this message data in any appropriate
manner—however, modifying this data will have no effect on any
default processing by Win32/64. If your hook function returns
FALSE, XVT does not process the event further. If your hook
function returns TRUE, XVT processes the event normally.

Prototype: BOOLEAN XVT_CALLCONV1 event_hook(HWND hwnd, UINT msg,
UINT wparam, ULONG lparam, long * ret)

HWND hwnd
Native window.

UINT msg
Native message.

UINT wparam
Native word parameter.

ULONG lparam
Native long parameter.

long * ret
Native return value.

XVT Platform-Specific Book for Win32

A-24

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Installs hook function, or

uninstalls hook if value is zero
xvt_app_create use: Can use either before or after
Default value: Zero

ATTR_KEY_HOOK
Note: The key hook function supports internationalization and

localization.

Multibyte-nonaware Application

If your application uses a single-byte character code set and you
have set the value of ATTR_MULTIBYTE_AWARE as FALSE (default),
then ATTR_KEY_HOOK behaves as follows:

Description: A pointer to a hook function that is called after native
WM_KEYDOWN or WM_CHAR events are received and before E_CHAR
events are sent to your application. The hwnd, msg, wparam, and lparam
parameters are copies of data passed internally to XVT/Win32/64
message procedures by Win32/64.

If you need to perform key translation, you must modify data in the
ret parameter. XVT uses the ret parameter to construct an E_CHAR
event. The s_char struct appears in the char part of the E_CHAR EVENT
substructure, and looks like this:

struct s_char {
XVT_WCHAR ch; /* wide character */
BOOLEAN shift; /* shift key? */
BOOLEAN control; /* ctrl or

option key? */
BOOLEAN virtual_key; /* virtual key? */
unsigned long modifiers; /* key bit field

modifiers */
} chr;

If your key hook function translates a character to a virtual key, then
it should also set the virtual_key field to TRUE. Your application can
process this message data in any appropriate manner—however,
modifying the hwnd, msg, wparam, and lparam parameters will have no
effect on any default processing by Win32/64. If your hook function
returns FALSE, XVT does not process the event further and
dispatches the E_CHAR event to your application. If your hook
function returns TRUE, XVT processes the event normally and may
either dispatch the E_CHAR event to your application or discard the

Appendix A

A-25

event. (The return values have an opposite sense from that of the
multibyte version of this attribute.)

Prototype: BOOLEAN XVT_CALLCONV1 key_hook(HWND hwnd, UINT msg,
UINT wparam, ULONG lparam, struct s_char * ret)

HWND hwnd
Native window.

UINT msg
Native message.

UINT wparam
Native word parameter.

ULONG lparam
Native long parameter.

struct s_char * ret
XVT-translated key.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Installs hook function, or

uninstalls hook if value is zero
xvt_app_create use: Can use either before or after
Default value: Zero

Multibyte-aware Application

If your application is multibyte-aware (in other words, you have set
the value of ATTR_MULTIBYTE_AWARE as TRUE), then ATTR_KEY_
HOOK behaves as follows:

Description: A pointer to a hook function that is called after native
WM_KEYDOWN or WM_CHAR events are received and before E_CHAR
events are sent to your application. The hwnd, msg, wparam, and lparam
parameters are copies of data passed internally to XVT/Win32/64
message procedures by Win32/64.

If you need to perform key translation, you must modify data in the
event parameter (an XVT E_CHAR event).

If your key hook function translates a character to a virtual key, then
it should also set the virtual_key field to TRUE. Your application can
process this message data in any appropriate manner—however,
modifying the hwnd, msg, wparam, and lparam parameters will have no
effect on any default processing by Win32/64. If your hook function
returns TRUE, XVT does not process the event further and dispatches
the E_CHAR event to your application. If your hook function returns

XVT Platform-Specific Book for Win32

A-26

FALSE, XVT processes the event normally and may either dispatch
the E_CHAR event to your application or discard the event.

Prototype: BOOLEAN XVT_CALLCONV1 key_hook(HWND hwnd, UINT msg,
UINT wparam, ULONG lparam, EVENT * event)

HWND hwnd
Native window.

UINT msg
Native message.

UINT wparam
Native word parameter.

ULONG lparam
Native long parameter.

EVENT * event
XVT event.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Installs hook function, or

uninstalls hook if value is zero
xvt_app_create use: Can use either before or after
Default value: Zero

ATTR_NATIVE_GRAPHIC_CONTEXT
Description: MS-Windows graphics context (device context handle) of an XVT

WINDOW.

Uses win argument: Yes
xvt_vobj_get_attr returns: HDC
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Must use after
Default value: None

Appendix A

A-27

ATTR_NATIVE_WINDOW
Description: MS-Windows Window which corresponds to the client area of an

XVT WINDOW. Not valid for windows of type W_PIXMAP, W_PRINT
and W_SCREEN.

Uses win argument: Yes
xvt_vobj_get_attr returns: HWND
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Must use after
Default value: None

A.3. Non-portable Escape Codes
The xvt_app_escape function enables you to set or get
XVT/Win32/64-specific information that you cannot set or get using
the xvt_vobj_set_attr or xvt_vobj_get_attr functions. The xvt_app_escape
function’s escape codes and the associated parameter lists are given
below, with a brief explanation of types
and values. The escape code is an integer whose value is defined
internally by XVT.

XVT_ESC_WIN_TERMINATE
Description: This escape behaves similarly to xvt_vobj_destroy(TASK_WIN)

or, equivalently, xvt_app_destroy, in that it terminates the application
and sends an E_DESTROY event to the task event handler. However,
this escape differs in two important ways:

• XVT_ESC_WIN_TERMINATE returns to the calling function
• XVT_ESC_WIN_TERMINATE causes xvt_app_create to return to the

application main function, which also must return

Use this escape in place of calls to xvt_app_destroy and/or xvt_vobj_
destroy(TASK_WIN) only. Be sure that your application is prepared for
the call to xvt_app_escape to return, since calls to xvt_app_destroy and/or
xvt_vobj_destroy(TASK_WIN) are guaranteed never to return.

Note: Win32/64 handles freeing of resources better than MS-Windows
3.1.
In XVT/Win32/64, this escape exists primarily to maintain
consistency with XVT/Win16.

Prototype: xvt_app_escape(XVT_ESC_WIN_TERMINATE)

XVT Platform-Specific Book for Win32

A-28

A.4. Non-portable Functions

xvtwi_hwnd_to_window
Description: This function returns the XVT WINDOW for a given native window

handle (HWND). If no XVTWINDOW corresponds to the given HWND,
the function returns NULL_WIN.

Prototype: WINDOW XVT_CALLCONV1 xvtwi_hwnd_to_window(HWND hwnd)

HWND hwnd
Handle to a native window.

Caution: This function is not prototyped in the standard XVT application
programmer interface (API). If you use this function, you must
provide the prototype as needed.

Appendix B

B-1

BWin32/
64/

APPENDIX B:
FREQUENTLY ASKED QUESTIONS

Q: When running the rc compiler on a xrc-generated .rc file, I receive
errors about not finding a .ico file. Where do I find this file?

A: This is the Win32/64 icon that will be associated with your
application.You can copy xvtapp.ico from the lib directory to
the correct filename.

Alternatively, you can create your own icon by using a native icon
editor such as the one that ships with Microsoft Visual C++.

Note that the filenames must match the definition of the symbol
APPNAME in your URL file. If the filename is not defined, it defaults
to xvtapp.

See Also: For more information on application icons, see section 2.4.1.

XVT Platform-Specific Book for Win32

B-2

Q: When running rc on a xrc-generated .rc file, I receive errors about
not finding croshair.cur. This file exists in the lib directory, but xrc
insists it must be in .\ ..\ ..\lib. How can I change this?

A: The xrc compiler uses the definition of the symbol LIBDIR to direct
the rc compiler to the necessary cursor (.cur) files. If this symbol is
not set before including url.h, it defaults to .\ ..\ ..\lib. You can
override this on the xrc command line, using the -d option.

Example: This example shows how to invoke xrc using this option:
xrc -r rcwin -dLIBDIR=c:\myxvtdir\w32_x86\lib sample.url

Note: The rc compiler requires that all relative paths begin with these
characters: .\
Thus the path ..\ ..\lib is specified as .\ ..\ ..\lib.

See Also: For more information on preprocessor symbol definition, see the
“Resources and URL” chapter in the XVT Portability Toolkit Guide.

Q: When I first enter a debugging session of an XVT/Win32/64/64
application, I do not see my source code, only assembly language.
Why is this?

A: The entry point into all Win32/64 applications is a function known
as WinMain. For an XVT/Win32/64 application, this is contained in
the static library, not in your own application’s code. Consequently,
what you see is the assembly language for XVT/Win32/64/64’s
WinMain, the source for which is not included in a binary installation.

You need to make sure that $(cdebug) is in the compile command and
that $(ldebug) is in the link command line.

Inside Visual C++, you should view the source code for your
application and set breakpoints where you want to start your
debugging.

See Also: For more information, see the Microsoft Visual Studio online
documentation.

Q: How do I use color with controls in my application?

A: You can use the following two Portability Toolkit functions to set
colors for controls in your application:

Appendix B

B-3

void xvt_ctl_set_colors(WINDOW ctl_win, // WINDOW ID of the control
XVT_COLOR_COMPONENT *colors, // colors to set or unset
XVT_COLOR_ACTION action) // set or unset the colors

and
void xvt_win_set_ctl_colors(WINDOW win,

// WINDOW ID of the window or dialog
XVT_COLOR_COMPONENT *colors, // colors to set or unset
XVT_COLOR_ACTION action) // set or unset the colors

xvt_ctl_set_colors sets or unsets the colors for a single control. This
function overrides any color values you set previously for the
control, but only for the XVT_COLOR_COMPONENT of the colors
array. All other colors used by the specified control are not affected.
To set the default colors for a control, use NULL for the value of
colors. An action value of XVT_COLOR_ACTION_SET sets the control
colors for the color components specified in the colors parameter.
An action value of XVT_COLOR_ACTION_UNSET sets the control
colors for the color components specified in the colors parameter to
colors inherited from the control's container, the colors owned by the
application, or the system default.

xvt_win_set_ctl_colors sets or unsets the colors for all existing controls
in window win and all controls that you create after setting the
colors. It will not change the colors of controls in other windows.
This function overrides any color values you set previously for the
controls in the window, but only for the XVT_COLOR_COMPONENT of
the colors array. All other colors used by the window's control are
not affected.

Note: For controls with color components set individually, the
components that were set will not be affected by this color change.
The components that were not set will be affected. For example, if a
pushbutton has blue set for the foreground color and the window has
red set for the background color, the background of the pushbutton
will be red.

To set the default colors for controls in a window, use NULL for the
value of colors. XVT_COLOR_ACTION_SET and
XVT_COLOR_ACTION_UNSETwork as described above. Note that this
function does not affect the colors of the container decorations or
any other colors that appear in the container itself.

The following Portability Toolkit functions allow you to get the
currently-defined color settings:

XVT Platform-Specific Book for Win32

B-4

XVT_COLOR_COMPONENT *xvt_ctl_get_colors(WINDOW ctl_win)

and
XVT_COLOR_COMPONENT *xvt_win_get_ctl_colors(WINDOW win)

Q: Where are all new features of the PTK documented?

A: New functionality is outlined in the XVT Portability Toolkit
Reference and in the XVT Portability Toolkit Guide, both of which
you will find in the documentation. XVT has chosen to use an
electronic format to make reference information clearer, easier to
find, and more usable.

In addition to documenting new functionality, the online XVT
Portability Toolkit Reference contains sections on each of the
following topics:

• XVT Portable Attributes
• XVT Events
• XVT Data Types
• XVT Constants
• XVT Functions
• URL Statements
• Help File Statements
• Tools

Q: How do standard fonts map to multibyte fonts?

A: XVT does not automatically map to multibyte fonts. In order for
your application to use multibyte fonts, you must first
Internationalize and Localize your application, using the methods
detailed in Chapter 19 of the XVT Portability Toolkit Guide. You
must also install the multibyte fonts appropriate for the language you
intend to use, according to your system guidelines. This will allow
the fonts to be available to your XVT application.

Presumably, you will be translating your application to one or more
languages. If you have properly internationalized your application,
all your text and font references exist only in your resource file.
When you translate your text, you should also setup the font and font_
map resource approriate for each language.

Appendix B

B-5

To set a multibyte font, you must modify the URL font or font_map
statements of your application to contain native fonts appropriate for
the language.

XVT supplies the following LANG_* xrc compiler options (files in
your ptk/include directory):

• LANG_JPN_SJIS supports Japanese in Shift-JIS code (file
ujapsjis.h)

• LANG_GER_IS1 supports German in ISO Latin 1
• LANG_GER_W52 supports German in Windows 1252
• Files for English, French, and Italian are also provided

These options and others are listed and discussed further in the XVT
Portability Toolkit Guide and the Guide to XVT Development
Solution fo C++.

XVT cannot guarantee which character set your customers will use.
There is more than one set available for many languages. Because
the font to which you map must be available on your customer's
system in order for your application to run, a survey of your
proposed customer base may be in order.

The availability of these fonts and other system setup issues should
become part of the installation requirements for your application, or
the fonts should be installed with your application.

Q: I've completed development and thoroughly tested my application.I
understand the XVT Portability Toolkit has compile time
optimization. How do I enable it?

A: In order to understand how XVT compile time optimization works,
some knowledge of the XVT Portability Toolkit implementation is
required. The XVT Portability Toolkit is implemented in two layers.
The top API layer, the functions of which are listed in the XVT
Portability Toolkit Reference, is called directly by your application.
This layer performs error checking of all input parameters and
sometimes other validation before calling the internal layer.It is the
internal layer that contains the implementation of the functionality.

XVT provides a compile time symbol, XVT_OPT, which, when
defined during application compilation, redefines the top level
function names to directly call the internal API functions through
macros. This bypasses the parameter checking provided by the top
layer and eliminates an extra stack level for each XVT API function.
You can also leave XVT_OPT undefined, allowing for the specific

XVT Platform-Specific Book for Win32

B-6

optimization of your application code. The header file xvt_opt.h
contains the macro definitions of the XVT API functions that are
optimized.

The optimization will not eliminate all error checking from the XVT
Portability Toolkit. Rather, it will eliminate only those errors related
to XVT API function parameters. Also, because the top layer sets
up the error frames for function information, any errors that do occur
may have fictitious results for the function stack trace.

XVT recommends this option be used only after you have completed
development and have thoroughly tested your application.
Attempting to use this option too early in your development process
may result in application crashes and other odd behavior due to
improperly called functions that would otherwise have been checked
and diagnosed by the top API layer.

Q: I'm not sure I understand the M_* values for DRAW_MODE as
stated in the XVT Portability Toolkit Reference. What exactly am I
supposed to see?

A: The following “Draw Mode Definitions” section shows the different
drawing modes supported by XVT. There is also an explanation of
what these modes will do if you are drawing in black or white on
either a black or a white source pixel.

See Also: For more information, see “Draw_Mode” under “XVT Data Types” in
the XVT Portability Toolkit Reference.

Note: On systems that use a 256-color palette, and not 24 bit color,
information in the charts will hold true only for black and white
because the palette indices are used for ORing and XORing, not the
color values themselves. Because there are no definitive (or at least
portable) rules about what color is held in a given index, there are
absolutely no guarantees as to what your results will be. 129 xor 1 will
always be 128, but index 129 might be yellow, 1 might be white, and
128 might be off-puce. The application can attempt to force a
palette, but the colors present will be a random mix based on what
applications are currently running and what applications have run in
the past in the same session.

The following code and draw mode definitions demonstrate the
problem more clearly:

Appendix B

B-7

typedef enum { /* drawing (transfer) modes */
M_COPY,
M_OR,
M_XOR,
M_CLEAR,
M_NOT_COPY,
M_NOT_OR,
M_NOT_XOR,
M_NOT_CLEAR

} DRAW_MODE;

Draw Mode Definitions

M_COPY:
• If you draw black, source pixel will be forced to black
• If you draw white, source pixel will be forced to
white

M_OR:
• If you draw black, source pixel will be forced to black
• If you draw white, source pixel will be left as is

M_XOR:
• If you draw black, source pixel will be inverted
• If you draw white, source pixel will be left as is

M_CLEAR:
• If you draw black, source pixel will be forced to white
• If you draw white, source pixel will be left as is

M_NOT_OR:
• If you draw black, source pixel will be left as is
• If you draw white, source pixel will be forced to
black.

M_NOT_CLEAR:
• If you draw black, source pixel will be left as is
• If you draw white, source pixel will be forced to
white

M_NOT_COPY:
• If you draw black, source pixel will be forced to white
• If you draw white, source pixel will be forced to black

M_NOT_XOR:
• If you draw black, source pixel will be left as is
• If you draw white, source pixel will be inverted

XVT Platform-Specific Book for Win32

B-8

Q: What is the difference between NText and CText?

A: NText and CText each display a single line of text and provide
alignment options within their frames. Although their basic
functions are similar, each class has unique characteristics that make
it better than the other in different situations.

The NText class is derived from the CNativeView class. Native views
have the look-and-feel of objects provided by the native window
manager. They look slightly different from platform to platform.
Visually and functionally they fit in with the analogous graphical
items on the target platform. They are not implemented by XVT-
DSC++, but by native toolkits, so you have less flexibility in
manipulating them. Native views don't know how to print
themselves. Since native views are derived from CView, they have
all of the capabilities of other objects at the view level. As a native
view, NText is defined by platform-specific resources. For example,
it uses the system font and color as defined by the window manager.

You should use NText when you want your application, or parts of
your application (certain dialog boxes, for example), to have the
look-and-feel of objects created by the native window manager.

The CText class is derived from the CView class. Unlike NText, which
is drawn by the native window manager, CText creates drawn text
which looks the same across all platforms. It allows user and
program control over its font properties and colors. For example, it
allows you to choose from a variety of font families (Times,
Helvetica) and styles (italics, boldface). It can dynamically change
its size as its contents change. It can change its placement and
alignment at runtime. It can also output itself to a printer.

You should use CText when you want more creative control over the
appearance of your text, when you want your text to appear the same
across all platforms, or when you want to give the user creative
control over the appearance of text in your application.

See Also: For more information, see “CText” and “NText” in the XVT DSC++
Reference and also look for references to CText and NText in the
Guide to XVT Development Solution for C++.

The “Textual Views” chapter in Introduction to C++ for Developers
is also helpful.

Appendix B

B-9

Q: Is there a way to implement zooming in DSC++?

A: The following solution does not use CUnits and will result in correctly
updated wireframes, scrolling, sizing, dragging, and so on.

Create a new class called ViewInfo, for example. The purpose of
ViewInfo is to keep track of the location where the view was created.
Each time that a new view is inserted in the CScroller, create an
associated ViewInfo. Fill the associated ViewInfo with the view's
creation-frame and a pointer to this view. This ViewInfo instance is
then appended to a RWOrdered.

When the zoom factor changes, for example, to 150%, iterate
through the RWOrdered, and tell the view, which is pointed to size 1.5
times its original frame. Once all views have processed, call xvt_
dwin_invalidate_rect on the CScroller. Everything should successfully
redraw. If a CWireFrame has been moved, it generates a WFSizeCmd,
and the DoCommand looks up in the RWOrdered to update the creation
coordinates according to the actual zooming factor.

The following code illustrates:
class ViewInfo : public RWCollectable {
public:

ViewInfo(CView* theView, const CRect& theRect) ; ~ViewInfo() ;
virtual CRect& SetFrame(const CRect& theRect) ;
virtual CRect GetFrame(void) ;
virtual CView* GetView(void) ;

protected:
CRect itsCreationFrame; CView* itsView;

private: } ;

A fundamental problem is equating the Size() method with zooming.
Here are the issues:

• What happens when a view is resized in the usual way? For
example, as a pane in a splitter window, a subview may be
resized to be twice as wide. Is this equivalent to zooming by
200%?

• What happens when a view is moved in the usual way? W i l l
the associated ViewInfo object need to refresh itsCreationFrame?
How would this be done?

• What happens when a native control is zoomed? For
example, if a NListButton is told to zoom (resize), the edit box
will remain the same height.

XVT Platform-Specific Book for Win32

B-10

• What happens when a CPicture (or a CPictureButton, etc.) is told
to resize? Will the picture stay intact?

• What happens to subviews within subviews? The splitter will
be resized, but the oval will stay the same.

It should be possible to resolve all of these issues without the need
to subclass everything. Expand on what has been started in the
ViewInfo class above, and envision a type of visitor attached to the
switchboard called a CZoomHandler.

A CZoomHandler will have a zooming factor attribute. If this is set to
100%, it will not do anything. A CZoomHandler will intercept E_
UPDATE events at the Switchboard and perform a deep traversal
through the window's object heirarchy, via DoDraw(). The
CZoomHandler will render each view as it sees fit: On some views, it
may just temporarily reset its size attributes and then call its Draw()
method. On others, it may do its own drawing to handle some of the
tougher issues listed above.

Q: How do you create global variables for use in a DSC++
application?

A: The best way to use variables that can be accessed globally from
your application is to use them in a real global object, such as the
CApplication- derived object. The application object should
encapsulate the variables and make them accessible only through
member functions. For instance, if the application object has a
private variable named theVariable, then the application object might
have a member function named SetTheVariable() and another called
GetTheVariable(). This approach is a standard mode of operation in
most object-oriented applications.

Some prefer to use the CGlobalUser class. This class, however, does
not encapsulate and protect data as well as using a more object-
oriented approach as described above. In case you choose to use the
CGlobalUser class, the following paragraphs describe how.

The CGlobalUser class object has application global scope and can be
used to access any global variables you may need. You can find
documentation for this class in the XVT-DSC++ Reference.

The CGlobalUser class is utilized as follows:

1. Copy the CGLBLUSR.H file from the pwr/include directory
to your development directory. You should rename the original
file so that the compiler will see your own copy.

Appendix B

B-11

2. Add public class variables to your copy of the header file as
follows:

///////////////////////
//Add items as needed// ///////////////////////

class CGlobalUser : public CNotifier {
public:

CGlobalUser(void) {}
XVT_HELP_INFO xd_help_
info; FILE_SPEC* initFile;
SECURITY_LEVEL userLevel;

};

3. In your application's startup member function, create an
instance of CGlobalUser and pass it to CBoss: IBoss as follows:

///////////////////////////////
// Call IBoss to instantiate //
// the CGlobalUser object // ///////////////////////////////

void CDEMOApp:
:StartUp();
{

CApplication::StartUp(); IBoss(new CGlobalUser); DoNew();
}

4. Access the global variables through the CBoss's GU pointer,
as follows:

...
// Access the global userLevel GU->userLevel = SUPER_USER; ...

5. Destroy the GU pointer in the application's ShutDown
member function, as follows:

////////////////////////////////////
// Destroy GU and set it to NULL // ////////////////////////////////////

void CDEMOApp:
:ShutDown(void)
{

delete GU;
GU = NULL;
CApplication:

:ShutDown();
}

XVT Platform-Specific Book for Win32

B-12

Q: In the Application-Document-View hierarchy, can I have more
levels of Document-View? For example, can I have a hierarchy like
the following:

In other words, if there are only three levels in the hierarchy, I have
to put all data access/management code in one document and then
use this single document to maintain all its views, as illustrated
below?

A: No, you cannot have multiple levels of documents using the DSC++
framework. CDocument objects must be parented to one CApplicaton
instance, just as CWindow objects are parented to a single CDocument
instance. However, this arrangement gives you plenty of power for
managing document data.

It might help to make a distinction between two different concepts
that are used in the DSC++ framework. One is the “Application-
Document-View” concept, and another is known as the “Model-
View-Controller” design pattern. These two patterns can be used
separately or together to build your application's data-flow structure.

It is true that you have only one level of views that are windows into
the data in a document. However, it makes sense that there is only
one level of complexity in this model. The real purpose of the App-
Doc-View idea is to help the developer visualize which windows are
looking at which separate groups of data.

In the App-Doc-View paradigm, it is the document's role to be the
conduit of data flow between the data level and the presentation

Document View Document1 View1Application

Document View

Document2 View2

Document ViewApplication

Document View

SubView2

SubView1

Appendix B

B-13

level of a two- or three-tier architecture. A document represents, in
all its complexity, an entire, independent data set. Even if your
presentation draws its data from several different sources, it can still
be thought of as one data set, managed by a single document.

The App-Doc-View concept helps in laying out applications that
have many windows that look into one data set, and a separate
collection of windows that look into an entirely different data set. In
your case, you may not have this type of complexity.More complex
documents probably should be broken up into more manageable
models, where the document manages (creates and destroys) these
models. Each model is designed to solve one piece of the overall
project.

In some cases, you may have a single window that looks into two
separate data sets. In such a situation, the “Model-View-Controller”
design pattern will be more appropriate. This design is borrowed
from the Smalltalk programming environment to help keep all the
windows into a data set in sync so they all have the same data at the
same time.

An MVC object structure can be as complicated as needed. When
the state of one model changes, all other dependent models may be
automatically notified and updated via the controllers to which the
models are registered.

You can implement this with a document that owns many data
models (use the CModel class). Each model has a controller that
decides whether windows can change or read the data. You
register each of the views with the data controller (use
CController). These
views can be implemented as CViews, CSubviews, or CWindows. When
the data in the model changes, the controller will send a message to
the appropriate views so that they can update themselves with the
data. The document would manage both the data models and the
views themselves.

In Architect, you can visualize the layout with the Application-
Document-View graph. However there is no visual way to represent
the Model-View-Controller idea in Architect because this design
pattern has less to do with the layout of the application, and more to
do with the internal data structures.

These two separate concepts have their own unique uses as generic
design patterns. Thinking about object-oriented programs in terms of
abstract design patterns has proven quite useful to many object-
oriented programmers. A good book on the topic is Design Patterns:

XVT Platform-Specific Book for Win32

B-14

Elements of Reusable Object-Oriented Software by Gamma, Helm,
Johnson, and Vlissides.

Q: How do you print hidden views, multiple pages, or native controls in
DSC++?

A: The default behavior of Architect-generated code is to print the
contents of a window on a single print page. DSC++ has built-in
functionality for printing the screen images of most drawn or
rendered objects, including CSubView-derived objects. Anything
which lies beyond the boundaries of the window is clipped in the
printed output. There is no functionality in DSC++ or the C-level
Portability Toolkit (PTK) for printing images of native controls,
specifically anything that inherits from the class CNativeView.If your
application only needs to be able to produce simple screen shots of
custom views drawn on a single page, you probably do not need to
override any printing methods.

However, many applications need to be able to print text or graphics
on multiple pages. Others may need to print portions of the view
that demonstrate how to print the contents of a text editor object on
multiple pages.

To understand Printing in DSC++, consider that there may be several
overloaded versions of DoPrint acting in a single print process.
CPrintManager has the DoPrint member function, CDocument has DoPrint,
and CView also has DoPrint. These three implementations coexist, and
they do different tasks. If you look at the DSC++ hierarchy, you can
see they cannot override one another.

Printing is started when the user selects the Print option from the File
menu. This generates the standard M_FILE_PRINT menu command.
The menu command goes to your window's DoMenuCommand method.
It propagates up from there to the default CWindow menu, then the
default CDocument menu command. CDocument will then call the
CDocument-derived DoPrint Method.

If your application overrides the CView::DoPrint, note that your
overridden DoPrint function will not get called with the default
Architect code. This is because the CView class does not inherit from
CDocument, and it is the CDocument DoPrint that gets called by default.
You will need to add your own code to call the proper print method.
Usually this code is added at the window object level.

At the document level, the DoPrint method inserts each of the
document's windows as an entry (or page) in the print queue, and

Appendix B

B-15

calls the CPrintManager::DoPrint. The CPrintManager's DoPrint starts a PTK
print thread. If you override CView::DoPrint, your function will also call
CPrintManager::DoPrint.

The PrintThread function looks at every item in the print queue and opens
a print page for each one. It calls an item's DoPrintDraw and then closes the
page. This way each view in the queue gets exactly
one page.

The default DoPrintDraw, generally at the CView level, simply sets the
output device to be the printer, prepares the clipping region of the
view, and calls the view's PrintDraw. PrintDraw is not called if the view is
invisible. PrintDraw then does the drawing to the print page. In many
cases, PrintDraw just calls Draw, the same routine that draws to the
screen. Drawing to the screen or to the print page works
interchangeably, depending on how the output device is set.

The secret to printing multiple pages it to override the DoPrint method
that inserts pages into the print queue. Every time the CPrintManager's
Insert method is called results in a page of printed output.If you want a
view to appear on several pages, call Insert once for each page with the
same view as its parameter. If the objects to be printed are within a virtual
frame, you can scroll hidden views into the visible portion of the frame
before you enter the views in the print queue.

The overridden DoPrint also needs to figure out how many pages a
view will occupy. Often times, this requires converting from printer dot
units to pixel units. For this, you need to create a units object with
dynamic mapping for your application.

Q: Why do my deserialized fonts print too small?

A: Font serialization is a means by which the specifications for a logical
font file can be saved to a file for later use in the program or in another
program. When a font is serialized the following information is
extracted from the font: its family, size, style, and native description.

The fact that the native descriptor is stored can cause a problem. When
a font is deserialized and it contains the native descriptor, XVT will no
longer map the font. This is by design because it is
possible to customize the native font description beyond the access
functions provided by XVT.

A symptom of this problem is when a font is deserialized and
everything looks OK in the window, but then the same font, when used
to print, results in very small text.

XVT Platform-Specific Book for Win32

B-16

The solution to the problem is not to store the native descriptor in the
serialized buffer. A typical serialized font looks as follows:

01\system\0\12\WIN01/-16/0/0/0/400 /0/0/0/1/0/0/2/32/System

Everything from the WIN01 on is part of the native descriptor. A
serialized font without a native descriptor looks as follows:

01\system\0\12\

This version will continue to be mapped as necessary after
deserialization. The following is the code to remove the native
descriptor from the serialized font:

FILE *fp = fopen("font.ser", "w+"); xvt_font_unmap(newFontInfo.itsFontID);
xvt_font_set_native_desc(newFontInfo.itsFontID," "); save_font_to_file(fp,
newFontInfo.itsFontID); xvt_font_map(newFontInfo.itsFontID,xdWindow);
fclose(fp);

And following is the actual font serialization code:
void save_font_to_file(FILE *fp, XVT_FNTID font_id) {
char *buffer; long length;
length = xvt_font_serialize(font_id,NULL,0);
buffer = (char *)xvt_mem_alloc(length); if(buffer)
{
if(xvt_font_serialize(font_id,buffer,length))
{
fputs(buffer,fp);
xvt_dm_post_note("Serial buffer: %s", buffer); }

else
xvt_dm_post_warning(

"Could not serialize font"); xvt_mem_free(buffer);
}
else
xvt_dm_post_warning(

"Could not allocate memory for buffer"); }

Finally, the following is an example of font deserialization code:
/* this function reads a font from a file. */
void read_font_from_file(FILE *fp,XVT_FNTID font_id) {
char buffer[BUF_SIZE]; fgets(buffer,BUF_SIZE,fp);
xvt_dm_post_note("Buffer read from disk: %s", buffer);
if(xvt_font_deserialize(font_id,buffer)==FALSE) xvt_dm_post_warning(

"Could not deserialize font"); }

Appendix B

B-17

Q: Is there a good way to track event processing?

A: Yes. A good way to track event processing is to use the functions
xvt_debug and xvt_debug_printf from the XVT Portability Toolkit. These
functions, when used from within an event's switch statement, allow
the programmer to print lines of text to a file with some explanation
of which event is taking place. These functions do not cause events
themselves, so they are ideal for tracking event flow within an
application. The functions use regular sprintf arguments (passes a
char*). Strings are passed to a file named debug in the working
directory. Alternately, a filename can be specified by setting ATTR_
DEBUG_FILENAME.

Consider the following code, for example:
{
if (xdEvent->v.active)
{ xvt_debug_printf("Focus has entered window"); /*
Window has gained focus
}
else { xvt_debug_printf("Focus has left window"); /*

Window has lost focus */
}

This code, when placed within an e_focus for a window, will place the
appropriate message into the file debug, alerting the programmer to
whether a focus event has been sent to the window.

There is a slight difference in the use of xvt_debug and xvt_debug_printf.
xvt_debug is conditional upon the following two things:

• A preprocessor command, #define DEBUG must be before
#include "xvt.h"

• The debug file is present in the working directory at run-time

Q: How can I implement keyboard navigation using DSC?

DSC makes it simple to implement keyboard navigation for all of
your controls within a window. Design can generate the code for the
programmer, or the programmer can implement the feature through
calls to the PTK.

To implement navigation in Design, do the following:

1. When you make a new window, go into the attributes and check
the Keyboard Navigation checkbox.

XVT Platform-Specific Book for Win32

B-18

2. Set the creation order by giving the window focus and then
setting the Creation Order under the EDIT menu on the menu
bar.

3. Generate your project.

To implement through coding function calls, do the following:

1. In the E_CREATE event for your window, add the following code:
xvt_nav_create(xdWindow, NULL);

The first parameter, xdWindow is the window handle passed to the
event handler, and the second parameter is a valid SLIST (string
list). NULLwill cause your window to use its immediate
child windows in order of their creation.

2. In the E_DESTROY event for your window, add the following
code:
XVT_NAV nav = xvt_win_get_nav(xdWindow); if (nav) xvt_nav_destroy(nav);

This code declares an XVT_NAV object called nav which stores the
result of the xvt_win_get_nav function. xvt_win_get_nav passes the
window handle as its parameter and returns a valid XVT_NAV
object if one exists, or NULL if one doesn't exist. If a valid
XVT_NAV object is returned, the if statement invokes xvt_nav_
destroy, which destroys the navigation object.

Note: XVT will destroy the navigator when a window is destroyed but we
suggest that you make the call for create/delete bounding.

Additional Notes:

1. A window must be of type W_DOC, W_PLAIN, W_DBL, W_
MODAL, or W_NO_BORDER in order to use Keyboard Navigation.

2. A control or child window can be added to an existing
XVT_NAV object through the use of xvt_nav_add_win, as follows:
BOOLEAN xvt_nav_add_win(XVT_NAV nav, WINDOW win,

WINDOW refwin, XVT_NAV_INSERTION where);

where XVT_NAV is the navigation object, WINDOW win is the
child window or object to be added , WINDOW refwin is the child
window or object to used as the reference for insertion, and
XVT_NAV_INSERTION where is a constant of type XVT_NAV_POS_
BEFORE, XVT_NAV_POS_AFTER,

Appendix B

B-19

XVT_NAV_POS_FIRST, or XVT_NAV_POS_LAST (This parameter
takes the place of using the Creation Order feature in Design.).

This function returns TRUE if the object was placed in the
navigation order, or FALSE if the function did not succeed.

Q: How do I create list boxes with tab stops?

A: The LBS_USETABSTOPS flag needs to be set for the control. Because
this flag must be set before creation, it cannot be set with
SetWindowLong(). LBS_USETABSTOPS does work if it's set in the ATTR_
WIN_CREATEWINDOW_HOOK function, as follows, for example:

static long task_eh XVT_CC_ARGS((WINDOW xdWindow,
EVENT *xdEvent));

#include "windows.h" void CWHook(DWORD* es, LPCSTR*
cn, LPCSTR* wn, DWORD* st, int* x, int* y, int* w,
int* h, HWND* p, HMENU* m, HANDLE* i, void** cp) {

if (!strcmp(
*cn, "Listbox") && *m == WIN_101_LBOX_2) {

*st |= LBS_USETABSTOPS; } }

This will set the LBS_USETABSTOPS for the listbox with ID of
WIN_101_LBOX_2.

Q: When I change the background/foreground colors of some controls,
the change doesn't show up in the compiled application. Why not?

A: There are three possibile explanations for this scenario:

1. Developing or running the application on Windows 95 can
cause this problem to occur because, unfortunately, Windows
95 does not support modifying the background/foreground
colors of PushButtons.

2. The problem may also be caused by the fact that the feature is
not supported by MS Windows CTL3D libraries (for example,
modifying the background/foreground color of the actual button
on a RadioButton, or the checkable box on a CheckBox).

3. Another cause could be that while Win32/64/64 does support
the feature, on some platforms, the CTL3D library must be
included to see the effect. Modifying the background/
foreground color of a pushbutton requires the user to include the

XVT Platform-Specific Book for Win32

B-20

MS Windows CTL3D library. To include the CTL3D library
add the following line before xvt_app_create:
xvt_vobj_set_attr(NULL_WIN,ATTR_WIN_USE_CTL3D,TRUE);

Note: Design uses the CTL3D library. This means that TestMode in
Design will display the modified control colors even though the
required attribute has not been set in the code for the compiled
application. One possibility for users is to include the above line in
the DESIGN.CFT file so that by default it will be included in every
project. For more information, see “Control Component Colors” in
Chapter 8 of the XVT Portability Toolkit Guide.

Q: How do I put XPO Toolbars/Statusbars in an MDI Task Window?

A: The implementation of these objects is simple. The user needs only to
change a flag to get the objects to appear in the task window. Use the
following steps:

1. In Design, create a window to lay out the toolbar and statusbar as
you would with any other control. This window is only used to
lay out these objects. When you double click on the toolbar
and statusbar, the attribute TASK_WIN is listed with the other
attributes. Change this attribute to TRUE.

2. To turn on MDI mode, modify the Application Main Code tag as
follows:
#if (XVTWS == Win32/64/64WS)

xvt_vobj_set_attr(
NULL_WIN, ATTR_WIN_MDI, (long) TRUE);

#endif

xvt_app_create();

3. You must instantiate the window that was used to layout the
toolbar and statusbar. The user can allow this window to be
invisible and remain for the duration of the application, or he or
she can call xvt_vobj_destory(xdWindow) during the E_CREATE of
that window.

When a toolbar is placed in the task window, any notices it generates
are sent to the E_USER of the Application (TASK_WIN), not the
window in which you placed the toolbar when using Design.

Appendix B

B-21

Q: How do I include native headers on NT?

A: Although including native headers is discussed in section 3.1.1 of
this book, there are a couple of things specific to using DSC++ that
need to be taken into consideration.

First, isolate the native SDK function calls to a single source module,
if possible. This will aid in code maintenance and clarity. Enter
#define XVT_INCL_NATIVE at the very top of the source module.
Defining this will trigger the necessary steps in xvt_plat.h located in
the ..\ptk\include directory. It is imperative that XVT_INCL_NATIVE is
defined before xvt.h is included.

The top of the source module should resemble the following:
#define XVT_INCL_NATIVE #include "xvt.h"
#include "winsock.h" //or other native headers
#ifdef CreateWindow
#undef CreateWindow
#endif
#ifdef FindWindow
#undef FindWindow
#endif

#include "AppDef.h
.
.
. // other DSC++ includes

Because they are used as macros in the native header files, and inside
of DSC++ they are methods, CreateWindow and FindWindow must be
undefined. The compiler will give errors if they are not undefined.

If there is a need to have native information in a DSC++ header file,
such as a member variable of a native type, then declare the variable
in the DSC++ header file in the same way that it is declared in the
native header file. Following this procedure is especially important if
you are using Architect. When native information is placed in a
header file with the aid of XVT_INCL_NATIVE, compilation of the
factory files will fail. This is because the order of includes in the
factory source modules cannot be controlled by the user, and xvt.h
will be included prior to the file containing XVT_INCL_NATIVE.

Q: How can derived classes be traced with a debugger into the
application framework?

A: DSC++ is not shipped with a debug version of the application
framework. While the provided makefiles could be used to build the

XVT Platform-Specific Book for Win32

B-22

framework, the resulting library is virtually unusable with the
Microsoft Visual Studio debugger.

The application framework may be selectively built for debugging
should it be necessary to trace either derived or base classes. To
achieve this, determine how far back into the hiearchy the code
needs to be traced for a given class and add the base source files into
the application's make file.

For example, to trace the CPassword class in the DSC++ example set
(available for download at the FTP site) back through CView:

Classname: Source File:
CPassword cpasswrd.cpp
NLineText nlinetxt.cpp
CNativeTextEdit cntvtxte.cpp
CView cview.cpp

1. Set the required compiler and linkage options for debugging
into the makefile. (These are compiler specific. Consult the
appropriate documentation.)

2. Add cpasswrd.cpp, nlinetxt.cpp, cntvtxte.cpp, and cview.cpp
into the project makefile. The source modules may be copied
into the project's directory or left in ...\pwr\src as desired.
(While most of the eight-dot-three filenames are self evident
abbreviations of their class names, the PWRDEF.H file
contains the #DEFINES used for the naming conversion.)

3. Build the project.

The application may now be run with the debugger. If a breakpoint
is set inside of CPassword, the code execution may now be followed
into any of the above base classes.

Win32/64/64A
Action Code Editor (ACE) 2-2, 2-14, A-1, A-22
Alt key 2-3
application

cursor resources 2-6
data upon startup A-15
icon 2-5, A-13
mask A-16
previous instance A-17
raw message data A-19
resource file 2-6
timers A-19

application programming delay focus events A-3
extensibility 2-1
multibyte characters 2-3
optimizing performance 3-4 providing help for users 3-13

Application-Document-View concept B-12
APPNAME 2-5, B-1 assembly code B-2
ATTR_DEBUG_FILENAME B-17
ATTR_EVENT_HOOK 2-18, A-23 ATTR_KEY_HOOK A-24
ATTR_MULTIBYTE_AWARE A-24
ATTR_NATIVE_GRAPHIC_CONTEXT 2-3, A-26
ATTR_NATIVE_WINDOW A-27 ATTR_
RESOURCE_FILENAME 3-9 ATTR_WIN_CMD_
LINE A-2 ATTR_WIN_CREATEWINDOW_HOOK
A-2 ATTR_WIN_DELAY_FOCUS_EVENTS A-3
ATTR_WIN_DRAWABLE_TWIN_BACKGRND A-4, A-5, A-6
ATTR_WIN_FCN_PRINT_INIT A-6 ATTR_WIN_HTML_
EVENT_HANDLER A-7 ATTR_WIN_INSTANCE A-9
ATTR_WIN_MDI 2-2, A-9 ATTR_WIN_MDI_CLIENT_
HWND A-9 ATTR_WIN_MENU_CACHE_COUNT_MAX A-
10

ATTR_WIN_NATIVE_HTML_REFERENCE A-10
ATTR_WIN_NO_PRINT_THREAD A-11 ATTR_
WIN_OPENFILENAME_HOOK A-11 ATTR_
WIN_PM_CLASS_ICON A-13 ATTR_WIN_PM_
DRAWABLE_TWIN A-13, A-22 ATTR_WIN_
PM_NO_TWIN A-14 ATTR_WIN_PM_SPECIAL_
1ST_DOC A-14 ATTR_WIN_PM_TWIN_
FRAME_WINDOW A-14 ATTR_WIN_PM_
TWIN_MARGIN_* A-15 ATTR_WIN_PM_
TWIN_STARTUP_DATA A-15 ATTR_WIN_PM_
TWIN_STARTUP_MASK A-16 ATTR_WIN_PM_
TWIN_STARTUP_RCT A-16 ATTR_WIN_PM_
TWIN_STARTUP_STYLE A-16 ATTR_WIN_
POPUP_DETACHED A-17 ATTR_WIN_PREV_
INSTANCE A-17 ATTR_WIN_R3_DIALOG_
PLACEMENT A-18 ATTR_WIN_RAW_EVENT_
HOOK A-19 ATTR_WIN_TIMER_HI_
GRANULARITY A-19 ATTR_WIN_USE_PCL_
RECTS A-20 ATTR_WIN_USE_PRINT_
BANDING A-21 ATTR_WIN_WCLASSREG_
HOOK A-21
attributes

modifying window A-2
non-portable A-1
portable A-23

B
background, windowA-4
borders, window 2-14, A-15 Borland

C++ Builder 3 Development Environment 3-12
C
caching, of menus A-10
$(cflags) 3-3
CGLBLUSR.H file B-10
character events 2-3, A-24 child windowA-22
class registration hook function A-22

client
rectangles 2-11
window A-9, A-27

code, non-portable 2-2
color

using with controls B-2
common dialogs A-11
compile time optimization B-5
compiler

hc31 native compiler 3-14
hcrtf native compiler 3-14 list of supported 1-2
optimization 3-4 resource 3-12

compiler options LANG_* xrc B-5
compiling

conditionally 2-1–2-2 resources 3-12
controls

changing foreground/background colors B-19
using color with B-2

conventions
for code 1-viii
general manual 1-vii

CreateWindowEx A-2
croshair.cur file 2-6, B-2
C-runtime library 3-5 CText B-8
.cur file 2-6
xrc

building using Microsoft Visual C++ compiler 3-10
provides native code 2-4
using to compile menus, dialogs, windows, and strings 3-12

cursor resources 2-6
$(cvarsmt) 3-3
D
DDE, using with WinExec 2-18
debugging B-2
derived classes, tracing B-21

deserialized fonts B-15
dialog

common A-11
event handler 2-18
focus behavior 2-14 modal, See modal dialogs
no longer centered by default A-18
placement A-18
registration A-22

directories
doc 1-1, 1-2, A-1
include 2-1, 3-8 lib B-1, B-2

DLLs
building using Microsoft Visual C++ compiler 3-11
definition 3-2
linking static libraries into 3-8
requirements for online help 3-6
resource 1-1, 3-8
text edit 3-6

doc directory 1-1, 1-2, A-1
document hierarchy B-12
document windowA-14
draw mode definitions B-7

M_CLEAR B-7 M_
COPY B-7 M_NOT_
CLEAR B-7 M_NOT_
COPY B-7 M_NOT_OR
B-7 M_NOT_XOR B-7
M_OR B-7
M_XOR B-7

DRAW_MODE B-6
Dynamic Data Exchange, See DDE
Dynamic Link Libraries, See DLLs E
E_CHAR events 2-3, A-24 E_
FOCUS events A-3 E_USER
events 2-18 encapsulated font
model 2-9 environment variables 2-1

errscan, building using Microsoft Visual C++ compiler 3-9
escape codes, non-portable A-20, A-27
event

character 2-3, A-24
handler (for dialogs) 2-18
hook function 2-18, A-19, A-23
native A-23
tracking processing of B-17

.exe file 3-12
F
files

CGLBLUSR.H B-10
croshair.cur 2-6, B-2
.cur 2-6
.exe 3-12
.ico 2-5, B-1
.lib 3-5
ntWin32/64.mak 3-3
objhelp.cur 2-6
open hook function A-11 .rc
3-12, B-1
readme 1-1, 1-2, A-1 .res
3-12
uengasc.h 3-8
url_plat.h 2-5
windows.h 2-1, 3-1
xvt.h 2-5, 3-1
xvt_defs.h 2-5
xvt_env.h 2-1
xvt_plat.h 2-5

focus behavior using WinExec 2-14
font

descriptor version identifier 2-10
encapsulated model 2-9
logical 2-9
native descriptors 2-9, B-15
physical 2-9
printing deserialized B-15

fonts
mapping to multibyte fonts B-4 standard B-4

functions, non-portable A-28

G
geometry, window 2-11–2-14
global variables B-10
graphics context A-26
$(guiflags) 3-7
$(guilibsmt) 3-7
H
handles, native 2-3
hc31 native compiler 3-14
hcrtf native compiler 3-14 HDC 2-3, A-26
headers, including native B-21
help system, See online help help viewer

portable (bound) 3-14
portable (standalone) 3-13
Win32/64 (Winhelp) 3-14

helpc
building using Microsoft Visual C++ compiler 3-10
compiling help source files 3-14
using for Winhelp 3-14

See Also online help
HP LaserJet printer A-20
HWND 2-3, A-28
hypertext online help, See online help
I
.ico file 2-5, B-1
icon

application 2-5, A-13
creating B-1
files 2-5

ICON_RSRC 2-5
iconized windowA-13 IME 2-3
include directory 2-1, 3-8
include files 3-1
Inkjet printer A-20
Input Method Editor 2-3

installing XVT/Win32/64 1-1
international characters 2-3, 3-8
J
Japanese characters 2-3
K
key

Alt 2-3
Kanji 2-3 virtual A-24

key hook function A-24
keyboard

international characters 2-3
key translation A-25 navigation in DSC B-17

L
LANG_* xrc compiler options B-5
LANG_GER_IS1 B-5 LANG_GER_
W52 B-5 LANG_JPN_SJIS B-5
language, See Japanese characters, multibyte characters
LaserJet printer A-20
lib directory B-1, B-2
.lib files 3-5
LIBDIR B-2
libraries

building XVT 3-11 definition 3-2
Dynamic Link Libraries, See DLLs help viewer 3-14
link, See static libraries, DLLs msvcrt.lib 3-5
static, See static libraries xnmba550.dll 3-6
xnmhb550.dll 3-6
xnmhn550.dll 3-6
xnmte550.dll 3-6
xvtnddll.obj 3-8
xvtnmapi.lib 3-5
xvtnmdcr.obj 3-5
xvtnmdll.obj 3-5, 3-8

xvtnmhb.lib 3-5, 3-14
xvtnmhn.lib 3-5, 3-15 xvtnmtes.obj 3-5

$(link) 3-7
link 3-7
link libraries 3-6 list boxes

with tab stops B-19
list controls, native limitations 2-4
localization 3-8
LOGFONT structure 2-10
logical fonts 2-9 look-and-
feel 2-2
M
M_CLEAR B-7
M_COPY B-7 M_NOT_
CLEAR B-7 M_NOT_
COPY B-7 M_NOT_OR B-
7 M_NOT_XOR B-7
M_OR B-7
M_XOR B-7
Macintosh 1-2
MacOS 1-2
makefiles 3-10
manual, conventions used in 1-vii
MARGIN_* attributes A-15
maximizing the first document windowA-14
MDI 2-2, A-9, A-14, A-15, B-20
memory limitations 2-4
menu

caching A-10
native features 2-7
resources, including in an application 2-7

menubars
non-portable 2-8
size of 2-14

messages

DDE 2-18
processing raw A-19

Microsoft
cl (Visual Studio compiler) 3-3
link 3-7
Visual Studio compiler 1-2
Visual Studio development environment 3-3

Microsoft Windows, See MS-Windows
minimized windowA-13
modal dialogs

focus behavior 2-15
online help 3-14
window geometry 2-13

modeless dialogs, focus behavior 2-16
Model-View-Controller concept B-12
module names, window 2-5
Motif Window Manager 1-2 msvcrt.lib
library 3-5
MS-Windows

help viewer 3-14 look-and-feel 2-2
MS-Windows 95, See Windows 95
MS-Windows 98, See Windows 98
MS-Windows NT, See Windows NT
multibyte characters 2-3, A-25, B-4
multibyte fonts B-4
Multiple Document Interface, See MDI
multi-thread applications 2-19
N
native

bitmap handle 2-3 code 2-1
device context handle 2-3, A-26
events A-23
functionality 2-1
headers B-21
memory limitations 2-4
menus 2-7
message queue A-19
messages 2-19

window A-27, A-28 window handle 2-3
native font descriptors parameters 2-10

specify a particular physical font 2-9
nmake 3-3, 3-7
non-banded printing A-21
non-portable attributes A-1

code 2-2
DDE messages 2-18
escape codes A-20, A-27 functions A-28
menubars 2-8
window attributes A-2

NText B-8
ntWin32/64.mak file 3-3 O
object click mode 3-15
objhelp.cur file 2-6
online help

building an application with 3-13 helpview
portable, support for 3-13
source code 3-10

modal windows and dialogs 3-14
object click mode 3-15 See Also helpc

OPENFILENAME structure A-11
optimizing, XVT applications 3-4 P
PCLA-20
performance

improving 3-4
physical fonts defined 2-9

See Also font
Portability Toolkit, See XVT Portability Toolkit
portable attributes A-23 positioning

dialogs A-18
task window A-16

PostScript A-20
printing

banding vs. non-banding A-21
deserialized fonts B-15
hidden views B-14
multiple pages B-14
native controls B-14
printer initialization A-6 rectangles A-20

PTK, See XVT Portability Toolkit
R
raster graphics, outputting A-20
RC 2-4, 2-7, 2-8
.rc file 3-12, B-1
rc resource compiler

can’t find .ico file B-1 using 3-12
readme file 1-1, 1-2, A-1
rectangles

define size of TASK_WIN A-16
printing with solid or empty interiors A-20
relationship between client and outer 2-12
transparency in printed output A-20

.res file 3-12
resource

DLLs 3-8
files 3-8 localization 3-8 strings 3-8
See Also resources

resources
and Universal Resource Language (URL) 2-5
bitmap 2-7
compiling 3-12
cursor 2-6
icons 2-5
menu 2-7
XVT/Win32/64 2-4
See Also resource

S
s_char A-24
screen window, and dialog placement A-18
scrollbar, size of 2-12, 2-14
source code

customers 3-10 viewing B-2
SPCL:Main_Code tag 2-2, A-1
static libraries

building using Microsoft Visual C++ compiler 3-11
definition 3-2
linking into application DLLs 3-8
linking requirements for online help 3-5
supplied for Microsoft Visual C++ 3-5

status bar, MDI mode A-14
statusbar, MDI mode B-20
STR_APPNAME 2-5
string localization 3-8
stub

text edit 3-5
Win32/64 static libraries 3-8

submenus, assigning tags 2-7
T
task window

dialog placement A-18
drawable A-13
initial size A-16
margin inside A-15
MDI mode 2-2, B-20
no physical TASK_WIN A-14
WSF_* creation flags A-16

text edit DLL 3-6
threads (multi-threading) compiler options 3-3

link options 3-7
using in applications 2-19

timers A-19
titlebar, size of 2-12, 2-14
toolbar, MDI mode A-14, B-20

U
uengasc.h file 3-8
Universal Resource Language, See URL
UNIX 1-2
URL

FONT, FONT_MAP statements 2-9
object click mode 3-15
using for non-portable menubars 2-8

url_plat.h file 2-5
User_Url 2-6, 3-13 V
virtual key A-24
W
W_DBL windows, geometry of 2-13
W_DOC windows, geometry of 2-11
Win32/64

help viewer 3-14
Input Method Editor 2-3
look-and-feel 3-15
menu resources 2-7 resource tools 2-4

specific code, compiling
conditionally 2-2

Win32/64WS 2-2
window

background A-4
borders 2-14, A-15
class registration A-21
client A-9, A-27
device context, accessing 2-3
document A-14 double-
bordered 2-13
frame attributes 2-11 geometry
2-11–2-14 handles, accessing
2-3
icon for minimized A-13
maximizing A-14
MDI mode A-14, A-15
modifying native attributes A-2
module names 2-5
native A-27, A-28

pop-up vs. overlapped style A-17
with menubars, geometry of 2-13

Windows 95 1-2
Windows 98 1-2 Windows NT 1-2
windows.h header file 2-1, 3-1
WinExec

calling with Dynamic Data Exchange (DDE) 2-18
focus behavior 2-14

Winhelp 3-14
WinMain B-2
WNDCLASS structure A-21
WSF_* creation flags A-16
X
xnmba550.dll library 3-6
xnmhb550.dll library 3-6
xnmhn550.dll library 3-6
xnmte550.dll library 3-6
XVT Portability Toolkit

backward compatibility 3-14, A-18
changes to existing features 1-1
new features B-4
utility programs 3-9, 3-10

xvt.h file 2-5, 3-1
XVT/Mac 1-2
XVT/Win32/64

changes to existing features 1-1
installing 1-1
libraries, building 3-11
resource specifics 2-4
resources 2-4
supported platform 1-2

XVT/XM 1-2
xvt_app_create 3-8, A-27
xvt_app_destroy A-27
XVT_CALLCONV1 macro 2-15, 2-17, 3-4
XVT_COLOR_ACTION_SET B-3 XVT_
COLOR_ACTION_UNSET B-3 XVT_
COLOR_COMPONENT B-3

XVT_CONFIG 2-5 xvt_
ctl_set_colors B-3 xvt_
debug B-17 xvt_debug_
printf B-17 xvt_defs.h file
2-5 xvt_dlg_create_res 2-
16 xvt_dwin_draw_icon 2-
5 xvt_env.h file 2-1
XVT_ESC_WIN_TERMINATE A-27
XVT_FILESYS_DOS 2-2 XVT_
FILESYS_HPFS 2-2 XVT_FILESYS_
NTFS 2-2 xvt_font_set_native_desc 2-9
XVT_HELP_OBJCLICK 3-15 XVT_
INCL_NATIVE B-21 XVT_INCL_
NATIVE macro 3-1 xvt_menu_set_
item_enabled 2-8 XVT_NAV B-18
xvt_nav_destroy B-18
XVT_OPT 3-4, B-5
xvt_plat.h file 2-5
xvt_print_create_win A-6, A-21 xvt_res_
get_menu 2-8
xvt_vobj_destroy A-27 xvt_vobj_get_
attr 2-11, A-1, A-27 xvt_vobj_get_
client_rect 2-11 xvt_vobj_get_data A-15
xvt_vobj_get_outer_rect 2-11 xvt_vobj_
set_attr A-1, A-27 xvt_vobj_set_data A-
15 xvt_win_*_event_mask A-16 xvt_
win_dispatch_event 2-18 xvt_win_get_
nav B-18 xvt_win_set_ctl_colors B-3
XVT-Design

Action Code Editor (ACE) 2-2, 2-14, A-1, A-22

application icons 2-5
caching menus A-10
class hook definition A-22
coding resources with 2-4
cursor resources 2-6
development environment 3-1
focus behavior of windows 2-14 including header files with 3-1
increasing open-window maximum A-10
invoking xrc 3-12
menu resources 2-7
Microsoft Visual Studio development environment 3-3
native font descriptors 2-9
online help 3-13
resource compiler options 3-12
setting or getting system attributes using SPCL:Main_Code 2-2, A-1
using with MDI 2-2
window module name 2-5

xvtnddll.obj DLL stub 3-8
xvtnmapi.lib library 3-5
xvtnmdcr.obj library 3-5
xvtnmdll.obj DLL stub 3-5, 3-8
xvtnmhb.lib library 3-5, 3-14
xvtnmhn.lib library 3-5, 3-15
xvtnmtes.obj text edit stub 3-5
xvtwi_hwnd_to_windowA-28
Z
zooming in Power++ B-9

