

 © 2011 Providence Software, Inc. All rights reserved. Using XVT for Windows® and Mac OS

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished under license and may be used or copied
only in accordance with the terms of such license. Except as permitted by any such license, no part of this guide may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of Providence Software Incorporated. Please note that the content in
this guide is protected under copyright law even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Providence Software
Incorporated. Providence Software Incorporated assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this
guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The unauthorized incorporation of such
material into your new work could be a violation of the rights of the copyright owner. Please be sure to obtain any permission required from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any actual organization. XVT, the XVT logo, XVT DSP,
XVT DSC, and XVTnet are either registered trademarks or trademarks of Providence Software Incorporated in the United States and/or other countries.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Macintosh is a trademark of Apple Inc.
registered in the U.S. and other countries. All other trademarks are the property of their respective owners.

Table of Contents

GUIDE

CONTENTS
Preface.. 1-xxiii
XVT-Power++ Documentation ...1-xxiii

When to Use the Guide ...1-xxiii
What You Already Need to Know1-xxiv
Reference Information Available Online1-xxiv

How to Read This Manual ..1-xxiv
Troubleshooting ... 1-xxv

XVT Documentation ... 1-xxv
XVT Sample Set .. 1-xxv
Error Messages File ..1-xxvi

Other XVT Documentation...1-xxvi
About This Manual..1-xxviii

Conventions Used in This Manual1-xxviii

XVT Customer Support ..1-xxxi
Electronic Communication with Customers1-xxxii

XVT Developers’ Forum1-xxxii
What XVT Customer Support Provides...........................1-xxxii
Customer Support Services ...1-xxxiii

Standard Customer Support Services1-xxxiii
Online FTP Site .. 1-xxxiv
Support for XVT Software Purchased from Distributors
1-xxxiv
Information We Need to Help You 1-xxxiv

Product Updates ... 1-xxxv
How to Contact Customer Support 1-xxxv
XVT’s Consulting and Training Services 1-xxxv
iii

Table of Contents
Chapter 1: Introduction to XVT-Power++.................................. 1-1
1.1. What’s in the XVT-Power++ Package?1-1

1.1.1. Introducing XVT-Power++...1-1
1.1.2. XVT Portability Toolkits ..1-2
1.1.3. The XVT-Power++ Application Framework..............1-3

1.2. Designing an XVT-Power++ Application..............................1-6
1.2.1. Development Platform ..1-6
1.2.2. Advantages of Object Hierarchies1-7

1.2.2.1. Advantages for XVT-Power++1-7
1.2.2.2. Advantages for XVT-Power++ Users1-8
1.2.2.3. Advantages for Designers of XVT-Power++

Applications1-8
1.3. Application Framework..1-9
1.4. Utility Classes...1-9

1.4.1. Storing Program Resources.......................................1-10
1.4.2. Defining Colors, Font Types, Drawing Modes,

Line Colors and Widths ..1-10
1.4.3. Reporting Errors..1-10
1.4.4. Memory Management ...1-10
1.4.5. Using Portable Images ..1-11
1.4.6. Accessing the Clipboard ...1-11
1.4.7. Translating XVT Portability Toolkit Events to

XVT-Power++ Calls ...1-11
1.4.8. Printing..1-11

1.5. Data Structures ...1-12
1.5.1. Specifying Locations on the Screen..........................1-12
1.5.2. Placing Views on the Screen.....................................1-12
1.5.3. Converting Global to Local Coordinates

and Vice Versa ..1-12
1.5.4. Specifying Logical Units ..1-12
1.5.5. Representing and Comparing Character Strings1-13
1.5.6. Storing Items in Lists ..1-13
1.5.7. Iterating Over Lists ...1-13
1.5.8. Storing Two-dimensional Arrays and

Conserving Memory ...1-13
1.6. Pass-through Functionality ...1-14

1.6.1. Color Palettes and Color Look-Up Tables1-14
1.6.2. Cursors ..1-15
1.6.3. Diagnostics and Debugging1-15
1.6.4. Files ...1-15
1.6.5. Hypertext Online Help ..1-15
1.6.6. Native Functionality..1-16
iv

Table of Contents
1.6.7. Predefined Dialogs ..1-16
1.6.8. Resources ..1-16
1.6.9. User-defined Font Mappers1-17

1.7. Where To Go Next ...1-17

Chapter 2: Introduction to XVT-Architect 2-1
2.1. What is XVT-Architect?...2-1
2.2. Designing and Building Applications with

XVT-Architect..2-2
2.3. Visual Components...2-3

2.3.1. Blueprint Interface ..2-4
2.3.2. Drafting Board Interface ...2-5
2.3.3. Using XVT-Architect’s Palettes2-6
2.3.4. Strata Interface ..2-7

2.4. Saving Projects and Generating Files2-8
2.4.1. Factory Files..2-9
2.4.2. Shell Files..2-9

2.4.2.1. Generating Shell Files.................................2-10
2.4.2.2. Generated Files ...2-10

Chapter 3: XVT-Architect Tutorial ... 3-1
3.1. The Notepad Application..3-1

3.1.1. Learning XVT-Architect...3-1
3.1.2. Learning XVT-Power++ ...3-2

3.2. Getting Started..3-3
3.3. Designing the Notepad Application3-3

3.3.1. Defining the Application Object3-5
3.3.2. Defining the Documents and Windows3-5

3.4. Building the Notepad..3-5
3.4.1. Defining the Notepad’s Application Classes3-6

3.4.1.1. Defining the Documents and Windows........3-7
3.4.1.2. Linking Documents and Windows into

the Application..3-7
3.4.1.3. Setting the Document’s Attributes................3-9
3.4.1.4. Setting the Window’s Attributes3-12

3.4.2. Laying Out the Notepad’s Interface..........................3-13
3.4.2.1. Laying Out the Notepad Window...............3-13
3.4.2.2. Modifying the NScrollText Object’s Attributes

3-15
3.4.2.3. Setting the Menubar for the Notepad Window..

3-17
3.4.3. Generating the Application3-19
3.4.4. Building and Running the Basic Application3-23
v

Table of Contents
3.4.5. Writing the Notepad Code ..3-24
3.4.5.1. Modifying the TNoteDoc Class..................3-24
3.4.5.2. Modifying the TNoteWin Class..................3-28

3.4.6. Compiling and Running the Application3-32

Chapter 4: Blueprint ... 4-1
4.1. Understanding Object Hierarchies and the

Application-Document-View Paradigm4-2
4.2. Application, Documents, and Views4-2

4.2.1. Application Object ..4-3
4.2.2. Document Objects...4-4

4.2.2.1. Document-Centric Development4-4
4.2.3. View Objects...4-4
4.2.4. Inter-Object Communication and

Message Propagation ..4-5
4.3. Blueprint Interface ..4-6

4.3.1. Menubar ..4-6
4.3.1.1. Tools Palette ...4-7
4.3.1.2. Alignment Palette ...4-8

4.3.2. Toolbar ..4-8
4.3.2.1. Undo and Redo ...4-9

4.3.3. Status Bar ..4-9
4.4. Laying Out the Application, Documents,

and Views ...4-9
4.4.1. Laying Out Documents and Windows4-10

4.4.1.1. Naming Classes ..4-11
4.4.1.2. Factory Names ..4-11

4.5. Linking Applications, Documents, and Views.....................4-12
4.5.1. Editing Links...4-12
4.5.2. Linking Documents to the Application4-12
4.5.3. Linking Windows to a Document4-13

4.6. Navigating Between Modules ..4-13
4.6.1. Getting to and from the Drafting Board....................4-13
4.6.2. Getting to and from the Strata...................................4-14

Chapter 5: Drafting Board.. 5-1
5.1. Drafting Board Interface...5-1

5.1.1. General Overview ...5-2
5.1.2. Menubar ..5-3
5.1.3. View Palettes...5-4
5.1.4. Alignment Palette..5-4
5.1.5. Toolbar ..5-5

5.1.5.1. Navigating to Child and Parent Windows5-6
vi

Table of Contents
5.1.6. Status Bar ..5-6
5.2. Understanding the View Palette ...5-6
5.3. Using the View Palette to Lay Out Objects..........................5-10

5.3.1. Dragging and Sizing the Objects5-11
5.4. Sizing the Window ...5-11
5.5. Navigating Between Modules ..5-11

Chapter 6: Strata ... 6-1
6.1. Strata Interface..6-1

6.1.1. Closing the Strata ..6-2
6.2. Class Browser ...6-3
6.3. Notebook Control ...6-3

6.3.1. Using the Notebook Control6-4
6.4. CView Pages...6-5

6.4.1. Environment Attributes dialog....................................6-6
6.4.1.1. Using the Environment Attributes dialog6-7

6.5. CWindow Pages ...6-8
6.5.1. Sizing and Placing Windows6-8
6.5.2. Creating a Modal Window..6-9

6.6. CUserView and CUserSubview Strata Pages.......................6-10
6.7. Factory Settings Page ...6-10

6.7.1. Using the Factory Settings Page6-10
6.7.2. Using XVT-Architect’s Editors6-12

Chapter 7: Editors ... 7-1
7.1. Menu Editor ..7-1

7.1.1. Using the Menu Editor ..7-3
7.1.1.1. Using the Standard Submenus7-4
7.1.1.2. Moving Menu Items7-4
7.1.1.3. Setting Menu-Item Data7-5
7.1.1.4. Using the Accelerator Editor within the Menu

Editor7-6
7.1.1.5. Factory Name and Information.....................7-6

7.1.2. Customizing Menus ..7-7
7.1.2.1. Pop-up Menus...7-7
7.1.2.2. Modifying Standard Menus7-8
7.1.2.3. Translating Exported Menu Strings..............7-9
7.1.2.4. Five Languages Already Translated7-9

7.1.3. Associating Existing Menubars with Windows7-10
7.2. Accelerator Editor...7-11

7.2.1. Using the Accelerator Editor.....................................7-11
7.2.1.1. Creating Accelerators for “Ghost” Menu Items

7-12
vii

Table of Contents
7.3. Command Editor...7-13
7.3.1. Using the Command Editor.......................................7-16

7.3.1.1. Creating New Commands and Setting
Command Data7-16

7.4. String Editor ...7-17
7.4.1. Using the String Editor ...7-18

7.4.1.1. Using the String Editor Opened from the Strata
7-19

7.5. String List Editor ..7-19
7.5.1. Using the String List Editor7-20

7.5.1.1. Setting String List Names...........................7-20
7.5.1.2. Setting the Strings Values in String Lists ...7-21
7.5.1.3. Using the String List Editor Opened from the

Strata7-22

Chapter 8: Object Factory .. 8-1
8.1. Object Factory ..8-1

8.1.1. Factory Interface ...8-2
8.1.2. Factory-generated Header Files8-2

8.1.2.1. Object IDs...8-2
8.1.2.2. Command IDs...8-3
8.1.2.3. String and String List IDs8-3
8.1.2.4. Data Member Classes8-3

8.1.3. Generating Factory Files at the Command Line8-4
8.2. Using the PAFactory Class...8-4

8.2.1. PAFactory Public Methods ...8-5

Chapter 9: Object Layering.. 9-1
9.1. Default and Parent Layers ..9-1
9.2. Layering Objects...9-2

9.2.1. Creating Layers ...9-3
9.2.2. Viewing and Modifying Layers9-4
9.2.3. Using the Layers Menu ...9-4

9.3. Indicating Variations in Layers ..9-5
9.4. Factory Code...9-5
9.5. Creating Localized Projects Using Object Layers..................9-6

9.5.1. Choosing and Defining Locales9-6
9.5.1.1. Defining the Attributes of the Locale9-6
9.5.1.2. Scope of Locale Definitions9-8

9.5.2. Creating Layers ...9-8
9.5.3. Localizing Each Layer’s Objects9-8

9.5.3.1. Replacing Colors and Graphics9-9
9.5.3.2. Translating Strings..9-9
viii

Table of Contents
9.5.4. Generating a Localized Factory9-11

Chapter 10: Customizing XVT-Architect.................................... 10-1
10.1. Where to Save Shell and Makefile Templates......................10-1
10.2. Number of Files Used to Store Generated Factory Code10-1
10.3. File Extension Used When Generating Shell or Factory Files

10-2

Chapter 11: Importing and Exporting Strings 11-1
11.1. Externalized Projects ..11-2

11.1.1. Export File Types..11-2
11.2. Exporting Project Strings..11-2

11.2.1. Exporting Strings for Localization............................11-3
11.2.2. Additional Files that Can Be Localized11-4

11.3. Importing Project Strings..11-4
11.3.1. Detecting Problems ...11-4
11.3.2. Detecting Errors ..11-5

Chapter 12: Application Programming with XVT-Power++ 12-1
12.1. Application Level ...12-1

12.1.1. Controlling the Program..12-2
12.1.2. Handling Application Startup12-2
12.1.3. Handling Application Cleanup..................................12-2
12.1.4. Providing Global Objects and Global Data...............12-3
12.1.5. Getting Access to Global Objects

and Global Data ..12-3
12.1.6. Finding Out About Global Definitions

in XVT-Power++ ..12-3
12.1.7. Creating Documents..12-4
12.1.8. Propagating Messages...12-4
12.1.9. Creating a Desktop to Manage Screen

Window Layout...12-4
12.1.10. Setting Up Menus and

Handling Menu Commands12-4
12.2. Document Level ...12-5

12.2.1. Getting Access to Data..12-5
12.2.2. Managing Data ..12-5
12.2.3. Creating Windows...12-6

12.2.3.1. Creating a Task Window12-6
12.2.3.2. Creating Modal Windows...........................12-6
12.2.3.3. Creating Dialog Windows12-7

12.3. View Level ...12-7
12.3.1. Displaying Data...12-7
ix

Table of Contents
12.3.2. Supplying Native Controls..12-8
12.3.3. Nesting One View Within Another...........................12-8
12.3.4. Drawing Basic Shapes ..12-8
12.3.5. Creating Grids of Cells ...12-9
12.3.6. Displaying Lists of Selectable Items.......................12-10
12.3.7. Providing Text Editing Facilities12-10

12.3.7.1. CText versus CNativeTextEdit.................12-10
12.3.8. Designating an Area of the Screen

as a Sketching Area...12-11
12.3.9. Creating a Rubberband Frame12-11

12.3.10. Representing an Area on the Screen with a
Virtual Size Larger Than its Display Area..............12-11

12.3.11. Attaching Scrollbars to a Window or View12-12
12.3.12. Resizing and Moving Views with Glue12-13

Chapter 13: Coding Conventions and
Style Guidelines13-1

13.1. File Structure ..13-1
13.1.1. Including Files for Usage ..13-2

13.2. Naming Conventions ..13-2
13.2.1. Classes...13-2
13.2.2. Data Members ...13-3
13.2.3. Methods...13-3
13.2.4. Class Statics ..13-4
13.2.5. Constants and Defines...13-4
13.2.6. Functions ...13-4
13.2.7. Variables ...13-4

13.3. Mangling...13-6
13.4. C++ Style Guidelines ...13-7

13.4.1. const and enum..13-7
13.4.2. Inlines..13-8
13.4.3. Overloaded Methods ...13-8
13.4.4. Internal Structure of Classes13-9
13.4.5. Function Parameters..13-9

13.4.5.1. Pass by Value..13-10
13.4.5.2. Constant References13-10
13.4.5.3. Constant Pointers13-10
13.4.5.4. Non-constant Pointers...............................13-10

13.4.6. Return Values..13-11
13.4.6.1. Temporary Values13-11
13.4.6.2. References...13-11
13.4.6.3. Constant Pointers13-11
x

Table of Contents
13.4.6.4. Non-constant Pointers...............................13-12
13.4.7. Inherited Methods ...13-12
13.4.8. Basic Class Utility Methods....................................13-12
13.4.9. Templates ..13-13

Chapter 14: The Appl–Doc–View Hierarchy.............................. 14-1
14.1. Introduction to CApplication..14-1

14.1.1. Application Startup and Shutdown14-2
14.1.2. Tasks Handled at the Application Level14-3

14.2. Introduction to CDocument ..14-4
14.2.1. Sharing Data at the Document Level14-4
14.2.2. Data Propagation...14-6

14.2.2.1. TDI Compared to ADP...............................14-6
14.2.2.2. Sharing of Data ...14-6

14.2.3. DoCommand Chain of Message Propagation14-7
14.2.4. Tasks Handled at the Document Level14-7

14.2.4.1. Accessing Data ...14-7
14.2.4.2. Building Windows14-8
14.2.4.3. Managing Data..14-8
14.2.4.4. Default Data Management Mechanisms.....14-9
14.2.4.5. Managing Windows..................................14-11
14.2.4.6. Printing Data...14-11

14.3. Introduction to CView ..14-11
14.3.1. Views Provide a Graphical User Interface..............14-12
14.3.2. Tasks Handled at the View Level14-12
14.3.3. General Characteristics of Views............................14-13

14.3.3.1. Drawing ..14-13
14.3.3.2. Showing and Hiding14-14
14.3.3.3. Activating and Deactivating14-15
14.3.3.4. Enabling and Disabling.............................14-15
14.3.3.5. Dragging and Sizing14-16
14.3.3.6. Setting the Environment14-16

Chapter 15: Application Framework... 15-1
15.1. Levels of the Framework..15-1

15.1.1. Flow of Control ...15-2
15.1.2. Accessing and Managing Data..................................15-2
15.1.3. Displaying Data...15-2

15.2. Propagating Messages ..15-3
15.2.1. Bidirectional Chaining ..15-3
15.2.2. Upward Chaining ..15-3
15.2.3. Downward Chaining ...15-3
15.2.4. The Role of CBoss and CObjectRWC......................15-4
xi

Table of Contents
15.2.4.1. DoCommand Messages15-4
15.2.4.2. ChangeFont Messages15-5
15.2.4.3. DoMenuCommand Messages.....................15-5
15.2.4.4. Unit Messages...15-5

15.3. Handling Keyboard Events...15-6
15.3.1. Keyboard Navigation in Windows............................15-7

15.4. Setting the Environment ...15-8
15.4.1. Global Environment Object15-8
15.4.2. Customizing Colors and Fonts in Native Views.......15-9

15.5. Factories..15-11
15.5.1. Abstract Factories ...15-11
15.5.2. Framework Factory Manager..................................15-11
15.5.3. Framework Factories...15-13

15.6. Printing ...15-15

Chapter 16: Manipulating Views and Subviews......................... 16-1
16.1. Enclosures and Nested Views...16-1

16.1.1. Similarity Between Enclosures and Owners16-2
16.1.2. Clipping...16-3
16.1.3. Defining a View’s Enclosure16-4
16.1.4. Limitations on the Hierarchy of Enclosures16-4

16.2. Owners and Helpers..16-6
16.2.1. CGlue ..16-6
16.2.2. CEnvironment ...16-7
16.2.3. CWireFrame..16-8
16.2.4. CPoint and CRect..16-8
16.2.5. CDrawingContext ...16-8

16.3. The Coordinate System ..16-9
16.3.1. CRect...16-9
16.3.2. CPoint..16-11
16.3.3. The Point of Origin ...16-11

16.3.3.1. Screen-relative Coordinates......................16-12
16.3.3.2. Window-relative (Global) Coordinates16-12
16.3.3.3. View-relative (Local) Coordinates16-13

16.3.4. Units of Measure ...16-13
16.3.5. Translating Coordinates ..16-14

16.4. Subviews...16-15
16.4.1. Nesting Behavior...16-15

16.4.1.1. Overlapping Views16-15
16.4.1.2. Obtaining Information About Nested Views.....

16-16
16.4.2. Routing Events to a Specific Subview....................16-16
xii

Table of Contents
16.4.3. Propagating Messages from
Enclosures to Nested Views....................................16-16

16.4.4. CView and CSubview—Interface Similarities16-17
16.4.4.1. Wide Interface ..16-18
16.4.4.2. Narrow Interface.......................................16-18

16.5. Keyboard Navigation..16-18
16.5.1. Navigation Terminology ...16-18
16.5.2. Automatic Default Navigation16-19
16.5.3. Keyboard Navigation Classes16-20
16.5.4. Handling Keyboard Events16-21
16.5.5. Customized Navigation...16-22

Chapter 17: Native Views.. 17-1
17.1. Introduction ..17-1

17.1.1. CNativeView...17-2
17.2. Types of Native Views ...17-2

17.2.1. NButton ...17-2
17.2.2. NCheckBox...17-3
17.2.3. NRadioButton and CRadioGroup17-3
17.2.4. NScrollBar ..17-4
17.2.5. NNotebook ..17-5

17.2.5.1. Creating and Destroying a Notebook17-6
17.2.5.2. Interface Objects...17-7
17.2.5.3. Navigation...17-7

17.2.6. Icons ..17-8
17.2.6.1. Icon Portability Issues.................................17-9
17.2.6.2. Environment Settings for Icons17-9

17.2.7. Icon Resources ..17-9

Chapter 18: Windows.. 18-1
18.1. Window Attributes ...18-2
18.2. Interaction With the Document ..18-4
18.3. Window Construction...18-5
18.4. The Task Window ..18-6
18.5. The Desktop..18-7

Chapter 19: Mouse Events and Mouse Handlers 19-1
19.1. Basic Mouse Events (Methods) ..19-1

19.1.1. Clicking the Mouse ...19-1
19.1.2. Mouse Event Parameters...19-2
19.1.3. The “Do-” Mouse Methods.......................................19-2
19.1.4. Propagating Mouse Events Through Views..............19-3
19.1.5. Using the Mouse to Resize a View19-4
xiii

Table of Contents
19.2. Mouse Event Processing...19-5
19.2.1. Mouse Handlers ..19-6

19.2.1.1. Why Use Mouse Handlers?19-6
19.2.1.2. Registering a Mouse Handler19-7

19.2.2. Virtual Mouse Event Methods19-7
19.2.2.1. Overriding DoMouse*() Methods19-8

19.3. Drag Sources and Drag Sinks...19-9
19.3.1. CDragSource and CDragSink19-9
19.3.2. CViewSource and CViewSink................................19-10

Chapter 20: Menus .. 20-1
20.1. Introduction ..20-1
20.2. Menubar, Menu, Menu Item, and Submenu.........................20-1
20.3. Menubar Creation ...20-2

20.3.1. Traversal of the Menubar Hierarchy20-2
20.3.2. Defining Pop-up Menus ..20-3
20.3.3. Menubar Deletion ...20-4

20.4. Menubar Handling ..20-5
20.4.1. SetUpMenus and UpdateMenus................................20-5
20.4.2. Menu Events Handling (DoMenuCommand)20-5
20.4.3. Handling Menu Commands20-6

Chapter 21: Wire Frames and Sketchpads 21-1
21.1. Wire Frames ...21-2

21.1.1. Selection and Multiple Selection21-2
21.1.2. DoCommands..21-3
21.1.3. Drawing...21-3

21.2. Sketchpads ..21-4

Chapter 22: Grids .. 22-1
22.1. Basic Grid Functionality...22-2

22.1.1. Inserting and Removing Objects...............................22-2
22.1.2. Placing an Inserted Object Within Its Cell................22-3
22.1.3. Sizing a Grid ...22-3

22.2. Fixed and Variable Grids..22-4

Chapter 23: Attachments and Palettes .. 23-1
23.1. Attachment Classes...23-1
23.2. Managing Specialized Attachments —

Toolbars and Status Bars ..23-2

Chapter 24: Scrollbars, Splitters, and
Virtual Frames24-1

24.1. The CVirtualFrame Class ...24-2
xiv

Table of Contents
24.1.1. Automatic Sizing Capabilities24-2
24.1.2. The Scroll Range...24-3
24.1.3. The CScroller Class ..24-4
24.1.4. The CListbox Class ...24-4
24.1.5. Use of the Environment ..24-5

24.2. Split Windows ..24-5
24.2.1. Types of Splitters ..24-6
24.2.2. Split Window Classes ...24-7
24.2.3. Instantiating a Splitter ...24-9

24.2.3.1. Using Fixed Splitters24-10
24.2.3.2. Using Mapped Splitters24-11

Chapter 25: Drawing Basic Shapes .. 25-1
25.1. Use of CEnvironment for Drawing25-2
25.2. Rectangles and Squares ..25-2
25.3. Ovals and Circles..25-3
25.4. Arcs...25-3
25.5. Polygons ...25-4
25.6. Lines ...25-5
25.7. Drawing Shapes in XVT-Power++.......................................25-5

Chapter 26: Text and Text Editing .. 26-1
26.1. CText ..26-2
26.2. Native Text Editing Classes ...26-3

26.2.1. NLineText, NTextEdit, and NScrollText..................26-3
26.2.2. Text Validation ...26-3

Chapter 27: Utilities and Data Structures 27-1
27.1. Rogue Wave Tools.h Class Library......................................27-1

27.1.1. XVT-Power++ and Rogue Wave Collectables27-2
27.1.1.1. Guidelines for Run-Time Type Identification

Usage27-3
27.2. Managing Global Information ..27-3

27.2.1. The Role of CGlobalClassLib and CGlobalUser27-3
27.2.2. Managing Window Layout Through the Desktop27-4
27.2.3. Global Definitions...27-4

27.3. Setting Up the Environment ...27-5
27.4. Handling XVT Portability Toolkit Events............................27-5
27.5. Transferring Data Using the Clipboard27-6

27.5.1. Streaming Data into the Clipboard............................27-6
27.5.2. Using Multiple Clipboards..27-7

27.6. Field Formatting and Validation...27-7
27.6.1. Validation Basics ..27-8
xv

Table of Contents
27.6.2. Writing Your Own Validators...................................27-9
27.6.2.1. Customizing a Validator27-9
27.6.2.2. Substituting Your Own Validators27-9

27.6.3. Other Approaches to Validation27-10
27.7. Data Structures ...27-11

27.7.1. Collectables ...27-11
27.7.1.1. Temporary Collectables............................27-11
27.7.1.2. Dictionary Collections for Collectables....27-12

27.7.2. Collections ..27-12
27.7.2.1. Converting RWOrdered into a Sorted

Collection27-13
27.7.2.2. Iterators ...27-13

27.7.3. Strings ...27-13
27.7.4. The Coordinate System:

CPoint, CRect, and CUnits27-14
27.8. Checking For Errors ...27-14

Chapter 28: Resources and URL.. 28-1
28.1. Why Use Resources? ..28-1

28.1.1. Resources in XVT-Power++.....................................28-2
28.1.2. X Window System Resources...................................28-3

28.2. Creating Objects from Resources ...28-3
28.2.1. Using XVT-Power++ Classes...................................28-3

28.3. Creating CNativeView-derived Classes28-4
28.4. Optimizing the Loading of Resources28-5

28.4.1. Window Resources ...28-5
28.4.2. Using CResourceItems..28-6
28.4.3. Iterating Held Resources ...28-6

28.5. Resources for Internationalized Applications.......................28-7

Chapter 29: Data Propagation.. 29-1
29.1. How to Use ADP ..29-1
29.2. ADP Classes ...29-3

29.2.1. CModel Class ..29-3
29.2.2. CControllerMgr Class ...29-4
29.2.3. CController Class ..29-4
29.2.4. CNotifier Class..29-4

29.3. Example ..29-5
29.3.1. Setting up the Document for ADP29-6
29.3.2. Setting up the Views for ADP...................................29-6

29.3.2.1. Setting up a Provider View.........................29-6
29.3.2.2. Setting up a Dependent View29-7
29.3.2.3. How ADP Looks to the End User...............29-8
xvi

Table of Contents
29.4. Automatic Data Propagation Key Points..............................29-9

Chapter 30: Transparent Data Integration................................. 30-1
30.1. Synchronizing Your User Interface with TDI30-2

30.1.1. Advantages of TDI..30-3
30.1.2. Flexibility of TDI ..30-3
30.1.3. Scope of TDI...30-3

30.2. Common Uses for TDI ...30-4
30.2.1. Synchronizing the State of Different Objects30-5
30.2.2. Creating Data Models and Connections....................30-5
30.2.3. Communication Links with Third Party Objects30-5

30.3. Structure and Implementation ..30-6
30.3.1. Communication Between Dependents

and Providers...30-6
30.3.1.1. Important Components of TDI Messages...30-7
30.3.1.2. TDI Message Terminology.........................30-7
30.3.1.3. Internal Configuration of a TDI Connection

30-8
30.3.2. Using Prototypes with a TDI Connection30-9

30.3.2.1. Specializing Connections with Prototype
Values30-10

30.3.2.2. Specializing TDI Connections with Adapters ...
30-10

30.4. TDI and ADP Compared ..30-11

Chapter 31: Logical Units ... 31-1
31.1. Setting the Units of Measure ..31-2
31.2. Dynamic Mapping ..31-3
31.3. Owners of Units..31-3
31.4. Incorporating Units into XVT-Power++

Applications..31-4

Chapter 32: Displaying List and Columnar Data....................... 32-1
32.1. Choosing the Method for Displaying Data...........................32-2

32.1.1. Table Data ...32-2
32.1.2. Tree-style Data ..32-2
32.1.3. Long Lists of Data...32-3

32.2. CTable ..32-4
32.2.1. How to Use Tables in Your Application...................32-4
32.2.2. Creating Tables ...32-5

32.2.2.1. Creating a Table View................................32-5
32.2.2.2. Setting the Initial Attributes........................32-6
32.2.2.3. Setting the Table Size32-8
xvii

Table of Contents
32.2.3. Supplying Data to Tables ..32-9
32.2.3.1. Table Data Sources32-9
32.2.3.2. Using CTableTdiSource as a Data Cache.32-11
32.2.3.3. Using TDI to Supply Data to a Table32-12

32.2.4. Controlling Rows and Columns..............................32-13
32.2.4.1. Setting Column Width and Row Height...32-13
32.2.4.2. Deleting and Inserting Rows and Columns

32-13
32.2.5. Setting Attributes ..32-14

32.2.5.1. Colors, Fonts, and Justification32-14
32.2.5.2. Borders..32-15
32.2.5.3. Data Interpreters for Other Types of Data 32-16
32.2.5.4. Field Validation ..32-19

32.2.6. Adding Row and Column Labels............................32-20
32.2.6.1. Setting Label Text.....................................32-20
32.2.6.2. Setting Label Width and Height32-20
32.2.6.3. Setting Label Attributes............................32-21

32.2.7. Tracking Selection Areas in the Table32-21
32.2.8. Processing Events in Tables....................................32-22

32.2.8.1. Table Events ...32-24
32.3. CTreeView..32-26

32.3.1. Creating Static Trees ...32-27
32.3.1.1. Creating a CTreeView32-27
32.3.1.2. Initializing the Root Node32-27
32.3.1.3. Populating the Tree...................................32-28
32.3.1.4. Traversing a Tree Programmatically32-31

32.3.2. Attaching User Data to Tree Items32-32
32.3.3. Creating Dynamic Trees ...32-33
32.3.4. Changing Attributes of Items in a Tree View32-35

32.3.4.1. Instance Variables.....................................32-35
32.3.4.2. Setting Tab Stops......................................32-36
32.3.4.3. Embedding Images32-36
32.3.4.4. Manipulating Fields of a String32-37

32.3.5. Processing Events in a Tree View...........................32-39
32.3.6. Expansion Policies ..32-40
32.3.7. Tree Styles...32-41
32.3.8. Selection Policies ..32-42
32.3.9. Sorting and Re-sorting Tree Items32-42

32.3.10. Changing Mouse Behavior......................................32-43

Chapter 33: Internationalization and Localization 33-1
33.1. Multibyte Character Set and
xviii

Table of Contents
Localization Support...33-1
33.1.1. Externalized Resource Files......................................33-2
33.1.2. How to Adapt an Application33-3
33.1.3. More Support for Internationalized Applications33-3

33.2. Internationalization...33-4
33.2.1. Considerations for Internationalization.....................33-4
33.2.2. Specific Instructions for XVT-Architect Users.........33-5

33.3. Localization ..33-6
33.3.1. Considerations for Localization33-6
33.3.2. Compile-time Considerations33-7

33.4. Localized PTK Resources ..33-9
33.5. PTK Filenaming Conventions ..33-10

Appendix A:
Languages and Codesets ... A-1

A.1. Language Abbreviations..A-2
A.2. Character Codeset Abbreviations ..A-5

Appendix B:
TDI Events in XVT-Power++ ..B-1

B.1. TDI Events Received... B-1
B.2. TDI Events Sent... B-3

Appendix C:
Field Formatting Language reference ... C-1

Index .. 1-7
xix

Table of Contents
xx

Table of Contents
xxi

Table of Contents
xxii

Preface
GUIDE
PREFACE

This Guide presents a basic yet thorough treatment of portable
GUI programming with XVT’s Development Solution for C++
(DSC++) and the XVT-Power++ application framework.

Note: XVT offers a Development Solution for C (DSC) and a
Development Solution for C++ (DSC++). The XVT Portability
Toolkits are the portable API for both DSC and DSC++.

XVT-Power++ Documentation
The XVT-Power++ documentation consists of:

• Guide to XVT Development Solution to C++ (this manual)

• XVT-Power++ Reference (online)

The documentation also includes the Rogue Wave Tools.h++ Guide
and Reference Manual© because XVT-Power++ uses the Rogue
Wave class library to implement many of its classes.

When to Use the Guide

The purpose of this Guide is to describe XVT-Power++’s structure,
survey the overall functionality that is available in related groups of
classes, and explain how things work in XVT-Power++. In short, it
gives you the total picture. When you want details on a particular
class, consult its description in the alphabetically sorted, online
XVT-Power++ Reference.

This Guide constitutes a good overview of DSC++. On the other
hand, you’ll want to repeatedly refer to the Reference throughout
your development efforts, because of the details you can find there
about specific classes and their methods.
xxiii

Guide to XVT Development Solution for C++
What You Already Need to Know

Throughout the XVT-Power++ documentation, we assume that you
have some basic knowledge of GUI features and programming, a
working knowledge of C++, and access to the XVT Portability
Toolkit documentation, which is available online.

Reference Information Available Online

Reference information for all XVT products is available online in
the Adobe® Portable Document Format (PDF). PDF was chosen
because it is the open de facto standard for electronic document
distribution worldwide. Adobe PDF files are compact and can be
shared, viewed, navigated, and printed exactly as intended by
anyone with free Adobe Acrobat® Reader® software. The Adobe
Acrobat® Reader® software may be downloaded at http://
www.adobe.com/products/acrobat/readstep2.html.

How to Read This Manual
If you are a first-time DSC++ user, we recommend:

• Read the first two chapters of this manual to get an overview
of how to use XVT-Power++ and the visual application
builder for DSC++, XVT-Architect.

• Work through the Tutorial chapter of this Guide. The tutorial
introduces you to using XVT-Architect in conjunction with
the XVT-Power++ application framework. The tutorial
introduces you to the GUI application structure and to laying
out GUI objects, setting their attributes, and constructing
menubars.

• Read Chapters 12 and 13, which explain the philosophy and
advantages of XVT-Power++’s application framework, and
present information that every XVT-Power++ user should
know, including XVT-Power++ coding conventions and
style guidelines.

• Read Chapter 14, which explains the structure of
XVT-Power++’s application framework and the important
relationship between application, document, and view.

• Read the Guide’s other chapters to the depth required. The
modules are organized so that deeper levels of subject matter
detail are treated in later modules.
xxiv

Preface
Note: Keep in mind that you can always consult the online XVT-Power++
Reference for a detailed discussion of any class in the
XVT-Power++ hierarchy.

Troubleshooting
Before calling Customer Support, try using the following resources:

XVT Documentation

XVT provides several kinds of documentation:

• Technical manuals

• readme files

• Technical Notes

• Frequently asked questions (FAQs)

• Errata

The documentation is designed to give you the information you need
to use XVT-Power++ at all levels, from introductory to advanced.
To suggest documentation changes, contact Customer Support.

XVT Sample Set

Using the provided XVT-Power++ Sample Set, you can:

• Verify that your XVT-Power++ installation is correct by
building and running the examples in the ...samples directory
(includes makefiles or project files where applicable)

• See a working example while learning XVT-Power++

• Compare sample functions to functions in your code, to
verify correct behavior

XVT Customer Support may ask you to use the Sample Set to verify
a problem when you report it.
xxv

Guide to XVT Development Solution for C++
Error Messages File

The XVT-Power++ library does some internal error checking. If you
use an XVT-Power++ function incorrectly, you may see an
“XVT-Power++ Error” dialog box, which displays the error number
followed by the timestamp of the product release version (for
example, “Internal PWR Error: 37007-408323”).

If you contact XVT Customer Support about the problem, please
mention the error number and the description of the error.

Other XVT Documentation
XVT provides many different pieces of documentation online:

Release Notes and Installation Instructions
Platform-specific information about how to install the DSC++
is placed in the installation instructions. The release notes tell
you what is new or changed with this release. This information,
which includes environment configuration for your platform,
also appears in the install.txt file.

Guide to XVT Development Solution for C++
This manual presents an introduction to portable GUI
programming using XVT-Architect and the XVT-Power++
framework. It also introduces you to the application–
document–view paradigm that is the cornerstone of XVT-based
object-oriented programming.

XVT Development Solution for C++ Quick Reference
This booklet encapsulates the online XVT Power++ Reference.

XVT Platform-Specific Books
Each book contains information you need to use the PTK on a
particular XVT-supported platform. The information about
non-portable attributes and escape codes is especially useful.

XVT Portability Toolkit Guide
This manual presents a basic yet thorough treatment of portable
GUI programming with the XVT Portability Toolkit (PTK).

XVT Portability Toolkit Quick Reference
This booklet encapsulates the online XVT Portability Toolkit
Reference, along with details about the URL language.

XVT-Design Manual
This manual is both guide and reference for XVT-Design,
the visual programming tool that is included with XVT
Development Solution for C (DSC). It introduces you to
portable GUI programming using XVT-Design.
xxvi

Preface
XVT-PowerObjects GUI Components Pak 1
This document is both guide and reference for the GUI
components, XVT-PowerObjects, included with the XVT
Development Solution for C.

XVT Technical Notes
XVT provides Technical Notes in the ...doc directory.
Additionally, as new Technical Notes become available, XVT
posts them on the anonymous FTP site.

XVT also provides the following as online HTML documentation:

XVT Portability Toolkit Reference
This online documentation contains reference information for
all API elements of the XVT PTK: portable attributes, events,
data types, constants, and functions.

XVT-Power++ Reference
This online reference manual describes all the classes of the
DSC++ framework.

XVT DSC Online Help
This online help, accessed from XVT-Design, contains
extensive instructions about using XVT-Design, a copy of the
XVT Portability Toolkit Quick Reference, and some other useful
information for C programmers.

XVT-Architect Quick Help
This help file provides context-sensitive descriptions of the
classes that you are using and the data members that you can set.

The documentation is designed to give you the information you need
to use XVT products at all levels, from introductory (the Guides,
particularly the “Fundamental” and “Basic” modules) to advanced
(the References and Quick References).
xxvii

Guide to XVT Development Solution for C++
About This Manual
XVT takes pride in its documentation, and continually seeks to
improve it. If you find a documentation error, please contact XVT
Customer Support. They will forward your suggestion to XVT’s
documentation team.

Conventions Used in This Manual

In this manual, the following typographic and code conventions
indicate different types of information.

General Conventions

code
This typestyle is used for code and code elements (names of
functions, data types and values, attributes, options, flags,
events, and so on). It also is used for environment variables and
commands.

code bold
This typestyle is used for elements that you see in the user
interface of applications, such as compilers and debuggers. An
arrow separates each successive level of selection that you need
to make through a series of menus, e.g., Edit=>Font=>Size.

bold
Bold type is used for filenames, directory names, and program
names (utilities, compilers, and other executables).

italics
Italics are used for emphasis, for the names of other documents,
and in cross-references to chapters inside the same document.

t This triangle symbol marks the beginning of a procedure having one
or more steps. These symbols can help you quickly locate “how-to”
information.
xxviii

Preface
Note: An italic heading like this marks a standard kind of information:
a Note, Caution, Example, Tip, or See Also (cross-reference).

In XVT documents, this symbol designates the new functionality

provided by the XVT Portability Toolkit Release 5.

Code Conventions

<non-literal element> or non_literal_element
Angle brackets or italics indicate a non-literal element, for
which you would type a substitute.

[optional element]
Square brackets indicate an optional element.

...
Ellipses in data values and data types indicate that these values
and types are opaque. You should not depend upon the actual
values and data types that may be defined.

5
xxix

Guide to XVT Development Solution for C++
xxx

XVT Customer Support
XVT CUSTOMER SUPPORT
When you buy an XVT product or an XVT maintenance agreement,
you gain access to some of the most advanced application
development assistance in the industry.

If you have problems or questions while using XVT products, you
can talk to an XVT Customer Support Engineer. XVT Customer
Support helps you make more effective use of XVT products,
enabling you to get your application up and running as quickly as
possible. Customer Support is available to customers who have
purchased an XVT product and have a current maintenance contract.

Please note that only one individual per purchased copy of an XVT
product may request support. Questions will be taken only from the
individual named on the software registration form.

Feel free to contact XVT Customer Support if you have a question,
or would like to suggest a software enhancement or a change to any
document. Your call is always welcome.

How Customer Support Works

XVT’s Customer Support goal is to respond to all requests within
twenty-four hours. As soon as we log your call into our system, you
will receive a service request number.

If we have questions about your request, we ask that you respond to
them within five working days. Please let us know if you need more
time; otherwise, if we receive no response from you after five days,
your service request will be closed.
xxxi

Guide to XVT Development Solution for C++
Electronic Communication with Customers
XVT has a T-1 connection to the Internet, and we provide
anonymous and secured FTP and WWW sites. These services allow
XVT to:

• Provide FTP (File Transfer Protocol) access to XVT products
and services

• Deliver product patches via the FTP site

• Update products via the FTP site

• Disseminate marketing information via a WWW
(World-Wide Web) home page

Tip: The address of XVT’s WWW site is http://www.xvt.com; XVT’s FTP
site address is ftp.xvt.com.

XVT Developers’ Forum

The XVT Developers’ Forum (xvtportabilitytools) is a community
created to allow XVT developers to exchange XVT problems and
solutions with one another. The forum is open to all XVT developers
and other interested parties. The forum can be accessed at:

http://groups.yahoo.com/group/xvtportabilitytools/

What XVT Customer Support Provides
XVT Customer Support can serve you better if you understand what
services are available.

This is what XVT’s Customer Support can do:

• Provide “tips” to help you effectively use XVT functionality

• Explain XVT functionality and specifications

• Diagnose and analyze XVT-related application problems

• Suggest workarounds

• Suggest how to access native window system development
tools

• Collect feedback for future product development

Keep in mind that XVT Customer Support cannot do the following:

• Design customer applications

• Debug user code
xxxii

XVT Customer Support
• Explain how to use operating systems, window systems, or
compilers (except with regard to XVT application resources)

• Explain how to use native window system development tools

• Extensively teach XVT programming

If you need more help than Customer Service can provide, consider
contacting XVT’s Professional Services Group. More information
about this group can be found on the last page of this section of this
Guide.

Customer Support Services
XVT’s Customer Support engineers can answer questions that arise
from the use of a native GUI platform, or the operating system itself
(see the following subsection, “Standard Customer Support
Services”). When questions require investigation, you are given a
follow-up reference number that identifies your inquiry in our
Customer Support database. These pending requests for information
are reviewed several times each day, to ensure a timely reply.

Standard Customer Support Services

XVT Customer Support personnel are experienced software
developers that specialize in the use of XVT products on supported
MS-Windows 3.1, Windows NT, Windows 95,Windows 98,
Windows 2000, Windows ME, Windows XP, Motif, OS/2,
Macintosh and Power Macintosh computer systems. For registered
named users, XVT offers the following standard services:

• Easy access by phone, fax, and electronic mail

• One day (maximum 24 hour) call backs after your initial call
is received

• An assigned Service Request number when your questions
are logged, so they are tracked and responded to efficiently

• Tips that speed the use of XVT functionality

• Explanations of XVT functionality and specifications to
reinforce product manual descriptions

• Suggested workarounds for common development obstacles

• Suggestions for complementary products or native window
system environment tools that might enhance your
application or make you more productive
xxxiii

Guide to XVT Development Solution for C++
• Product enhancement requests are tracked and analyzed so
that customers significantly influence future product
development decisions

Online FTP Site

XVT’s online FTP site is available to all currently registered
customers, and offers valuable information for XVT application
developers. Technical papers and notes, programming examples,
product updates, and programming utilities are available from the
FTP site.

Support for XVT Software Purchased from
Distributors

XVT products are sold around the world, often through an
independent distributor licensed by XVT Software. If you purchased
your XVT product through an international distributor, your
customer support requests must be routed through that distributor.
If, on the other hand, you purchased your XVT product from an
international office of XVT, you may contact XVT directly for
support. Instructions for contacting XVT Customer Support are
listed on the last page of this section of this Guide.

Information We Need to Help You

When you contact XVT Customer Support, please supply the
following information:

• The name and version number of the product (for example,
XVT/Win32 5.6)

• The serial number of the product (found on your distribution
media)

• Your platform type (for example, Sun 4, IBM RS/6000)

• The operating system and version number (for example,
 HP-UX 11.0, Solaris 2.9)

• The compiler and version number (for example, Microsoft
Visual C++ .NET 2003)

• The window manager and version number (for example,
MS-Windows XP)

• A detailed description of the problem, including information
displayed with any internal error message—such as the called
function, filename, and code line
xxxiv

XVT Customer Support
Product Updates
XVT actively updates its products, issuing both minor releases
(averaging 2–3 per year) and major releases (averaging 12–18
months apart). For most minor releases, and for all major releases,
XVT supplies additions to or complete replacements for product
documentation. As a service to XVT customers, all product updates
are made available from XVT’s FTP site.

Tip: Customers who are current on their XVT maintenance agreements
can download product updates from XVT’s FTP site.

How to Contact Customer Support
You can contact XVT Software Customer Support in several
different ways:

• Telephone us at 919/854-1800 (hours 9 AM-12 PM and
1:30 PM-5 PM, Eastern Standard Time, Monday–Friday)

• Send us electronic mail via the Internet at xvt-support@xvt.com

• Use the FTP site at ftp.xvt.com

• Write us at Providence Software Solutions, 1143_H
Executive Circle, Cary, NC 27511 USA

Note: Some portions of the FTP site can be visited by anyone. However,
before you can access all areas of the XVT FTP site, you must
contact XVT Customer Support to get a valid password.

XVT’s Consulting and Training Services
The XVT Professional Services Group offers extensive fee-based
services to help customers use XVT products. Experienced XVT
professionals can help you learn GUI programming, or help you
prototype, design, code, debug, and maintain your XVT
applications.

In addition to consulting, XVT personnel also conduct on-site and
public training classes in XVT and GUI programming techniques.

See Also: For more information about the XVT Professional Services Group,
call 919/854-1800.
xxxv

Guide to XVT Development Solution for C++
xxxvi

Introduction to XVT-Power++
1
INTRODUCTION TO XVT-POWER++

1.1. What’s in the XVT-Power++ Package?
The classes in XVT-Power++ fall into four major categories:
application framework, utilities, data structures, and pass-through
functionality. This chapter surveys the functionality that
XVT-Power++ makes available to a GUI application developer
within these categories—in terms of specific development tasks. It
also discusses the advantages of using XVT-Power++’s object-
oriented approach to design an application.

1.1.1. Introducing XVT-Power++

XVT-Power++ is a C++ application framework that allows
application programmers to produce extensive graphical user
interfaces with relatively few lines of code. XVT-Power++ features
an object-oriented design that incorporates an application
framework and encapsulates the complex work associated with GUI
programming into several hierarchies of object classes. Application
designers can use these objects as building blocks to assemble into
programs. Thus, XVT-Power++ dramatically reduces application
development time and effort.

XVT-Power++ works with most major GUI platforms, including
Motif, MS-Windows, Windows XP, Windows 2000, and
Macintosh. XVT-Power++ is “portable” in that it offers one body
of code for all targeted platforms. In most cases, once you develop a
program on one platform, you can take the program to another
platform, recompile it, and run it without further changes.

Because XVT-Power++ predefines a number of GUI components,
program development is easier and faster. Whether an application
needs scrollers, list boxes, validating text fields, grids, user-sizeable
1-1

Guide to XVT Development Solution for C++
objects, buttons, or other similar features, XVT-Power++ provides
classes that can simply be assembled. On the other hand,
XVT-Power++ does not confine the GUI programmer to predefined
XVT-Power++ objects. Using C++ and the XVT Portability Toolkit,
you can extend and modify the entire class library by overriding
methods and creating new classes.

1.1.2. XVT Portability Toolkits

XVT-Power++ achieves portability through the use of the XVT
Portability Toolkit. Consisting of a set of C functions that
communicate with the underlying graphical toolkits of several
machines, the XVT Portability Toolkit provides a portable layer
between the application program and the underlying graphical
system.

Each Portability Toolkit implements the XVT interface over native
GUI functionality. This ensures native look-and-feel, low overhead,
interoperability with other applications, and access to native toolkits
when required.

Figure 1.1. XVT Portability Toolkits — the foundation of a well-
written, versatile, and maintainable application
1-2

Introduction to XVT-Power++
1.1.3. The XVT-Power++ Application Framework

The definition of an application framework is derived primarily
from the word “framework.” A framework can be defined as a tree
or a structure. Each must have a strong foundation to support the
higher-level elements. These higher-level elements are connected to
lower elements. Elements at different levels perform different
functions, just as the roots of the tree perform a different function
than the leaves.

C++ lets you define all the different application elements or
functions into a hierarchy of classes. You can then use these classes
repeatedly to create applications. Some vendors refer to these class
libraries as application frameworks. But an application framework is
more than a class hierarchy of C++ classes with interdependencies.
A true application framework provides an infrastructure that
encapsulates an application’s functionality. This infrastructure
exists both in the non-visual application support classes and in the
visual (or view) classes.

The XVT-Power++ class hierarchy is shown in Figure 1.2. Notice
that XVT-Power++ includes many classes that are not part of the
hierarchy “chain.”

The advantage of using an application framework is that it imposes
a clear, rigorous separation of responsibility within the application.
For example, documents deal only with data, while views passively
display data. Because the division of responsibility is so well-
defined, the application lives up to the “object-oriented
manifesto”—in other words, it fulfills the expectation that different
modules of the application are truly reusable, maintainable, and
hopefully, scalable.

See Also: For more discussion of the advantages of using class hierarchies, see
section 1.2.2 on page 1-7.
1-3

Guide to XVT Development Solution for C++
Figure 1.2. The XVT-Power++ class hierarchy

RWIterator CRevOrdIteratorRW

CObjectRWC CNotifier

CSwitchBoard

CGlobalClassLib

CGlobalUser

CPrintMgr

CResourceMgr

CBoss

CGlue

CDesktop

CEnvironment

CMenu

CMenuBar

CUnits

CApplication

CDocument

CDialog

CView

CSubmenu

CMenuItem

CModalDialog

CModelessDialog

CControllerCTypeInfo

Error

Global

Mem

CResource

CResourceWindow

CResourceItems

CModel

CControllerMgr

CResourceMenu

CTaskDoc

CFont

CImage

CSparseColIterator

CSparseRowIterator

CPoint

CRect

CStringRWC

CPointRWC

CRectRWC

CFloatRWC
CFloat

CNotifier

CPoint

CNotifier

CRect

CNotifier

CStringRW

CNotifier

RWCollectable

CSparseArray

CSparseArrayIterator

CCentimeterUnits

CInchUnits

CCharacterUnits

CFloat

CStringCollection

RWCString CStringRW

CStringCollectionRWC
CStringCollection

CNotifier

CBrush

CPen

CColor

CColorSet

CValidatorMask

CMouseHandler CTableMouseHandler
1-4

Introduction to XVT-Power++
Legend
indicates a derivative relationship, which proceeds from left to right

CView

NButton

NCheckBox

NRadioButton

NScrollBar

CButtonIcon

CSelectIcon

CSquare

CCircle

CRegularPoly

NScrollText

CListBox

CIcon

CWindow

CRectangle

COval

CArc

CPolygon

CLine

NTextEdit

NLineText

CScroller

CGrid

CShape

CSketchPad

CVirtualFrame

CAttachmentWindow

CFixedGrid

CVariableGrid

CHorizontalWireFrame

CVerticalWireFrame

CNativeList
CNativeSelectList

NListEdit

NListButton

NListBox

CSubview

CText

CWireFrame

CNativeTextEdit

CNativeView
NEditControl

NWinScrollBar

CRadioGroup

CPicture

Note: The Rogue Wave data structures are not included in this tree. For a listing of
these data structures, see the Tools.h++ manual.

CFaceWindow

CTaskWin

CPasswordEdit

NGroupBox

NIcon

NNotebook

NRadioButton
1-5

Guide to XVT Development Solution for C++
1.2. Designing an XVT-Power++ Application
When you begin to design an application, you must make several
basic decisions: what it will look like, what will happen when the
user executes the program, what will come up first, and the order of
the steps that the user must perform to interact with the application.
XVT-Power++’s application framework helps you to make these
decisions. When you design an application, follow these basic steps:

1. At the very least, write a new application, a new document, and
a new window class, deriving them from their corresponding
XVT-Power++ classes.

2. Determine what XVT-Power++ classes you want to use.

3. Derive/write other classes that reflect the things you want your
application to do.

4. Design the structure of your own class and object hierarchies
and decide how to assign the supervisor relationships among
these classes. Who is going to own whom? Who is going to
instantiate what?

Your application will have the same skeleton, the same underlying
object hierarchy, as XVT-Power++, but it will also have its own
specific flavor.

1.2.1. Development Platform

Naturally, the platform on which you develop an application has an
impact on your design decisions—imposing constraints, for
example, on what is going to be displayed first and how it will look.
On the Macintosh, when the user executes a program, a menubar
appears, and the user is expected to do a “New” or “Open”
operation. This is also true on Motif. On MS-Windows, an
application always starts up with one window on the screen, the
task window. Whatever the platform, when an application starts up,
something appears on the screen for the user to see. It acts as a clear
visual cue about what to do next in order to gain entry to the
program’s functionality.

XVT-Power++ automatically adapts to the native look-and-feel of
the platform for which it is compiled. Thus, it creates the appropriate
windows and menubars upon application startup.
1-6

Introduction to XVT-Power++
1.2.2. Advantages of Object Hierarchies

Class hierarchies are useful structures because a class can inherit
many features from a parent class, allowing developers to reuse
some of the code inside a parent class. Developers can reuse this
code because classes inherit down the line.

This is similarly true of object hierarchies, though for a different
reason. We illustrate this point with the list box, which is a
composite of several objects. If you look at a list box on the screen,
you will notice that it has horizontal and vertical scrollbars, which
are instantiations of XVT-Power++’s CScroller class. Less obvious to
you is the fact that the list box contains a grid so that all the objects
in the list box can easily be aligned. Inserted inside the grid are the
actual text or string items, CText objects.

Although CListBox, as a composite, is a fairly complex class, it was
easy to implement because the objects composing it already existed
in XVT-Power++—scrollers, grids for formatting, and text objects.
Thus, all we have to do is put it all together and add a few specifics
that list boxes require in order to manage the list: insertion and
removal of items, selection and deselection, reporting which items
are selected, and so forth.

Likewise, if you want to display a hierarchical picture of the
directory structure on your computer—a tree view, as it is typically
called—your application draws graphical objects such as icons,
lines, and different colored shapes on the screen to construct a
picture of the tree hierarchy. The overall arrangement of the objects
is controlled by the CTreeView class (if you are using this class to
organize your hierarchical display).

1.2.2.1. Advantages for XVT-Power++

As demonstrated by the CListBox and the CTreeView classes,
XVT-Power++ reaps one of the great advantages of object-oriented
programming—the ability to put together new objects out of objects
that have already been written. Through the reuse of code and the
reuse of ideas, XVT-Power++ easily implemented these new
composite objects.
1-7

Guide to XVT Development Solution for C++
1.2.2.2. Advantages for XVT-Power++ Users

An XVT-Power++ user does not need to know that a CListBox is
a composite of the NScrollBar, RWOrdered, and CGrid classes. When the
user instantiates a list box, its behaviors are already built into it. To
get complete list box functionality, a user simply creates a new list
box (new CListBox) and passes it some parameters that give it a
location, strings to display, and so on. Then the list box appears
inside the view, fully functioning.

However, if you want to take full advantage of XVT-Power++ and
derive your own classes, then you need to know how such composite
objects as the list box are put together so that you can create your
own.

1.2.2.3. Advantages for Designers of XVT-Power++ Applications

XVT-Power++ contains a wide range of classes that provide most
of the functionality needed in a typical GUI application. However,
when designing an XVT-Power++ application, you may find it
necessary to write a completely new class from scratch. Most of
the time, when XVT-Power++ does not supply a specific class or
behavior that you need, you can build a composite object from
classes that XVT-Power++ already provides. This is the essence
of object hierarchies, and it is what makes XVT-Power++ extensible
and very easy to use.

There may be times when you also want to alter the behavior of an
XVT-Power++ class. To create a new class, derive it from the class
you want to change and then override the appropriate method(s).
For example, if you want a list box that contains graphical objects
instead of text objects, you would derive it from XVT-Power++’s
CListBox class and modify one of the methods after studying the class
to find out what can be overridden and what cannot. You discover
that you can override the method InsertItem. In another case, you
might have had to add a method that takes graphical objects and
inserts them into the grid.

In overriding the method on CListBox, you are creating a completely
new class—say, MyListbox—leaving the original CListBox class intact.
You should never change the actual code
of an XVT-Power++ class. The class library is designed so that you
do not change the code if you want to modify behavior. Instead, you
derive a new class and override one or more of the methods on the
XVT-Power++ class.
1-8

Introduction to XVT-Power++
1.3. Application Framework
The XVT-Power++ application framework consists of three
different levels:

• An application level that controls a program and is analogous
to main

• A document level that gets access to data and stores and
manages data

• A view level that provides windows and other specialized
structures in which to display data and graphical objects

All communication layers are contained within this hierarchy. XVT
refers to these components as Application-Document-View, which
is based on the Model-View-Controller (MVC) paradigm. Model-
View-Controller is a well known concept for organizing and
maintaining information in a dynamic system.

1.4. Utility Classes
XVT-Power++’s utility classes provide links between different parts
of the XVT-Power++ system, such as:

• Events and the application

• The XVT-Power++ library and your specific application

• Global objects and the rest of the objects in the hierarchy

• The screen window layout in your application (the desktop)

• Drawing tools and your application (the environment)

• Resources and your application

Each of XVT-Power++’s main objects has several helping and
utility objects attached to it. For example, a native view can have
a glue object, an environment object, a title object, and a list of
commands. Every view has a CRect object that tells it where to draw
and a CPoint object that tells it which origin to draw from and what
its coordinates are relative to.
1-9

Guide to XVT Development Solution for C++
1.4.1. Storing Program Resources

Almost all resources used by XVT-Power++ applications can be
coded using XVT Portability Toolkit’s URL and the curl compiler.
A resource can be a bitmap, an icon, the resource format of dialog
boxes, an internationalized string, and so on.

Anything that your application uses can be stored, managed, and
created by the resource manager. For example, a stop sign icon for a
STOP button would be recorded in the resource manager file as a
resource for the application. The resource manager then knows that
the icon resource exists, and when there is a call for it, it can draw
the icon.

1.4.2. Defining Colors, Font Types, Drawing Modes,
Line Colors and Widths

The CEnvironment class provides a data structure containing
information on such environment attributes as color, font, pen,
brush, and drawing mode. Environment information can be
propagated down the object hierarchy. By default, a global
environment object is shared by every displayable object in an
XVT-Power++ application.

1.4.3. Reporting Errors

XVT-Power++’s error reporting facility is provided in the Error
class.

1.4.4. Memory Management

XVT-Power++ does not override the global new and delete methods.
It is up to you to decide the appropriate local or global overriding for
heap management. Note that in some of its classes, Rogue Wave
overrides these methods locally.

See Also: For more details on Rogue Wave, see the Tools.h++ manual.
1-10

Introduction to XVT-Power++
1.4.5. Using Portable Images

The CImage class provides a portable image facility. A subview-
derived class, CPicture, maps a CImage to a region on the screen. Using
CClipboard, images can be transferred to and retrieved from the
clipboard.

See Also: For more information on these classes, see their separate entries in
the online XVT-Power++ Reference.

1.4.6. Accessing the Clipboard

Any persistent, streamable object (text, XVT PICTURE, or binary
data) can be streamed to and from the clipboard using the CClipboard
class. Several derived classes automatically assist with the I/O
associated with a clipboard operation.

See Also: For more information on the clipboard, see the description of
CClipboard in the online XVT-Power++ Reference.

1.4.7. Translating XVT Portability Toolkit Events to
XVT-Power++ Calls

CSwitchBoard serves as a liaison between the XVT Portability Toolkit
and XVT-Power++. The switchboard is in charge of channeling
whatever events are occurring in the system to the appropriate
object. For example:

• A startup or termination event goes to the application object

• A resize event goes to the appropriate window object

• A keyboard event is channeled by the switchboard to the
appropriate view

See Also: For more details about how keyboard events are routed by
CSwitchBoard, see section 15.3 on page 15-6.

1.4.8. Printing

XVT-Power++’s interface to the XVT Portability Toolkit’s printing
facilities is called CPrintMgr. This class is in charge of queuing up
data and printing it. Normally, when you want to print a view, you
can call DoPrint inside the view. The actual implementation of
printing is handled inside CPrintMgr.
1-11

Guide to XVT Development Solution for C++
1.5. Data Structures
XVT-Power++ uses the Rogue Wave class library to implement its
data structures. Rogue Wave provides a rich set of collections, data
structures, and utility classes that you can take advantage of while
using XVT-Power++.

Most XVT-Power++ classes make use of these structures, which are
generally container classes that are used to store objects. Users often
need to store objects within data structures. For example,
XVT-Power++ itself uses lists extensively.

See Also: For more information on Rogue Wave, see the Tools.h++ manual.

1.5.1. Specifying Locations on the Screen

Every XVT-Power++ object has a CPoint object that tells it which
origin to draw from and what its coordinates are relative to. Each
CPoint is an x,y coordinate.

1.5.2. Placing Views on the Screen

Every XVT-Power++ object has a CRect object that tells it where
to draw. A CRect is a rectangular region (set of coordinates) on the
screen that defines an area in which another object will be located.
CRect has methods for translation, coordinate system conversion,
intersection, union, inflation, height, and width.

1.5.3. Converting Global to Local Coordinates
and Vice Versa

The CRect class has several methods for coordinate system
conversion. These methods allow you to go back and forth between
global and local coordinates without having to do any calculation.

1.5.4. Specifying Logical Units

By default, all XVT-Power++ applications use a one-to-one pixel
mapping for drawing or printing. You can set a different mapping—
in centimeters, inches, characters, or a user-defined unit—by
instantiating a CUnits object and then calling a certain object in the
application framework hierarchy and setting its units through its
SetUnits method.

The use of logical units makes applications more portable because
different machines have different screen widths, heights, and
1-12

Introduction to XVT-Power++
resolutions. The logical units are mapped out to the physical device
on which you are displaying your information, that is, either the
screen or a printer.

1.5.5. Representing and Comparing Character Strings

CStringRW is a class representation of character strings that
encapsulates the data structures and utilities of character strings.

The CStringRW class contains several methods for concatenating and
appending character strings. Plus, several of its methods have been
overloaded so that CStringRW can handle multibyte characters in a
manner that is consistent with the underlying PTK functionality.

The CStringRW class also contains several methods for comparing
character strings. It enables you to do equality, inequality, greater-
than, less-than, greater-than-or-equal, and less-than-or-equal
comparisons.

1.5.6. Storing Items in Lists

The RWOrdered class stores pointers to objects that inherit from the
RWCollectable class. Items are stored as a linear array. You can add the
same pointer more than once.

1.5.7. Iterating Over Lists

RWOrderedIterator is a class that iterates over RWOrdered objects.

1.5.8. Storing Two-dimensional Arrays and
Conserving Memory

When the data stored is sparse, CSparseArray is useful because the
storage requirement of the array is proportional to the number of
non-empty locations, rather than to the size of the array.
1-13

Guide to XVT Development Solution for C++
1.6. Pass-through Functionality
There are some features that it does not make sense to encapsulate
in C++, or that XVT has not yet encapsulated in C++. These features
include the following:

• Color palettes and color look-up tables

• Cursors

• Diagnostics and debugging

• Files

• Hypertext online help

• Native functionality

• Predefined dialogs

• Resources

• User-defined font mappers

• Pre-translated resources (five languages)

In order to use these features, you need to use the C API of the
XVT Portability Toolkit. Many of these API functions require using
XVT Portability Toolkit data types. However, XVT-Power++
provides methods on all CView objects to get these data types.
GetXVTWindow returns an XVT Portability Toolkit window type. In
addition, conversion operators are provided to the appropriate XVT
Portability Toolkit types in these classes: CPoint, CRect, CBrush, CPen,
CEnvironment, and CFont.

See Also: For more information on these classes, see their separate entries in
the online XVT-Power++ Reference.

1.6.1. Color Palettes and Color Look-Up Tables

While XVT-Power++ provides an encapsulation of portable images
through our CImage and CPicture classes, additional functionality is
provided by the XVT Portability Toolkit for color palettes and color
look-up tables.

See Also: For more information on CImage and CPicture, see the online
XVT-Power++ Reference.
For more information on color palettes and color look-up tables, see
the “Portable Images” chapter in the XVT Portability Toolkit Guide.
1-14

Introduction to XVT-Power++
1.6.2. Cursors

A cursor is a pointer or other shape that indicates the current mouse
position. Each CWindow object can have a cursor, which is set to one
of four standard shapes, or to a shape that is defined as a resource.

See Also: For more information on cursors, see the “Cursors and Carets”
chapter in the XVT Portability Toolkit Guide.

1.6.3. Diagnostics and Debugging

In addition to XVT-Power++ Error and debugging functionality, you
can use the XVT Portability Toolkit error handling functions. The
XVT Portability Toolkit provides error signaling with error codes,
error handler functions, error definition and message files, and error
dialogs for reporting errors and warnings.

See Also: For more information on diagnostics and debugging, see the
“Diagnostics and Debugging” chapter in the XVT Portability Toolkit
Guide.

1.6.4. Files

The XVT Portability Toolkit provides a portable data type for
referring to filenames, directories, and file types. This feature allows
you to set and get file attributes, use standard functions for file input
and output, and use standard file dialogs.

See Also: For more information on files, see the “Files” chapter in the XVT
Portability Toolkit Guide.

1.6.5. Hypertext Online Help

XVT Portability Toolkit's online help feature provides a powerful,
flexible, hypertext-based help system for your applications. The
online help feature includes the following key elements: a hypertext
viewer, complete text formatting with multiple fonts and styles,
association between CNativeView objects and specific help topics,
embedded bitmap images, and support for native help display
facilities.

See Also: For more information on hypertext online help, see the “Hypertext
Online Help” chapter in the XVT Portability Toolkit Guide.
1-15

Guide to XVT Development Solution for C++
1.6.6. Native Functionality

Each XVT Portability Toolkit has a set of platform-specific,
non-portable attributes. These attributes let you fine tune your
application, or let you add functionality not provided by the XVT
Portability Toolkit interface.

See Also: For more information on non-portable attributes, see the various
XVT Platform-Specific Books.

1.6.7. Predefined Dialogs

The XVT Portability Toolkit supports several common dialogs on
all platforms. These dialogs allow you to perform the following:

• Ask a yes or no question

• Display a note or an error alert

• Get a string typed by the user

• Display an About Box

• Prompt the user for a filename for input or output

See Also: For more information on predefined dialogs, see the “Dialogs”
chapter of the XVT Portability Toolkit Guide.

1.6.8. Resources

XVT-Power++ uses the Universal Resource Language (URL) at
the XVT Portability Toolkit level to specify resources for menus,
dialogs, windows, strings, images, and fonts.

With every Portability Toolkit, XVT supplies a compiler for URL,
called curl. You can port your URL code to any supported XVT
platform and compile it to the native resource format using the XVT
compiler, curl. The curl compiler reads specifications in the
Universal Resource Language and generates specifications in the
format appropriate to the native platform.

See Also: For details on how XVT-Power++ supports URL, see Chapter 28,
Resources and URL.
For more information on URL and resources in general, see the
“Resources and URL” chapter in the XVT Portability Toolkit Guide.
1-16

Introduction to XVT-Power++
1.6.9. User-defined Font Mappers

XVT-Power++ features an encapsulated font model through the
CFont class. The CFont class provides full coverage of the XVT
Portability Toolkit font functionality, including user-defined font
mapping. However, CFont does not include an available interface for
setting your own application specific font mapper. To access this
functionality, you assign a value to the ATTR_FONT_MAPPER attribute
at the PTK level.

See Also: For more information on user-defined font mappers and the
ATTR_FONT_MAPPER attribute, see the “Fonts and Text” chapter in
the XVT Portability Toolkit Guide.

1.7. Where To Go Next
At this point, we have covered the functionality that XVT-Power++
makes available in the following:

• The XVT-Power++ class hierarchy, which is the main set of
classes in the XVT-Power++ application framework. This
hierarchy provides the view classes.

• The utility classes or files that provide links between
different parts of the XVT-Power++ system.

• The data structures, which provide the means
to create the data structures such as lists and arrays.

• The pass-through functionality, which maps directly into the
C API of the XVT Portability Toolkit.

Now that you have surveyed the XVT-Power++ classes and are
aware of the overall functionality available to the XVT-Power++
application developer, XVT recommends that you read about style
guidelines and coding conventions in Chapter 13.

See Also: For more information on the Rogue Wave class library, see the
Tools.h++ documentation. For detailed information on any of the
classes mentioned in this chapter, see the online XVT-Power++
Reference.
1-17

Guide to XVT Development Solution for C++
1-18

Introduction to XVT-Power++
2
INTRODUCTION TO XVT-ARCHITECT

This chapter introduces XVT-Architect and its main components,
and it describes the interface elements of these components.

In addition, the chapter provides an overview of the process of
designing and building an application with the tool, as well as a
description of the process of saving projects and generating files
with XVT-Architect.

2.1. What is XVT-Architect?

XVT-Architect is a visual, object-oriented GUI development tool
and application generator. It is built using and is part of the XVT
Development Solution for C++ (DSC++), which includes the
following components: XVT-Power++, the XVT Portability
Toolkits, the curl resource compiler, and the helpc help text
compiler.

XVT-Architect is built with the XVT-Power++ application
framework for use with the framework, and it is designed
specifically to leverage XVT-Power++ development. While
introducing you to the XVT-Power++ application framework,
this tool also simplifies the design and implementation of
XVT-Power++ applications.

Like all XVT-Power++ applications, applications developed using
XVT-Architect are portable across all XVT-supported platforms.
XVT-Architect’s project files are also portable to all supported
platforms. In addition, to simplify your porting tasks,
XVT-Architect allows you to create platform monitor and
language-specific attribute settings from any platform.

See Also: For more information on the DSC++ components, see the “Preface”
of this manual.
2-1

Guide to XVT Development Solution for C++
2.2. Designing and Building Applications with
XVT-Architect

When you design and build an application with XVT-Architect,
you follow basic steps. This section briefly describes these steps.
However, you can change the sequence of the steps, if you wish.
As you get acquainted with XVT-Architect, you will find the
approach that works best for your individual projects.

t To build an application with XVT-Architect, follow these basic
steps:

1. Design and lay out your application using XVT-Architect’s
Blueprint, Drafting Board, and Strata modules, as well as
XVT-Architect’s editors.

2. Save the project. You must save the project before you can
generate the Shell files (you can save the project as early and as
often as you like).

When you Save a project for the first time (or “Save As” a
project), XVT-Architect prompts you for a name. The name that
you indicate is used for the new project directory as well as for
the name of the project. Each XVT-Architect project must be
maintained in a unique directory.

3. Generate the Shell files, which include a file for each object,
a startup file, a URL file, and a makefile. Typically, you
generate the Shell files once. However, if you modify your
project, rename a file, or delete a file, you should generate the
Shell files again.

By default, XVT-Architect scans the files and generates only
the files that it cannot locate; XVT-Architect does not overwrite
a file that already exists unless you indicate otherwise. You can
choose to overwrite Shell files in the File Generation dialog.

4. Generate the project’s object Factory, which includes your
project files and header files. You use the Factory to create the
objects in your application. Therefore, if you modify your
project with XVT-Architect, you should generate the Factory
again to update the information. However, when you regenerate
the Factory, all of the project and header files are overwritten.

5. Establish a project file or makefile for your compiler, and add
all necessary files. If you are using IDEs, you need to link any
source files that are in the Factory directory.
2-2

Introduction to XVT-Power++
6. Run curl to compile XVT’s Universal Resource Language
(URL), and add the generated *.rc file (or *.r file on the
Macintosh) to your project. Every time you generate files, or
regenerate files, it is a good idea to compile with curl. (For
instructions on compiling resources with curl, see the sheet,
“Installing XVT Development Solution for C++” for your
particular platform.)

7. Compile, link, and execute your application. When you execute
the application, the windows that you laid out in XVT-Architect
will be displayed on the screen, but the application will not be
interactive. You must write the code to implement the
application.

8. Modify any files that you need to, and link in anything that you
added as part of your application. If you change the names of
any objects, you must (at least) edit the makefile.

9. Interact with the PAFactory class to create the user interface
objects for your application.

10. Compile, link, and execute your application.

2.3. Visual Components
XVT-Architect’s three main visual components, the Blueprint,
Drafting Board, and Strata, have consistent interface elements.
When appropriate, the menubars and toolbars contain the same
items. In addition, both the Blueprint and the Drafting Board have
attachable and detachable palettes to assist you in creating and
laying out the objects of your application. (For more information,
see section 2.3.1 through section 2.3.3.)

This section briefly describes these three main visual components of
XVT-Architect. They work together to help you design your GUI
applications. XVT-Architect allows you to navigate easily between
these modules.

Blueprint Module
A browser that allows you to visually lay out the basic internal
architecture of your applications. In this module, you
graphically create the application, documents, and windows
that are the basis of your XVT-Power++ application. You
establish the primary object hierarchy for your application.

Drafting Board Module
A GUI builder with all of the facilities necessary to quickly
produce advanced user interfaces. In this module, you can lay
2-3

Guide to XVT Development Solution for C++
out and manipulate the interface objects of your application;
you can lay out XVT-Power++ visual objects, and you can
manipulate them with a robust set of tools.

Strata Module
An object-attribute editor that provides quick access to both
view and modify object attributes, letting you refine your
application and user interface objects. In this module, you can
set all of XVT-Power++’s data members, and you can use the
class browser to understand and effectively use
XVT-Power++’s class hierarchy and object inheritance. In
addition, from the Strata, you can open all of XVT-Architect’s
editors.

See Also: For specific information on a component, see the corresponding
chapter. For more information on editors, see Chapter 7.

2.3.1. Blueprint Interface

In the Blueprint, you have basic interface elements, including
a menubar, a toolbar, and a status bar. In addition it has a Tools and
an Alignment palette (see Figure 2.1).
2-4

Introduction to XVT-Power++
Figure 2.1. Blueprint interface

2.3.2. Drafting Board Interface

The Drafting Board, much like the Blueprint, has a standard
interface including a menubar, a toolbar, a status bar, and Alignment
palette. In addition, the Drafting Board has a main View palette,
which has several subpalettes. You will use these palettes for most
of your work in the Drafting Board (see Figure 2.2).
2-5

Guide to XVT Development Solution for C++
Figure 2.2. Drafting Board interface

See Also: For a full description of the View palettes, see section 5.2.

2.3.3. Using XVT-Architect’s Palettes

When you open the Blueprint or Drafting Board, the main tool
palette is open. In the Blueprint, that is the Tools palette, and in the
Drafting Board, that is the View palette. If you close a palette, you
can reopen it by selecting the appropriate item from the Palettes
menu.

All of the palettes of XVT-Architect are draggable, attachable, and
detachable. You can position them in the window, or you can attach
them to or detach them from the side, top, or bottom of the window,
by dragging them to and from the edges.

t To create objects using XVT-Architect’s Tools palette or View
Palette and its torn-off subpalettes, use one of the following methods
(all objects that you create in the Blueprint are a default size):

Drag-and-drop method
Press down a button on a palette, and drag the cursor to the
2-6

Introduction to XVT-Power++
sketch region of the window and release the mouse
button.When you release the button, an object of default size
is created at the cursor location, and the cursor reverts to the
previous tool.

Sketch method
Click a button on a palette, and click in the sketch region of the
window. You can create multiple objects of default size by
clicking multiple times. When you are done, click on another
object or on the pointer tool of the palette.

Sketch method
Click a button on a palette and drag out an area in the sketch
region of the window. With this method, you can create
multiple objects of any valid size. When you are done, you can
click on another object or on the pointer tool of the View
palette.

See Also: For more information on the Tools palette, see section 4.3.1.1.
For more information on the View palettes, see section 5.1.3.

2.3.4. Strata Interface

To view and modify an object’s attributes, you go to its Strata.

t To open the Strata for an object, in either the Blueprint or Drafting
Board:

Double click on the object.

Double clicking on an object always opens the Strata for that object.
The Strata is divided into two main components: the class browser
and the notebook control (see Figure 2.3). The class browser shows
the class hierarchy for the object, and the notebook control contains
a “page” for each class from which an object inherits. The pages are
populated with controls for each attribute that you can set. Some
classes have more than one page, which you can access from their
main page (e.g., CWindow).
2-7

Guide to XVT Development Solution for C++
Figure 2.3. Strata interface

2.4. Saving Projects and Generating Files
From the Blueprint and the Drafting Board, you can generate the
Shell files and the Factory project files. However, before you do so,
you must save your project. If you attempt to generate files before
saving the project, XVT-Architect brings up the Save dialog.

t To save your project:

Choose Save from the File menu, which brings up the Save
dialog.

When you Save a new project (or “Save As” a new project),
XVT-Architect asks for a new directory name. This name also
serves as the name of the project. An XVT-Architect project must
always be maintained in its own individual directory. The generated
Factory and Shell files are placed in this directory.

Note: If you choose a file from the Save dialog’s list box, and then choose
OK, XVT-Architect issues a warning and requires that you enter a
new directory.

Class Browser

Notebook Control
2-8

Introduction to XVT-Power++
Generating Files

t To generate files:

1. Choose Generate Files from the File menu, which brings up the
XVT-Architect File Generation dialog.

2. Indicate which files you want generated.

3. Click the Generate button.

When indicating which files you want generated, you have several
choices. You can choose to generate the Factory and/or the Shell
files by checking or unchecking the appropriate check box. If you
choose to generate the Shell files, you have several other choices,
which are described in section 2.4.2.1.

2.4.1. Factory Files

If the Factory check box is checked, XVT-Architect generates the
Factory files. The generated Factory files store information
regarding the objects and object relationships of your
XVT-Architect project. You interact with the Factory files when
writing the necessary code to implement your application.

Your application uses the object factory at runtime to instantiate
objects. The object Factory is separate from the user code. This
clean separation of code makes it safe and easy to change and
maintain your application.

If you modify your XVT-Architect project, you should generate,
or regenerate, the Factory files, so that the project information is
updated. When you regenerate the Factory, all of the files are
overwritten.

Note: If after you generate the Shell files, you change the Factory name
of an object, you must search and replace the old name in your
application code.

XVT recommends that you do not modify the Factory files.

See Also: For more information on generated Factory files, see Chapter 8.
For more information on Factory names, see section 4.4.1.2.

2.4.2. Shell Files

XVT-Architect uses templates to generate the Shell files for your
application. To generate Shell files, XVT-Architect reads the
template, processes it, and writes an output file. When writing these
2-9

Guide to XVT Development Solution for C++
files, XVT-Architect uses the project name to name some files, and
class names that you have indicated in the Blueprint to name other
files.

The File Generation dialog, has a list box that contains a list of all of
the generated Shell files. When you bring up the dialog the Shell
check box is checked and all of the files are selected. Therefore, all
of the files will be generated. However, when generating Shell files,
you can choose to generate only selected files.

Note: On MS-Windows and OS/2, class names that are over eight letters
will be truncated during Shell-file generation.

See Also: For more information on class names, see section 4.4.1.1.

2.4.2.1. Generating Shell Files

You can uncheck the Shell check box, and XVT-Architect will not
generate the Shell files. However, if you check the Shell check box,
you can choose to generate all or part of the Shell files.

t To generate part of the files:

Deselect the files that you do not want generated.
-OR-
Click the Select None button, and then select the files that you
want generated.

After you generate the Shell files, you can compile, link, and execute
your application. The windows of the application will come up, but
they will not be interactive. You can modify the generated files to
add the needed code for your application. Unless you specify
otherwise, these files are not overwritten during subsequent
generations.

Generally, you generate the Shell files once. However, if you modify
your project, rename a file, or delete a file, you should generate the
Shell files again. If you generate them a second time, XVT-Architect
scans the files and generates only the missing files; XVT-Architect
does not automatically overwrite a file that already exists.

Note: You can select to overwrite existing files. If you do so, you will also
overwrite and lose any modifications that you have made to these
files.

2.4.2.2. Generated Files

This section describes the Shell files, using the convention whereby
the complete name of a project is represented by <ProjectName>,
2-10

Introduction to XVT-Power++
and the truncated, “8.3,” name by <TruncatedProject>. Likewise,
the complete name of a class is represented by <AppClass> (for
example), and the truncated name by <TruncatedAppClass>.

The generated Shell files consist of the following:

Startup file
The startup file contains the application’s main function. On MS-
Windows, MS-Windows NT, and OS/2, it is cstartup.cpp. On
the Macintosh, it is CStartup.cp. On UNIX it is CStartup.cxx.

Main application header file
The main application header file references the header file that
the factory generates, so you do not have to add the reference.
Every generated source file references this file; whatever you
put in this file is global information. On MS-Windows,
MS-Windows NT, and OS/2, it is <TruncatedProject>.h.
On UNIX and the Macintosh, it is <ProjectName>.h.

Main application Universal Resource Language (URL) file
The URL file references the url.h, PwrURL.h, and factory.url
files. This file references the factory generated .url file; you do
not have to add this reference. If you want to reference or
include any code (e.g., preexisting files or native resources),
you should add it to this file. On MS-Windows, MS-Windows
NT, and OS/2, it is <TruncatedProject>.url. On UNIX and the
Macintosh, it is <ProjectName>.url.

Application class source and header files
The source and header files for the application class. On
MS-Windows, MS-Windows NT, and OS/2, they are
<TruncatedAppClass>.h and <TruncatedAppClass>.cpp.
On the Macintosh, they are <AppClass>.h and
<AppClass>.cp. On UNIX, they are <AppClass>.h
and <AppClass>.cxx.

Document and window class source and header files
The source and header file for each document and window
that you created and linked into your application. On
MS-Windows, MS-Windows NT, and OS/2, the files are
<TruncatedClass>.h and <TruncatedClass>.cpp. On the
Macintosh, the files are <Class>.h and <Class>.cp. On UNIX,
the files are <Class>.h and <Class>.cxx.

Application icon
The application icon. On MS-Windows and
MS-Windows NT, it is <TruncatedProject>.ico.
On OS/2, there are two files, <TruncatedProject>.ico and
2-11

Guide to XVT Development Solution for C++
<TruncatedProject>.bmp. On UNIX and the Macintosh, the
icon definition is located in the main URL file.

Default icon
The default icon is used for icons placed inside windows.
On MS-Windows and MS-Windows NT, it is null.ico.
On OS/2, there are two files, null.ico and null.bmp.
On UNIX and the Macintosh, the icon definition located
in the main URL file.

Makefile or project file
The projects makefile or project file. The following is a list of a
platforms, with compilers when necessary, and the name of the
generated makefile or project file:

MS-Windows (Borland): <TruncatedProject>.ide
MS-Windows (MSVC): <TruncatedProject>.mak
MS-Windows NT: <TruncatedProject>.mak
OS/2 (Borland): <TruncatedProject>.prj
OS/2 (IBM C-Set++): makefile
Macintosh (Think C): <ProjectName>.pi
Macintosh (Symantec): <ProjectName>.pi
Macintosh (Metrowerks): <ProjectName>.mu
Macintosh (MPW): makefile
UNIX: makefile

AppDef.h
Contains the #defines for the objects in your application.
This file is placed in the Factory directory, and you should
not modify it.
2-12

XVT-Architect Tutorial
3
XVT-ARCHITECT TUTORIAL

This Tutorial chapter demonstrates how to use XVT-Architect to
build a simple application. While teaching you how to build the
application, this Tutorial also illustrates the use of many of
XVT-Power++ features.

Each section of this Tutorial walks you through parts of the layout
process and teaches you to use different features of XVT-Architect.
The section then describes portions of the application code that you
need to write to implement the
component.

Note: This Tutorial contains information about many key concepts that
you need understand to successfully use the XVT Development
Solution for C++ (DSC++).

3.1. The Notepad Application
This tutorial guides you through the creation of the Notepad
application. The Notepad is a simple text file editor that allows you
to open, edit, and save files.

3.1.1. Learning XVT-Architect

By building this application, you use and learn XVT-Architect’s
three modules: Blueprint, Drafting Board, and Strata. In addition,
you learn about several of XVT-Architect’s editors.

You also learn XVT-Architect’s Shell and Factory file generation,
as well as how to use the Shell files and the Factory interface to write
your application code.
3-1

Guide to XVT Development Solution for C++
3.1.2. Learning XVT-Power++

The Notepad application demonstrates the use of the following
features of the XVT-Power++ application framework:

• Object hierarchies based on the Application-Document-View
paradigm, visualized in the Blueprint

• XVT-Power++ view classes and Rogue Wave Tools.h++
classes

• Persistence

• Handling key input

You will learn the use of several XVT-Power++ view classes, which
are the visual objects that make up the user interface of your
applications. You will lay them out in XVT-Architect’s Drafting
Board module, set their initial properties in XVT-Architect’s Strata,
and implement them in your application code.

In addition, XVT-Power++ has integrated the Rogue Wave
Tools.h++ class library, which provides a set of collections, data
structures, and utility classes that you can take advantage of. You
will start using the Tools.h++ class library when you write the
Notepad application code.

The Application-Document-View paradigm is the basis for almost
all well-designed XVT-Power++ applications. This object hierarchy
defines the infrastructure of XVT-Power++ applications. By laying
out the Application-Document-Window relationship in
XVT-Architect’s Blueprint, you rapidly learn this paradigm.
3-2

XVT-Architect Tutorial
3.2. Getting Started
t To begin, run XVT-Architect.

The Blueprint module is opened.

By default, the Blueprint has an instance of a CApplication-derived
class, an instance of CTaskDoc, and an instance of CTaskWin. These
objects are linked together to form the rudimentary application. You
cannot delete these objects.

CTaskWin is a class that XVT-Power++ uses internally to represent
the logical or physical window that carries the application menubar.
On some platforms, this window is a container for all of the
application windows.

CTaskDoc owns and manages CTaskWin. Both classes are private
classes that only XVT-Power++ can instantiate. Each application
has instances of a CTaskDoc and a CTaskWin.

Note: You can only have one project open in XVT-Architect at a time.
However, you can copy and paste between project files, which
allows you to structure your development for team-oriented
development.

See Also: For more information on CTaskDoc and CTaskWin, see their individual
descriptions in the online XVT-Power++ Reference.

3.3. Designing the Notepad Application
XVT-Architect’s Blueprint is used to design the object hierarchy of
an XVT-Power++ application, based on the Application-Document-
View paradigm. In this paradigm, the application creates and
manages the documents. Each document stores and provides access
to data; it also and creates and manages windows to display this data.

This object hierarchy defines the message paths for inter-object
communication and assigns categories of tasks to be performed
at each level.

The Notepad application is organized according to this Application-
Document-View paradigm. In the design process of this application,
therefore, consider the roles of the application, the documents, and
the windows.
3-3

Guide to XVT Development Solution for C++
The Application Object’s Roles

The application object, or instance of a CApplication-derived class,
manages the flow of the entire application. Its responsibilities
include the following:

• Initializing the startup environment

• Creating the documents that must be created initially

• Responding to application events, such as requests to
create new documents or to open saved documents

• Cleaning up and closing documents before exiting the
application

The Notepad, like all XVT-Power++ applications, must have a
single application object.

The Document Object’s Roles

Document objects, or instances of CDocument-derived classes, create
and manage the windows that display its data. Each document class
is responsible for many tasks, including the following:

• Managing data, which can include creating data objects,
saving and restoring data from disk or a data base

• Changing its own data as requested by the views that it
manages

• Creating and destroying windows to display data

The Notepad application contains several types of document
objects.

The View Object’s Roles

Finally, applications contain views that display the data and allow
the user to interact with the data. In XVT-Power++, window objects,
or CWindow-derived classes, act as the top-level enclosures for all
other views, and therefore are the view classes that you lay out in the
Blueprint.

In the Notepad application, as in many applications, some windows
are managed by the same document. In this example application,
there are five windows and four documents.

Note: In the Blueprint, you define derived classes; you create CApplication-
derived, CDocument-derived, and CWindow-derived classes. When you
name an object in the Blueprint, you indicate that XVT-Architect
should generate a new class by that name.
3-4

XVT-Architect Tutorial
3.3.1. Defining the Application Object

Since all XVT-Power++ applications must have one application
object, XVT-Architect automatically creates an application class for
each new project. When you start XVT-Architect or open a new
project, the application class is laid out in the Blueprint.

Name the application appropriately, however. This and all of the
names that you give objects in the Blueprint are used as class names
in the generated Shell files.

3.3.2. Defining the Documents and Windows

To the initial layout in the Blueprint, you add your own document
and windows. For the Notepad application, you need to lay out only
one document and one window.

The document, which will be named TNoteDoc, must manage the data
associated with a single file being edited. The document must also
manage the storage and retrieval of the file. The window, which will
be named TNoteWin, must contain the appropriate views to display
the contents of the file; it must also allow users to edit the file.

3.4. Building the Notepad
This section describes the process of building the Notepad.
The Notepad allows the user to do the following:

• Open a file for editing

• Edit the file within a window

• Save the file back to disk

• Save and close the file before exiting the program

This section describes how to lay out and implement the Notepad
window. You will learn the following:

• Using the Blueprint to visualize the object hierarchy of
the application and to name classes

• Using the Drafting Board to lay out objects

• Using the Strata to set document, window, and view
attributes, including environment settings, and to set Factory
names

• Using the Menu Editor to define a menubar for the window

• Generating Shell and Factory files
3-5

Guide to XVT Development Solution for C++
• Building, compiling, linking, and running your application

• Writing code to respond to menu selections and keyboard
input

• Writing code to implement persistence

• Writing code to notify the document of keyboard input

t To begin this section:

If it is not already running, start XVT-Architect.

3.4.1. Defining the Notepad’s Application Classes

Starting in the Blueprint, lay out document and window classes
necessary for the Notepad, name the classes, and link them into the
existing application.

t In the Palette menu, choose Tools.

The Tools palette contains the following buttons:

• Pointer tool

• Linker tool

• CDocument tool

• CWindow tool

When you move the Pointer over the buttons on the palettes and
toolbar, a short help statement for the button under the Pointer
appears in the status bar.

Notice that you can drag the palette to any location in the window,
or you can attach it to the side, top, or bottom of the window.

Name the application class for this project.

t To name the application for this project:

1. Select the name below the icon CApplication(), and type
“TNoteApp”.

2. Click in the sketch region of the window to complete the editing
process.

Note: XVT recommends that you give your derived classes a prefix that is
unique within the application. XVT uses “C” and “N” prefixes for its
classes, and Rogue Wave uses the “RW” prefix. In this Tutorial, you
will use “T” as a prefix to help recognize your derived classes. To
assure that your generated files match the code presented in this
Tutorial, use all of the class and Factory names that are given.
3-6

XVT-Architect Tutorial
3.4.1.1. Defining the Documents and Windows

The next step is to create and name the document class, TNoteDoc, and
the window class, TNoteWin (see Figure 3.1). When you create a
document or window in the Blueprint, the name of the object is
selected and ready for editing.

t To create documents or windows:

Press on the CDocument or CWindow tool of the Tools palette, and
then drag the Pointer onto the sketch region. When you release
the mouse button, a document or window object is created, and
the cursor returns to the previously selected tool.
-OR-
To create multiple objects, click on the CDocument or CWindow
tool of the Tools palette, and then, click in the sketch region of
the Blueprint window. The tool remains selected, and you can
create as many documents or windows as needed. To return to
the Pointer tool, click on the pointer of the Tools palette.

t To name documents or windows:

1. With Pointer tool, click on CDocument and name it TNoteDoc.

2. Then click on CWindow and name it TNoteWin.

After defining documents and the windows, click on the Pointer
tool. You can move the documents and window in the sketch region
by dragging them.

3.4.1.2. Linking Documents and Windows into
the Application

When you have laid out the documents and windows in the
Blueprint, link them together to visualize the object hierarchy
of your application.

In XVT-Power++, all documents are managed by the single
application object. In addition, documents manage the windows that
display their data. This forms the object hierarchy, which is
at the center of the Application-Document-View paradigm.

First, link the document to the application.

t To link the document to the application:

Click on the Linker tool on the Tools palette, and then drag out
a connection from the center of the TNoteDoc icon to the center
of the TNoteApp icon.
3-7

Guide to XVT Development Solution for C++
Then, link the window to the document that manages it.

t To link the window to the document:
With the Linker tool, drag out a connection from TNoteWin
to TNoteDoc.

Figure 3.1. Blueprint with the Notepad’s document and window

Note: Links must be made from the document to the application and from
the window to the document. XVT-Architect does not allow invalid
links.

See Also: For more information on linking rules, object hierarchies, and
the Application-Document-View paradigm, see Chapter 4.
3-8

XVT-Architect Tutorial
3.4.1.3. Setting the Document’s Attributes

To view and modify the attributes of all objects (instances of classes)
in XVT-Architect, go to the Strata of an object.

t To open the Strata of an object:

Using the Pointer tool, double click on the object.

To see the default document attributes, you can open the Strata for
TNoteDoc now. The main components of the Strata are the class
browser and the notebook control.

The class browser is at the bottom of the window, and it illustrates
the class hierarchy of the selected object. To get an idea of the
functionality an object is inheriting, you can look scroll through the
class browser (using the scrollbar at the bottom of the window) or
click on each item in the class hierarchy of the object.

Each class from which an object inherits also has a tabbed page in
the notebook control. Each page contains the attributes that can be
set for that class; in the Strata, view and set attributes of an object at
each inheritance level of the class hierarchy. The Strata will help you
learn the XVT-Power++ class hierarchy.

t To see the class hierarchy of the object:

Scroll through the class hierarchy in the browser.

t To bring a page of the notebook control to the front:

Click on the specific object icon in the class browser at the
bottom of the window.
-OR-
Click on the tab of the specific class.

See Also: For more information on the Strata, see Chapter 6.

Setting TNoteDoc’s Attributes

In your application code, you will need a way to refer to the
document. When you interact with any object in your application,
you use the Factory name.

XVT-Architect generates a Factory name for each object you lay
out. However, you can change the Factory name so that it makes
sense in your application. To set the name and other Factory
information, use the Factory settings page in the Strata (see
Figure 3.2).
3-9

Guide to XVT Development Solution for C++
t To set the Factory name for the document:

1. Double-click TNoteDoc’s icon in the Blueprint.

2. Bring the Factory page to the front by clicking on the tab
with the Factory bitmap.

3. Then, select the text in the Factory ID Name field, and type
“NoteDoc”, and click the Apply button, which applies the
change.

Figure 3.2. Factory settings page of Strata

While you have the Factory page at the front of the Strata, note
the Auto Creation check box on the page. By default, this box is
checked, and thus all documents, all windows for documents, and all
objects contained in the windows are automatically created at
runtime. To indicate otherwise, you must uncheck this box.
However, for this Tutorial, leave it checked.

When you are done in the Strata, click OK, which closes the
window.

Note: When choosing a Factory name, do not use the class name that you
gave the object in the Blueprint.
3-10

XVT-Architect Tutorial
A Note on Giving Factory Names to Objects

When you write your application code, you must access some
of the objects that you have laid out in XVT-Architect. In general,
you must access those objects whose attributes you will be getting
or setting dynamically at runtime.

XVT-Architect automatically generates data member classes with
pointers to the objects that you have indicated. That is, by default all
objects are part of their enclosure’s data member class, where the
application encloses the documents, the documents enclose their
windows, and the windows enclose views. You can change the
setting in the Strata on the Factory settings page so that certain
objects are not generated as part of the enclosure’s data member
class.

In addition, when you interact with the Factory, through the PAFactory
public interface, you can pass in an instance of a data member class.
If you do so, the methods return pointers to the nested objects.

XVT-Architect names the returned pointers by taking the object’s
Factory name and adding the prefix “its”. For example, the returned
pointer for the document will be “itsNoteDoc”.

Generally, it is a good idea to change the Factory names of objects
that you will be accessing in your code. Of course, you can change
the Factory names of all the objects in your application, but that
is not really necessary.

Later in the tutorial when you generate code with XVT-Architect,
you will see how the attributes set in the Factory Page of the strata
affect the code that is generated.
3-11

Guide to XVT Development Solution for C++
3.4.1.4. Setting the Window’s Attributes

For the Notepad, you will lay out a text editing field that uses
the window’s scrollbars. To set this attribute and other window
attributes, go to the Strata for the TNoteWin.

t To open the Strata for the Notepad window:

1. Double click on the TNoteWin object in the Blueprint, which
opens the window’s Strata.

To open the Strata for any object, either in the Blueprint or the
Drafting Board, double click on the object.

In the Strata for TNoteWin, do the following:

2. Set the Title on the CView page to “Notepad”

3. Set the Factory ID Name to in the Factory page to “NoteWin”

4. Then set the CWindow attributes in the CWindow page. For this
window, you need to check the following Decorations
attributes:

• Sizable (checked by default)

• Closable (checked by default)

• Iconizable (checked by default)

• Draws Background

• Scrollbar—Horiz

• Scrollbar—Vert

5. When you have checked these attributes, click OK.
3-12

XVT-Architect Tutorial
3.4.2. Laying Out the Notepad’s Interface

When you have set the attributes for the application objects, you can
lay out the window’s text editing region in the Drafting Board (see
Figure 3.3).

Figure 3.3. Final Notepad window—Drafting Board

3.4.2.1. Laying Out the Notepad Window

To lay out the interface of Notepad, you will use XVT-Architect’s
Drafting Board. The Drafting Board is a GUI builder with the
facilities to lay out advanced user interfaces. To modify the
attributes of the object that you lay out in the Drafting Board, you
will use the Strata.

t To open the Drafting Board for the TNoteWin window:

Select TNoteWin, and click the Drafting Board button in the
Blueprint’s toolbar.

Using the Drafting Board, you can lay out all XVT-Power++ visual
objects (i.e., you can lay out instances of classes that are derived
from CView). To layout these objects, use the Views palette and its
3-13

Guide to XVT Development Solution for C++
subpalettes. When you open the Drafting Board, the Views palette is
open.

The Views palette is similar to the Tools palette: it is draggable,
attachable, and detachable. However, unlike the Tools palette, it has
subpalettes. Buttons that have a subpalette have a small arrow in the
bottom-right corner. You can tear off these subpalettes, and they will
behave like the main Views palette.

To tear off a subpalette, click on any button with the Pointer and
drag the palette into the sketch area. The subpalette will be detached.
Drag the subpalette right up against the border to reattach it.

See Also: For more information on the Drafting Board and the Views palette,
see Chapter 5.

Laying Out the NScrollText for the Notepad

In the Notepad, you lay out an instance of the NScrollText class
(an NScrollText object), and specify that it should use the scrollbars
that you just set for the window.

t To create and lay out an NScrollText object:

1. Click the CNativeTextEdit button on the main Views palette, and
tear off the Text Edit subpalette. (Note that to locate any button
in the View palettes, you can move the cursor across the palettes
and a class name and short description appears in the status bar
for the button beneath the cursor.)

2. On the Text Edit palette, click and drag the NScrollText button off
of the palette.When you are in the position that you want the
text object, release the mouse button.

Note: This method creates one NScrollText object of default size. When
you release the mouse button, the cursor will revert back the
previously selected tool, in this case the Pointer. To determine
which tool is selected, look at the icon at the right side of the
status bar.

3. Using the Pointer tool, select the NScrollText object, and use the
wire frame to size the object so that it fills TNoteWin’s entire
window region. The “window region” is indicated in the
Drafting Board’s sketch area by a sizing frame with a handle.
The sizing frame also has a representation of the window’s
scrollbars.

When you have laid out the NScrollText object, you need to modify its
attributes using the Strata module.
3-14

XVT-Architect Tutorial
See Also: As you work through this Tutorial, you will learn the Views palette
and its subpalettes. For an overview of the Views palettes, see
section 5.2.
For information on how to manipulate view objects, see Chapter 5.
For more information on any class mentioned in this Tutorial, see its
entry in the online XVT-Power++ Reference.

3.4.2.2. Modifying the NScrollText Object’s Attributes

To modify an object’s attributes, you open its Strata. In the Strata,
you need to modify the NScrollText’s scrollbar assignment, color
(environment setting), glue setting, and Factory ID name.

t To open the Strata for the NScrollText:

1. Using the Pointer tool, double click on the object.

Assigning the NScrollText Object Scrollbars

First, you need to indicate that the NScrollText object should
use the window’s scrollbars.

t To set the NScrollText to use the window’s scrollbars:

2. Bring the NScrollText page to the front by clicking on its tab.

3. Check “Uses Window Scrollbars”

4. Click Apply.

Setting the NScrollText Object’s Environment

Next, you need to set the environment for the NScrollText object. To
set the environment of objects in your application, use the
Environment Attributes dialog. An environment object encapsulates
the following information:

• Text attributes, which include font family, style, and size
and background and foreground colors

• Brush attributes

• Drawing mode

• Pen attributes

By default, there is an environment object defined at the application
level of the object, which is shared by every visible object in an
XVT-Power++ application. Because an environment propagates
down the object hierarchy, many objects can share the same
environment.
3-15

Guide to XVT Development Solution for C++
You can also attach a separate environment object at any level of the
object hierarchy, anywhere from the application object to any view
object in the application. In XVT-Architect, you use the
Environment Attributes dialog to give an object its own
environment.

t To open the Environment Attributes dialog:

1. Bring the CView page to the front by clicking on its tab.

2. Check the Own Environment box, which enables the
Environment button.

3. Click the Environment button that becomes enabled just below
the Own Environment field.

t To set the background color for the NScrollText object:

1. Select Blue from the Background list button in the Text
Attributes field.

2. Click on the Color button to the right of the list button,
which brings up the Standard Color Palette, and select
a lighter shade of Blue from the palette. Click OK.

3. Click OK in the Environment Attributes dialog, and click Apply
in the Strata.

Tip: You do not have to click Apply in every page of the Strata to apply
changes. You can simply click OK when you have finished
modifying the attributes of an object. However, if you would like the
changes to be applied to the objects in the Drafting Board (so that
you can see these changes without closing the Strata), click Apply.

See Also: For more information on the Environment Attributes dialog, see
section 6.4.1.
For more information on environment settings, see section 16.2.2 or
see the description of CEnvironment in the online XVT-Power++
Reference.

Setting the NScrollText Object’s Glue and Active State

Since the window is sizable, you need to specify that the NScrollText
should resize when the window size changes. You accomplish this
by setting the glue properties of the object, which determine how an
object behaves when its enclosure is sized.

t To set the glue properties and active state:

On CView’s first page, check all of the Glue settings. (That is,
check Left, Right, Top, and Bottom).
3-16

XVT-Architect Tutorial
See Also: For more information on glue properties, see section 16.2.1 on page
16-6.

Setting the NScrollText Object’s Factory ID Name

In your application code, you will need a way to refer to this object,
so give it a Factory name.

t To set the Factory name for the NScrollText object:

1. Bring the Factory page to the front by clicking on the tab
with the Factory bitmap.

2. Select the text in the Name edit field on the Factory page,

3. Type “Text”.

4. To commit all of the changes that you have made in the Strata,
click OK, which closes the window.

Sizing the Window

To resize the window, first locate the sizing frame of the window by
scrolling the Drafting Board’s sketch region. The sizing frame will
also have a representation of the scrollbars that you specified for
the window in its Strata.

t To size the window:

“Grab” the frame and drag.

To adjust the height of the window, grab the frame on the bottom.
To adjust the width, grab the frame on the right side. To adjust the
height and width, grab the handle on the corner of the frame.

See Also: For information on Factory names, see section 6.7. For more
information on the Factory interface, see section 8.2.

3.4.2.3. Setting the Menubar for the Notepad Window

For the Notepad, you will create a menubar using XVT-Architect’s
Menu Editor.

t To open the Menu Editor:

Click the Menu Editor button on the Drafting Board’s toolbar.

When you open the Menu Editor, it is populated with standard
menus. (You may have to move the Menu Editor window.)

For the Notepad window, you will delete the Font menu.
3-17

Guide to XVT Development Solution for C++
t To delete the Font menu:

1. Select the Font menu by clicking on it.

2. Click on the Delete button in the toolbar (it is the second button
from the right).

When the notepad is running, several menu items should already be
enabled including "New", "Open" and "Save As". To enable these
items:

1. Select the File menu by clicking on it.

2. Select the "New" menu item. (It is grayed out, but you can still
click on it.)

3. Check the "Enabled" box in the lower half of the window.

4. Repeat the steps for "Open" and "Save As".

5. Click OK, which closes the window and saves the menubar
as part of the window.

The changes made above affect the menubar used by the NotePad
window. You may also define a default menubar that is used when
no windows are open. To do so:

1. Close the Drafting Board.

2. Go to the Blueprint Window.

3. Open the Drafting Board for the CTaskWin class.

4. Edit the menu of this window in the same way you edited the
NScrollText object’s menu.

5. Also remove the Font Menu and enable the "New" and "Open"
menu items.

See Also: For more information on using the Menu Editor, see section 7.1.
3-18

XVT-Architect Tutorial
3.4.3. Generating the Application

When you have finished laying out the Notepad component, you
need to save the project and generate the application.

Saving the Project

When you Save a new project (or “Save As” any project),
XVT-Architect prompts you for a name. This is the name of the new
project directory as well as the name of the project. An
XVT-Architect project should always be maintained in its own
individual directory, because every project has its own Factory
subdirectory.

t To save your new project:

Select Save from the File menu in the Blueprint or Drafting
Board, and type notepad, which is the name of the new project
directory. This name is also used to name many of the generated
files.

It is a good idea to save your project regularly. When you save
a project for the first time, you create an .amf project file, which
is a portable file (amf stands for architect meta file). All of the
XVT-Architect project information is stored in this file.

Note: You must save your project before you generate the Factory and
Shell files. If you attempt to generate files before initially saving the
project, however, XVT-Architect brings up the Save As dialog.

Generating Factory and Shell Files

Next, generate the Factory and Shell files for your application.

The Factory is a repository that stores information about the objects
in the application. However, unlike the project file, you interact with
the Factory to create the objects of your application. You do not
modify the Factory files.

The Shell files are an initial set of user files, which you can add
to and modify. The initial set of Shell files include a startup file,
source and header files for the application class, each document
class, and each window class, Universal Resource Language (URL)
files, and a makefile. All of your application code goes in the Shell
files or files that you add to this initial set.

This clean separation of user and Factory code makes modifying and
maintaining your applications safe and easy. You can change your
3-19

Guide to XVT Development Solution for C++
project in XVT-Architect, and regenerate the Factory files without
affecting your user files.

t To generate the Factory and Shell files:

1. Select Generate Files from the File menu, which opens the
XVT-Architect File Generation dialog.

2. Click the Generate button. By default, both Factory and Shell
are checked to be generated.

This generates the necessary files. In later generations, use this same
process. Using the default generation process, XVT-Architect
generates all Factory files, overwriting the existing ones, and it
generates only missing Shell files.

See Also: For more information on saving and generating files and the
generated Shell files, see section 2.4.
For information on the object Factory and its generated files, see
Chapter 8, Object Factory.

A Look at Generated Code

Take a look at the files that have been generated by XVT-Architect.
There should be directory named "notepad". Inside you will find the
following files (the file extensions may vary depending on platform
or options settings):

cstartup.cpp Contains the main() of the application
factory/ Subdirectory containing factory files
notepad.amf XVT-Architect meta file

(the notepad project)
notepad.h Header file for application global symbols
notepad.ico Customized icon for the application
notepad.mak Makefile (name/type may vary per platform)
notepad.url Resource file
null.ico Default icon for the application
tnoteapp.h/.cpp Templates for TNoteApp class
tnotedoc.h/.cpp Templates for TNoteDoc class
tnotewin.h/.cpp Templates for TNoteWin class

Of particular interest are the template files generated for the classes
in the Blueprint. For example, open the tnotedoc.h file to see the
following class definition:
3-20

XVT-Architect Tutorial
#ifndef TNoteDoc_h
#define TNoteDoc_h

#include "XVTPwr.h"
#include "AppDef.h"

#include NOTEPAD_i
#include CDocument_i

#ifdef DSP_RELEASE
#include TNoteDoc_f
#endif

//#include CTypeInfo_i

class TNoteDoc : public CDocument
{
public:

 TNoteDoc(CApplication * theApplication = G -> GetApplication(),
 PWRID theDocumentId = G -> GetId());
 virtual ~TNoteDoc(void);

 virtual void BuildWindow(void);
 virtual void DoCommand(long theCommand, void * theData = NULL);
 virtual void DoMenuCommand(MENU_TAG theMenuItem,
 BOOLEAN isShiftKey, BOOLEAN isControlKey);

 virtual BOOLEAN DoSave(void);
 virtual BOOLEAN DoOpen(void);

 virtual BOOLEAN Save(void);
 virtual BOOLEAN Open(void);

protected:
 // By default, copy and assignment are disallowed

 TNoteDoc(const TNoteDoc& theDocument) : CDocument(theDocument) { }
 TNoteDoc& operator=(const TNoteDoc& theDocument) { return(*this); }

private:
 NoteDocData itsData

// PWRClassInfo
};

#endif //TNotedoc_h
3-21

Guide to XVT Development Solution for C++
The two lines shown in boldface type above reveal interesting
information. The first line includes a special header file generated in
the factory directory:

#include TNoteDoc_f

For each class in the Blueprint, XVT-Architect generates a special
header file in the factory directory where it defines special support
symbols and classes. You will look at that file soon to find out about
its contents.

The second line declares a data member of type NoteDocData:

NoteDocData itsData;

This NoteDocData type is declared inside TNoteDoc_f in the factory
directory. This is a class derived from CDataMembers which contains
pointers to all windows managed by the document. If you look at the
template files for TNoteApp you will see a similar data member class
which contains pointers to all documents in the application.

Similarly, TNoteWin contains a data member with pointers to all
views. As mentioned earlier, you can control which pointers are
actually added to these data member classes by editing the factory
options page inside the Object Strata for each class.

Open the TNoteDoc_f file in the factory directory. The file’s name is
actually _tnotedoc.h; below is shown most of its contents:

// Factory IDs:

#ifndef NoteDoc
#define NoteDoc 1009
#endif

// Object Data Members:

class NoteDocData : public CDataMembers
{

PWRClassInfo
virtual void Initialize(PAFactory* theFactory);

public:

TNoteWin* itsNoteWin;
};

Among other things, you can see that this file defines factory IDs for
the document and then defines the NoteDocData class with a pointer to
the window managed by this document.
3-22

XVT-Architect Tutorial
Finally, open the tnotedoc.cpp file to see the implementation of this
class. Take a look at the BuildWindow() method:

void TNoteDoc::BuildWindow(void)
{
// Create all window objects associated with
// this document that have the AutoCreate option
// specified in XVT-Architect.

 NOTEPADFactory.DoCreateWindows(this,
NoteDoc, FALSE, &itsData);

}

Each document class must define a BuildWindow() method to create
actual window objects that view the data managed by the document.
The code in this generated method takes care of this action by using
the XVT-Architect factory to instantiate any window which is
linked to this document inside the XVT-Architect Blueprint. The
factory object, NOTEPADFactory, is created internally by code in the
factory directory. You are encouraged to treat this code as a black
box, and therefore it will not be explored further in this tutorial.

See Also: For more information on factory object creation, refer to the
description of the PAFactory class in the online XVT-Power++
Reference.

3.4.4. Building and Running the Basic Application

When you have generated your application with XVT-Architect,
you can build and run the basic application. When you run the
application, the window appears, but it does not have the ability to
read and write the files. You must write the application code to
implement this functionality.

t To build your application:

1. Set up your generated makefile or project file for your compiler,
and add all necessary files. (Enter make -f notepad.mak.)

2. Run curl to compile XVT’s Universal Resource Language
(URL), and if necessary, add the generated file to your project.
Every time you generate files, it is a good idea to compile with
curl. On most platforms, the execution of curl is automatically
embedded into the generated makefile, and it is executed
automatically when you “make” the application.

See the XVT Platform-Specific Book for your platform for
information about curl that is specific to your platform.

3. Compile and link your application.
3-23

Guide to XVT Development Solution for C++
4. Run your application, and the Notepad window will come up.

The Notepad program may be in a subdirectory.

To implement the edit and save functionality of the Notepad, you
must close the application and modify the generated Shell files.

Note: If you want to change the layout of the Notepad after you see it
running, go back into XVT-Architect, and make your changes and
regenerate the Factory files. Then, you can compile, link, and run the
application again.

See Also: For instructions on compiling resources, see the
XVT Platform-Specific Book for your specific platform.

3.4.5. Writing the Notepad Code

XVT-Architect generates Shell files for each document and window
classes indicated in the Blueprint. XVT-Architect generates a header
and a source file for each class. This section describes the
modifications that you must make to the Shell files to implement the
Notepad.

The Notepad is a component that reads and writes text files. The
document’s role as data manager is to provide the interface with the
stored files. The window’s role is to display the files and allow the
user to edit their contents.

3.4.5.1. Modifying the TNoteDoc Class

To implement the reading and writing features of the Notepad, start
by modifying the TNoteDoc header file, which is the document class
that XVT-Architect generated.

To add the save and load mechanisms to the Notepad, you must
modify the generated TNoteDoc class. The following is the modified
tnotedoc.h header file, with the necessary changes indicated with
bold type:
3-24

XVT-Architect Tutorial
#ifndef TNoteDoc_H
#define TNoteDoc_H
#include "XVTPwr.h"
#include "factory/AppDef.h"
#include Notepad_i
#include CDocument_i
#ifndef DSP_Release
#include TNoteDoc_F
#endif
#include CStringRW_i
//#include CTypeInfo_i
class TNoteDoc : public CDocument
{

public:

TNoteDoc(CApplication* theApplication =
G->GetApplication(),
PWRID theDocumentId = G->GetId());

virtual ~TNoteDoc(void);
virtual void BuildWindow(void);
virtual void DoCommand(long theCommand,

void* theData=NULL);
virtual void DoMenuCommand(

MENU_TAG theMenuItem,
BOOLEAN isShiftKey,
BOOLEAN isControlKey);

virtual BOOLEAN DoSave(void);
virtual BOOLEAN DoSaveAs(void);
virtual BOOLEAN DoOpen(void);
virtual BOOLEAN Save(void);
virtual BOOLEAN Open(void);

protected:

// By default, copy and assignment are
// disallowed
TNoteDoc(const TNoteDoc& theDocument) :

CDocument(theDocument) {}
TNoteDoc& operator=(

const TNoteDoc& theDocument){ return*this; }
private:

CStringRW itsText;
NoteDocData itsData;

// PWRClassInfo
};
#endif // TNoteDoc_H
3-25

Guide to XVT Development Solution for C++
Modifying TNoteDoc’s Source File

The following sections describe the methods that you need to add the
tnotedoc source file to implement the Notepad. Note that the Shell
file has method “stubs” for some of your document class methods.
In these cases, you add code only to the necessary methods. The
code that you need to add or modify is indicated in bold.

Add the following statements to the top of tnotedoc’s source file,
after the TNoteDoc_i include statement:

#include "XVTPwr.h"
#include "AppDef.h"
#include NotePad_i
#include TNoteDoc_i
#include CMenuBar_i

// Used to update the menu bar
#include <fstream.h>

// Used to read and write file streams
#include TNoteWin_i

You do not need to do anything to the constructor because the
initialization of the document’s data is delayed until the object
receives a DoNew or DoOpen message. By default, these CDocument
methods invoke the appropriate file dialog box to allow users to
select a file.

The following is the TNoteDoc constructor:

TNoteDoc::TNoteDoc(
CApplication* theApplication,
PWRID theDocumentId)

: CDocument(
theApplication,
theDocumentId)

{
}

Now, locate the Open method of TNoteDoc. The Open method is called
when DoOpen has successfully chosen a file to be opened.
To this method, add code to read the file from an input file stream,
like this:

BOOLEAN TNoteDoc::Open(void)
{

// Add code here to set internal data members
// of the class based on information read from
// some data source
itsText = "";
ifstream aFileStream(

itsXVTFilePointer->name);
itsText.readFile(aFileStream);
SetSave(FALSE);
return (!NeedsSaving());

}

3-26

XVT-Architect Tutorial
Locate the BuildWindow method. Once the file to be opened is
selected, this virtual method is sent a message to create the views
that display the new or opened data.

Modify the BuildWindow method as follows:

void TNoteDoc::BuildWindow(void)
{

// Create all window objects associated with
// this document that have the AutoCreate
// option specified in XVT-Architect.
NOTEPADFactory.DoCreateWindows(this, NoteDoc,

FALSE, &itsData);
// Initialize window with text
itsData.itsNoteWin->SetText(itsText);
if (itsXVTFilePointer)

itsData.itsNoteWin->SetTitle(
itsXVTFilePointer->name);

}

In the generated BuildWindow method, the document creates its views.
XVT-Architect places a call to the Factory that creates all of the
windows linked into (enclosed by) the document.

The itsXVTFilePointer data member is automatically initialized for you
when a DoOpen message is sent to the document. This data member
is a FILE_SPEC structure that contains the name of the file along with
other information about the file, such as directory information. Use
this information to set the title of the newly created window, which
you now have access to through the itsData data member.

Now, modify the Save method to save the contents of the Notepad,
like this:

BOOLEAN TNoteDoc::Save(void)
{

// Save the contents of the notepad to a file
itsText = itsData.itsNoteWin->GetText();
ofstream aFileStream(

itsXVTFilePointer->name);
aFileStream << itsText;
SetSave(FALSE);
return (!NeedsSaving());

}

3-27

Guide to XVT Development Solution for C++
Next, override the DoSaveAs method by inserting the lines shown
below at the end of the file:

///
// DoSaveAs
//
// This method is automatically called
// when the File Save As menu option is
// selected.
//
///
BOOLEAN TNoteDoc::DoSaveAs(void)
{

// Extend base class behavior to set
// the window's title.
if (CDocument::DoSaveAs())
{

itsData.itsNoteWin->SetTitle(
itsXVTFilePointer->name);

return TRUE;
}
else

return FALSE;
}

Note that the inherited CDocument::DoSaveAs method is called first.
This inherited method is called automatically when the user chooses
Save As from the File menu. Here, you extend this method so that
the title of the window reflects the name of the file currently open.

3.4.5.2. Modifying the TNoteWin Class

Once the document is prepared to open and save files, you must
modify the generated TNoteWin class. The TNoteWin class needs to
display the contents of a file and notify its document of changes to
the file, so that the document can update the file when necessary.

The following is the modified tnotewin.h header file, with changes
indicated with bold type:
3-28

XVT-Architect Tutorial
#ifndef TNoteWin_H
#define TNoteWin_H

#include "XVTPwr.h"
#include "factory/AppDef.h"

#include NotePad_i
#include CWindow_i

#ifdef DSP_RELEASE
#include TNoteWin_f
#endif

//#include CTypeInfo_i

class TNoteWin : public CWindow
{
public:

TNoteWin(CDocument *theDocument,
const CRect& theRegion,
const CStringRW& theTitle = NULLString,
long theWindowAttributes = WSF_NONE,
WIN_TYPE theWindowType = W_DOC,
int theMenuBarId = MENU_BAR_RID,
WINDOW theParentWindow = TASK_WIN);

virtual ~TNoteWin(void);

BOOLEAN INoteWin(void);

virtual void DoCommand(long theCommand,
void* theData=NULL);

virtual void DoMenuCommand(MENU_TAG theMenuItem,
BOOLEAN isShiftKey,
BOOLEAN isControlKey);

virtual void UpdateMenus(CMenuBar* theMenuBar);
virtual void DoUpdateModel(long theControllerId,

long theCommand,
const CModel* theModel);

virtual void Key(const CKey& theKey);
void SetText(const CStringRW& theText);
CStringRW GetText(void);

protected:

// By default, copy and assignment are
// disallowed
 TNoteWin(const TNoteWin& theWindow) :

CWindow(theWindow) {}
 TNoteWin& operator = (

const TNoteWin& theWindow){ return *this; }

private:

NoteWinData itsData;

// PWRClassInfo
};

#endif // TNoteWin_H
3-29

Guide to XVT Development Solution for C++
Modifying TNoteWin’s Source File

The following sections describe the methods that you need to add to
the tnotewin source file to implement the Notepad. Note that the
Shell file provides method “stubs” for some of your window class
methods. In these cases, you add code to only the necessary
methods. The code that you add or modify is indicated by bold.

The following indicates the statements that you should add or
uncomment at the top of tnotewin’s source file, after the TNoteWin_i
include statement:

#include "XVTPwr.h"
#include "AppDef.h"

#include TNoteWin_i
#include CDocument_i
#include NScrollText_i
#include CNavigator_i
#include CMenuBar_i

Override the Key method so that the document is informed of a
change in the Notepad by adding the following lines of code to the
end of the file:

///
// Key
//
// Automatically called when the user
// types on the keyboard and this window
// has the input focus.
//
///
void TNoteWin::Key(const CKey&)
{

// Tell the document the data has
// changed when the user types in the
// notepad
itsDocument->SetSave(TRUE);

}

The call to SetSave() tells the document that its data has been
modified. CDocument reacts by default to such a change by calling all
of its window’s UpdateMenus() virtual methods. Inside UpdateMenus() a
window can set its menubar according to its state. The generated
TNoteWin class already has a UpdateMenus() method with some
commented-out common code. Remove the comments for the line of
code, which in turn enables the M_FILE_SAVE menu item according
to the document’s need for saving:
3-30

XVT-Architect Tutorial
void TNoteWin::UpdateMenus(CMenuBar * theMenuBar)
{

// Enable the File=>Save menu option only
// when the data needs to be saved
// Enable the Edit=>Paste menu option if this
// window supports pasting and there is something
// paste-able on the clipboard

//theMenuBar->SetEnabled(M_EDIT_PASTE, ...);
theMenuBar->SetEnabled(M_FILE_SAVE,

itsDocument -> NeedsSaving());
}

Next, add the SetText method, which is a modifier used in setting the
current state of the Notepad window. Note that you use the Suspend
and Resume methods to avoid flashing. This approach suspends
updates until the text has been set. Add the following SetText method:

///
// SetText
//
// Allow the document object to set the
// contents of the notepad.
//
///
void TNoteWin::SetText(const CStringRW& theText)
{

itsData.itsText->Suspend();
itsData.itsText->SetText(theText);
itsData.itsText->Resume();

}

Finally, add the GetText method to the TNoteWin class, so that you can
query the current state of the Notepad window. Add the following
GetText method:

///
// GetText
//
// Allow the document object to retrieve
// the contents of the notepad.
//
///
CStringRW TNoteWin::GetText(void)
{

return itsData.itsText->GetText();
}

You are done modifying the TNoteDoc and TNoteWin classes.
3-31

Guide to XVT Development Solution for C++
3.4.6. Compiling and Running the Application

When you are done modifying the Notepad files, you can compile,
link, and run the application. You can then use the Notepad to open,
edit, and save files.
3-32

Blueprint
4
BLUEPRINT

This chapter describes the interface and usage of the Blueprint
module of XVT-Architect. The Blueprint allows you to visually
design, using XVT-Power++’s Application-Document-View
paradigm, the internal architecture of your applications. In the
Blueprint, you can do the following:

• Layout the application, documents, and windows (top-level
views) that form the basic architecture of your application

• Establish inter-object communication by connecting the
created objects

• Use XVT-Architect’s Editors to view and modify global
information

• Define the “object layers,” which allows you to create
variations of windows and their enclosed views

This chapter describes how to use the features of the Blueprint
module. However, it first describes the features of XVT-Power++’s
application framework that the Blueprint module assists you in
learning and using: XVT-Power++ object hierarchies and the
Application-Document-View paradigm, which is the basis for all
XVT-Power++ applications.

See Also: For more information on object layering, see Chapter 9, Object
Layering.
4-1

Guide to XVT Development Solution for C++
4.1. Understanding Object Hierarchies and the
Application-Document-View Paradigm

The XVT-Power++ application framework contains two types of
hierarchies: a class hierarchy and an object hierarchy. The class
hierarchy shows the XVT-Power++ class library and its inheritance
structure. The Strata module of XVT-Architect illustrates and helps
you use, to its fullest extent, the XVT-Power++ class hierarchy.

The Blueprint module of XVT-Architect illustrates and helps you
use the XVT-Power++ object hierarchy. The object hierarchy
defines the relationship between objects in an application. It sets up
the structure that determines how messages are propagated and
controls what tasks are performed at each level.

XVT-Power++’s object hierarchy is based on the model-view-
controller (MVC) paradigm, a well know mechanism used for
organizing and maintaining information in a dynamic system.
However, XVT-Power++’s object hierarchy consists of the
following three levels: application, document, and view.

Application
Controls the program and is analogous to main. Applications
consist of a set of documents.

Document
Accesses, stores, and manages data. Documents manage
windows and can be displayed in any number of views.

View
Displays data for user interaction.

XVT calls these three levels the Application-Document-View
paradigm. It is the basis for almost all well-designed XVT-Power++
applications. The Blueprint module of XVT-Architect illustrates and
helps you use the Application-Document-View paradigm.

See Also: For more information on the application-document-view paradigm
and the XVT-Power++ application framework, see the
“XVT-Power++ Overview” and the “Application Framework”
chapters in the Guide to XVT Development Solution for C++.

4.2. Application, Documents, and Views
For every application you build with XVT-Architect, you begin in
the Blueprint module. In the Blueprint, you design the object
hierarchy of your application.
4-2

Blueprint
By default, the Blueprint has an instance of a CApplication-derived
class, an instance of a CTaskDoc class, and an instance of a CTaskWin
class. Each application has a CTaskDoc and a CTaskWin. Both classes
are private classes that only XVT-Power++ can instantiate.

CTaskWin is a class that XVT-Power++ uses internally to represent
the logical window that carries the application menubar. On some
platforms, this window is a container for all of the application
windows. The CTaskDoc owns and manages the CTaskWin.

This layout creates the rudimentary architecture of your application
based on XVT-Power++’s Application-Document-View paradigm.
To this, you can add and link in the documents and windows (views)
for your application, which sets up the basic object hierarchy.

4.2.1. Application Object

The application object, an instance of a CApplication-derived class, is
the highest object in the object hierarchy. In each application, the
application object is the first to be instantiated, the first to receive
control, and the last to be destroyed.

The application object performs many application management
functions, and it controls the program from start to finish.The
application object is responsible for the following functions:

• Initializing any objects that the program needs upon
application startup

• Initializing any connections the application needs

• Setting up global objects and global data, which are provided
to all XVT-Power++ objects through CObjectRWC

• Creating and managing an application’s documents

• Cleaning up after the program upon application shutdown

Note: CApplication, CDocument, and CWindow are all abstract classes.
In the Blueprint, you actually create instances of derived classes
(i.e., instances of both CDocument-derived classes and CWindow-
derived classes).

See Also: For more information on application objects, see the “Applications”
chapter in the Guide to XVT Development Solution for C++, and see
CApplication in the XVT-Power++ Reference.
4-3

Guide to XVT Development Solution for C++
4.2.2. Document Objects

The document object, an instance of a CDocument-derived class, is the
second layer of the object hierarchy. The document object links the
application object and the window objects and their contained
views; basically, the document object links the “back-end” of the
application to the “front-end.”

Each document object creates and manages a window or set of
windows. Windows act as the top-level view for all XVT-Power++
applications. The document object can display its data in one or
more windows, and it functions as a central means of
communication for the changes and updates in its windows.

XVT-Power++’s paradigm supports document-centric application
development, which helps you efficiently build applications that are
easy to extend, modify, and maintain.

4.2.2.1. Document-Centric Development

The document-centric approach to application development focuses
on data and servicing data. In XVT-Power++, the view is separate
from and secondary to the application’s data.

The separation of data from views is a logical separation of
resources and expertise. That is, you can easily divide projects into
data-based teams and user-interface teams. Because these teams
have distinct and unique goals, large portions of a projects can be
worked on concurrently, which promotes productivity.

This separation of data from views also allows you to easily extend
and modify either your application’s data model or user interface
(without having to modify the other). In addition, you can create
generic view interfaces, which can be used by several applications.

See Also: For more information on document objects, see the “Documents”
chapter in the Guide to XVT Development Solution for C++, and
see CDocument in the XVT-Power++ Reference.

4.2.3. View Objects

Window objects, instances of a CWindow-derived classes, act as the
top-most enclosures for any other type of XVT-Power++ view, or
CView classes. Windows are the top-level view in the nesting of
views, and they are the third layer of the object hierarchy. Windows
connect their contained views to the document.
4-4

Blueprint
Window objects have a predefined physical enclosure, which is
platform-specific. A window’s physical enclosure is either the
screen itself, or the task window (on XVT/Win16, XVT/PM, and
XVT/Win32).

Thus, the windows of your application contain the views and
subviews (the visible objects) that will display the data and allow
the user to interact with the application. XVT-Power++ supports
a powerful set of view classes designed to support multiple target
domains.

In the Drafting Board module of XVT-Architect, you can lay out
the views and subviews that make up the GUI interface of your
application.

See Also: For information on laying out views and subviews in windows, see
Chapter 5, Drafting Board.
For additional information on views and subviews, and windows,
see Chapter 16, Manipulating Views and Subviews.
For additional information on windows, see Chapter 18, Windows.

4.2.4. Inter-Object Communication and
Message Propagation

As described above, the XVT-Power++ object hierarchy assigns
categories of tasks to be performed at each level and defines the
message paths for inter-object communication.

The application’s communication paths are based on these
relationships as suggested by the Application-Document-View
paradigm and as defined in the Blueprint. You can think of the
application as the enclosure of the documents, the documents as
the enclosure of the windows, and the windows as the enclosures
of other views.

All XVT-Power++ applications can propagate messages from an
enclosure to its enclosed objects, or from an enclosed object to the
enclosure. These messages are propagated in three different ways:
bidirectional, upward, or downward.

This process is called “message propagation.” With message
propagation, you don’t have to specifically define callbacks and
determine where messages will go next. This simplifies your tasks
and adds consistency throughout all XVT-Power++ applications.

See Also: For more information on message propagation, see the “Propagating
Messages” section of the “Application Framework” chapter in the
Guide to XVT Development Solution for C++.
4-5

Guide to XVT Development Solution for C++
4.3. Blueprint Interface
In the Blueprint, you have basic interface elements, including
a menubar, a toolbar, and a status bar (see Figure 4.1).

Figure 4.1. Blueprint interface

4.3.1. Menubar

The menubar of the Blueprint module includes the following menus:

• File

• Edit

• Palettes (the Tools and Alignment palettes are described
below)

• Editors

• Layers

• Help

The File and Edit menus contain standard items. However, the File
menu also contains Generate, Import, and Export.
4-6

Blueprint
Select the Generate item from the File menu to generate either
Factory or Shell files. Select Import or Export from the File menu,
to import or export files to and from XVT-Architect.

The Palettes menu contains Tools and Alignment items (which
are described below).

The Editors menu gives you access to XVT-Architect’s global
editors. Using these Editors, you can edit the definitions of the
following elements of your application: Menus, Accelerators,
Commands, Strings, and String Lists.

Use the Layers menu to open the Layers Editor, which you can use
to create and view layers, and to change the parent layer of layers in
your project.

See Also: For information on generating files, see section 2.4 on page 2-8.
For more information on XVT-Architect’s editors, see Chapter 7,
Editors.
For more information on layering, see Chapter 9, Object Layering.
For information on importing and exporting files, see Chapter 11,
Importing and Exporting Strings.

4.3.1.1. Tools Palette

When you first open the Blueprint, the Tools palette is open.
However, if you close the Tools palette, you can reopen it by
selecting Tools from the Palettes menu.

Like all of the palettes of XVT-Architect, the Tools palette is
attachable and detachable—you can attach it to or detach it from the
sides of the window simply by dragging it to and from the edges.

You use the Tools Palette when you lay out and link in documents
and windows. It contains the following tools:

Pointer
Use as a basic pointer tool.

Linker
Links documents and windows into the application.

CDocument
Creates documents.With this tool, you actually create an
instance of a CDocument-derived class.

CWindow
Creates windows. With this tool, you create an instance of a
CWindow-derived class.

See Also: For more information on using these tools, see section 4.4.
4-7

Guide to XVT Development Solution for C++
4.3.1.2. Alignment Palette

With the Alignment palette, you can align and space the documents
and windows that you have laid out.

t To open the Alignment palette:

Select Alignment from the Palettes menu.

Use this palette to align and space the documents and windows in the
following ways:

• Align multiple objects along a vertical line by specifying left,
center, or right alignment

• Align multiple objects along a horizontal line by specifying
top, middle, or bottom alignment

• Align objects within the page by specifying horizontal center
or vertical center of the page

• Space objects evenly by specifying vertical or horizontal
spacing

t To select multiple objects:

Press Shift, and click on the objects.
-OR-
Using the Pointer tool, drag out a selection rectangle around
the objects.

4.3.2. Toolbar

The toolbar contains a series of menubar accelerators, including
the following:

• Save

• Cut

• Copy

• Paste

• Undo

• Redo

In addition, on the toolbar there is a Drafting Board icon, which
takes you to the Drafting Board for the selected window. Next to this
icon is a Child Window list button, which lists all of the “child”
windows that are open.

The Blueprint can have Drafting Board, Strata, and Menu Editor
windows as children. You can open a Drafting Board for each
4-8

Blueprint
window and a Strata for each class laid out in the Blueprint. You
can also open the global Menu Editor.

4.3.2.1. Undo and Redo

All instances of Undo and Redo in XVT-Architect provide the
ability for an unlimited number of Undo or Redo actions. The
following are the only times that Undo and Redo are disabled:

• The first time you open a window

• When you have undone or redone all of the operations

See Also: Undo/Redo information is not saved between XVT-Architect
sessions.

4.3.3. Status Bar

The status bar at the bottom of the Blueprint window, contains
a short cursor-status description on the left side, and it contains
the icon of the selected tool on the left side.

4.4. Laying Out the Application, Documents,
and Views

The Blueprint module of XVT-Architect helps you design and
manage the Application-Document-View structure of your
application.

There is only one application class per project, and, when you
open a new project, it is already laid out for you (along with the
task document and task window). However, to customize each
application, you lay out additional documents and windows (see
Figure 4.2), and you link them into the initial application class.
Use the Tools palette to lay out and link classes.
4-9

Guide to XVT Development Solution for C++
Figure 4.2. Blueprint with windows and documents laid out
and linked

See Also: For a description of the Tools Palette, see section 4.3.1.1.

4.4.1. Laying Out Documents and Windows

To customize your application, you can lay out the documents and
windows that it requires.

t To lay out a document or a window:

Press the appropriate button on the Tools palette, and then
drag off of the palette; when you release, a document or window
icon appears. This method allows for single object creation,
and, on mouse up, the cursor returns to the previous tool.
-OR-
Click the appropriate button on the Tools palette, and then click
in the sketch region of the Blueprint window for each document
or window you want to create. This method allows for multiple
object creation. When you have created the desired documents
or windows, click on another tool.
4-10

Blueprint
After creating the documents and windows, you can use the
Alignment palette to manipulate them.

See Also: For information on the Alignment palette, see section 4.3.1.2 on
page 4-8.
For more information on naming classes, see section 4.4.1.1 on page
4-11.

4.4.1.1. Naming Classes

When you create a document or a window, the name of the class is
selected and ready for editing. The names that you give the objects
in the Blueprint are the class names that XVT-Architect uses when
generating Shell files.

t To name the application, documents, or windows:

Using the pointer tool, select the title, and type in the desired
name. To commit the name, click in the sketch region of the
Blueprint window.

When you generate the Shell files, these names are used as class
names in the files. These names must be valid identifiers. A valid
identifier is a unique string that begins with a letter. The string can
be any combination of letters, numbers, and underscores, but it
cannot contain spaces.

Note: On MS-Windows and OS/2, any class names that are over eight
letters will be truncated during Shell-file generation.

See Also: For more information on Shell file generation, see section 2.4 on
page 2-8.

4.4.1.2. Factory Names

In addition to naming classes, you can indicate a Factory ID Name
for the “objects” in the Blueprint, using the Factory Settings Face
in the Strata. For the Factory name, you must indicate a name that is
different from the class name in the Blueprint.

The Factory ID Name that you indicate in the Factory Settings Face
is the name that XVT-Architect uses in the generated Factory files,
and the name you will use when interacting with the Factory. In
addition, you can indicate other Factory information in the Strata.

Note: If after you generate the Shell files, you change the Factory name
of any object, you must search and replace the old name in your
application code.
4-11

Guide to XVT Development Solution for C++
See Also: For more information on setting Factory data for an object, see
section 6.7 on page 6-10.

4.5. Linking Applications, Documents, and Views
In the Blueprint module, you also need to link into the application
any documents and windows that you created. Linking these classes
determines, and helps you visualize, the object hierarchy. That is,
the linked path defines the communication paths and the delegation
of tasks to be performed.

When linking the objects in the Blueprint, you must follow these
rules:

• Link documents to applications; link from the document to
the application

• Applications can have multiple documents linked to them

• Link windows to documents; link from the window to the
document

• Documents can have multiple windows linked to them

• Each window can be linked to only one document

Note: If you do not follow these rules when linking, XVT-Architect does
not allow you to make the connection.

See Also: For more information on the dynamics of the object hierarchy,
see the “Application Framework” chapter in the Guide to XVT
Development Solution for C++.

4.5.1. Editing Links

You can use all of the Blueprint’s editing tools to edit links.
However, when you cut, copy, or paste a link, you must select the
link, and you must select both its source and destination objects. If
you do not do this, the link does not appear when you paste.

In addition, you can move a link between a window and a document
to a different document. To do so, drag the arrow end of the link to
another document.

4.5.2. Linking Documents to the Application

Linking documents to the application establishes the documents
as part of the application.
4-12

Blueprint
t To link a document to the application:

Click on the linking icon in the Tools palette, and then drag
a connection from the document to the application.

You can create as many links as you need. When you are finished,
click the pointer button on the Tools palette.

See Also: For information on the relationship between the application and the
documents, see the “Applications” and the “Documents” chapters in
the Guide to XVT Development Solution for C++.

4.5.3. Linking Windows to a Document

Windows are at the third-level of the object hierarchy. At the
second-level of the object hierarchy are the documents. Documents
make the connection between the application-level and the view-
level of your project. Documents create and manage windows, and
store and provides access to the data that is displayed in the windows
(and in the views and subviews that the windows contain).

You can have several different windows associated with one
document, and these windows can display the same set of data in
different formats.

t To link a window to a document:

Click on the linking icon in the Tools palette, and then drag
a connection from the window to the document.

You can create as many links as you need. When you are finished,
click the pointer button on the Tools palette.

See Also: For more information on the relationship between documents and
windows, see the “Documents” and the “Windows” chapters in the
Guide to XVT Development Solution for C++.

4.6. Navigating Between Modules
When you have laid out, named, and linked your application, you
will want to open other modules of XVT-Architect. You can
navigate between the modules at any time in your design process.

4.6.1. Getting to and from the Drafting Board

You can go to the Drafting Board module to lay out and manipulate
the interface of each window that you created in the Blueprint
module.
4-13

Guide to XVT Development Solution for C++
t To go to the Drafting Board module:

Select a window with the pointer tool, and click the Drafting
Board icon on the toolbar.

If the Drafting Board for a specific window is open, you can also
use the Child Window list button on the toolbar to navigate to that
Drafting Board. The list button contains a list of all the open child
windows for the project, including Drafting Board, Strata, and
global Menu Editor windows.

t To return to the Blueprint module:

Click on the Back to Parent Window button on the Drafting
Board toolbar.

See Also: For more information on the Drafting Board, see Chapter 5, Drafting
Board.

4.6.2. Getting to and from the Strata

In the Strata module, you can view and modify the attributes of any
objects (instances of classes) that are laid out in the Blueprint. Thus,
moving from the Blueprint, you can view and set the attributes of the
application, documents, and windows of your application. You can
set the attributes of an object at each level of the class hierarchy. For
example, to set the attributes that determine the window type, you
can go to the Strata for a window.

t To go to the Strata:

Double click on the object for which you want to view and set
the attributes.

t To return to the Blueprint module:

Click OK (or close the window).
-OR-
Click the Back to Parent Window button on the Strata toolbar.

If you leave the object’s Strata open, you can also use the Child
Window list button on the Blueprint’s toolbar to navigate to the
Strata for a specific object.

See Also: For more information on the Strata, see Chapter 6, Strata.
4-14

Drafting Board
5
DRAFTING BOARD

This chapter describes the interface and usage of the Drafting Board
module—a GUI builder with the facilities necessary to lay out
advanced user interfaces. In this module, you can lay out and
manipulate the XVT-Power++ visual objects of your application.

5.1. Drafting Board Interface
For each window, you go to the Drafting Board to lay out the
window’s user interface.

t To go to the Drafting Board:

Select a window in the Blueprint, and click the Drafting Board
button on the toolbar.

The Drafting Board module has a standard interface including
a menubar, a toolbar, and a status bar. In addition, the Drafting
Board contains a main View palette, which has several subpalettes
(see Figure 5.1).
5-1

Guide to XVT Development Solution for C++
Figure 5.1. Drafting Board

5.1.1. General Overview

In its menubar, toolbar, and Alignment palette, the Drafting Board
supplies you with a robust set of tools to manipulate the objects that
you lay out using the View palette. The tools allow you to do the
following tasks:

• Undo and Redo actions

• Cut, Copy, and Paste

• Align and center objects

• Distribute objects evenly, vertically and/or horizontally

• Size objects

• Change the stacking order of objects

After you have created a CView object using the View palette, you
can use these tools on the menubar, toolbar, and Alignment palette
to manipulate the objects.
5-2

Drafting Board
Most of these tools behave as you would expect. You simply use the
pointer tool (located on the View palette) to select the object or
objects, and then select the action that you would like to perform.

However, you should be aware of the special features of Undo and
Redo. All instances of Undo and Redo in XVT-Architect provide the
ability for an unlimited number of Undo or Redo actions. The
following are the only times that Undo and Redo are disabled:

• When you open a window for the first time

• When you have undone or redone all of the operations

5.1.2. Menubar

The menubar of the Drafting Board module includes the following
menus:

• File

• Edit

• Palettes

• Editors

• Layers

• Help

The File and Edit menus contain standard items. However, the File
menu also contains the Generate, Import, and Export items.

Select the Generate item from the File menu to generate Shell and
Factory files.

To import projects into XVT-Architect, or to export XVT-Architect
projects to a human-readable format, use the Import and Export
items on the File menu.

The Palettes menu contains the main View palette and its subpalettes
and the Alignment palette. (These palettes are described below.)

Using the Editors menu, you can open XVT-Architect’s global
editors.

Use the Layers menu to open the Layers Editor, which you can use
to create and view layers, and to change the parent layer of layers in
your project. In addition, you can use the Layers menu to view
layered objects and revert objects to their parent-defined state.

See Also: For information on generating files, see section 2.4 on page 2-8.
For information on importing and exporting files, see Chapter 11,
5-3

Guide to XVT Development Solution for C++
Importing and Exporting Strings.
For more information on layering, see Chapter 9, Object Layering.

5.1.3. View Palettes

Along with the pointer tool, the View palette and its subpalettes
contain the tools that you use to create and lay out XVT-Power++
CView objects (see Figure 5.3).

When you open a Drafting Board, the View palette is open. The
View palette has subpalettes, which are all tear-off palettes. You will
use the View palette and its subpalettes for much of the work you do
in the Drafting Board. You can close it by clicking its close box, and
reopen it by selecting View from the Palettes menu. You can open
all of the subpalettes either from the main View palette (and its
subpalettes) or from the Palettes menu.

Like all palettes in XVT-Architect, the View palette and its torn-off
subpalettes are attachable and detachable. To customize your
workspace, you can position palettes in the window, or you can
attach them to the side, top, or bottom of the window.

By dragging it to the edge of the window, you can attach a palette to
that edge. To detach the palette, drag the attached palette away from
the edge of the window.

See Also: For more information on the main View palette and its subpalettes,
see sections 5.2 and 5.3.

5.1.4. Alignment Palette

With the Alignment palette, you can align, space, and size objects,
and change their stacking order.

t To open the Alignment palette:

Select Alignment from the Palettes menu.

Use this palette to manipulate selected objects in the following
ways:

• Align multiple objects along a vertical line by specifying left,
center, or right alignment

• Align multiple objects along a horizontal line by specifying
top, middle, or bottom alignment

• Align objects within the page by specifying horizontal center
or vertical center of the page
5-4

Drafting Board
• Space objects evenly by specifying vertical or horizontal
spacing

• Size objects by specifying same width or same height

• Bring an object to the front

• Send an object to the back

t To select multiple objects:

Press Shift, and click on the objects.
-OR-
Using the Pointer tool, drag out a section rectangle around
the objects.

5.1.5. Toolbar

The toolbar contains a series of menubar short cuts, including
the following:

• Save

• Cut

• Copy

• Paste

• Undo

• Redo

• Menu Editor

Using the Menu Editor, you can design and lay out the menubar
for each window in your application.

To the right of the Menu Editor button, there is a Child Window list
button and a Back to Parent Window button, which assist you in
navigating child and parent windows (described below).

See Also: For more information on the Menu Editor, see section 7.1 on page
7-1.
For more information on Undo and Redo, and on Cut, Copy, and
Paste, see section 5.1.1 on page 5-2.
5-5

Guide to XVT Development Solution for C++
5.1.5.1. Navigating to Child and Parent Windows

On the toolbar, there is a Child Window list button that contains
a list of the open “child” windows for the specific Drafting Board.
Drafting Boards can have both Menu Editor and Strata windows
as child windows.

To the right of the Child Window list button, there is a Back to
Parent Window button. If you click this button, you return to the
Blueprint window for that Drafting Board.

See Also: For more information, see the “Navigating Between Modules”
section below.

5.1.6. Status Bar

On the left side of the status bar, there is a short “help” statement.
As you move the cursor around in the Drafting Board, short help
statements appear in this status bar field. The next field contains the
coordinates of the cursor relative to the window you are laying out.
To the right of the coordinates field is the icon of the selected tool.

5.2. Understanding the View Palette
There are several subpalettes contained in the main View palette, but
once you understand the organization of the palettes, you should find
them easy to use.

Along with the pointer tool, the main View palette contains the tools
to create XVT-Power++ visual objects, or CView objects. There are
the following five tools on the main View palette: pointer, CText,
CSubview, CNativeTextEdit, CNativeView, and CUserView. Use the pointer
tool to select, deselect, move, and size view objects. Use the other
tools on the palette for laying out the CView objects.

The organization of the View palettes follows closely the
XVT-Power++ CView class hierarchy (see Figure 5.2).

The main View palette’s buttons represent an object or a group of
related objects. The buttons that represent a group have subpalettes
that contain the related objects. Several of the buttons on the
subpalettes in turn have their own subpalettes. The buttons that
represent a group of objects, or a subpalette, have a small arrow
in the lower-right corner (see Figure 5.3).
5-6

Drafting Board
Figure 5.2. XVT-Power++ CView hierarchy

NButton

NCheckBox

CButtonIcon

CSelectIcon

CSquare

CCircle

CRegularPoly

NScrollText

CListBox

CIcon

CWindow

CRectangle

COval

CArc

CPolygon

CLine

NTextEdit

NLineText

CScroller

CGrid

CShape

CSketchPad

CVirtualFrame

CAttachmentWindow

CFixedGrid

CVariableGrid

CHorizontalWireFrame

CVerticalWireFrame

CFaceWindow

CNativeList
CNativeSelectList

NListEdit

NListButton

NListBox

CSubview

CText

CWireFrame

CNativeTextEdit

CNativeView
NEditControl

NWinScrollBar

CRadioGroup

CView

CPicture

CMenuButtonCButton

CToolBar

CStatusBar

CTaskwin

CPasswordEdit

NGroupBox

NIcon

NNotebook

NRadioButton

NText

NScrollBar
5-7

Guide to XVT Development Solution for C++
Figure 5.3. View palette and subpalettes (continued on next page)

CUserView

CNativeView

CText

CNativeTextEditCSubview

Pointer

CMenuButton

CButton

CSketchPad

CScroller

CVariableGrid

CPicture

CStatusBarCFixedGrid CToolBar

CShapeCIconCUserSubviewCListBox

CIcon CSelectIconCButtonIcon

COval CCircle

CRegularPoly

CRectangle

CArc

CSquare

CPolygon CLine
5-8

Drafting Board
Figure 5.3. View subpalettes (continued from previous page)

The above figures illustrate the organization of the View palettes.
You can open the palettes from the main View palette and its
subpalettes, or from the Palettes menu.

For usability, there are classes on the View palette that have been
positioned at a “level” that differs from the class hierarchy. For
example, instead of appearing on their own palette, CScroller
and CListBox are on CSubview’s subpalette.

NListButton

NTextEdit NLineText NScrollText

NGroupBoxNIconNCheckBox

NText

CNativeList

NButton

NEditControl

NRadioButton CRadioGroupNScrollBar

NListBoxNListEdit
5-9

Guide to XVT Development Solution for C++
Note: There are several CView classes that you cannot lay out in the
Drafting Board, so they are not represented on the View palette.
For example, you cannot lay out a CVirtualFrame or a CNativeSelectList,
so these classes do not appear on the View palette.

See Also: For a description of each CView-derived class, see the online
XVT-Power++ Reference.

5.3. Using the View Palette to Lay Out Objects
Using the View palette, you can create and lay out objects using the
following creation methods:

Drag-and-drop method
Press down a button on a palette, and drag the cursor to the
sketch region of the window and release the mouse button.
As you drag the object, the enclosure of the new view will
highlight. The enclosure for the new view is the deepest
subview that encloses the created object. When you release the
button, an object of default size is created at the cursor location.
When you release the button, an object of default size is created
at the cursor location, and the cursor reverts to the previous tool.

Sketch method
Click a button on a palette, and click in the sketch region of the
window. The enclosure for the new view is the deepest subview
that contains the view. You can create multiple objects of
default size by clicking multiple times. When you are done,
click on another object or on the pointer tool of the palette.

Sketch method
Click a button on a palette and drag out an area in the sketch
region of the window. The enclosure for the new view is the
deepest subview that contains the sketched region. With this
method, you can create multiple objects of any valid size. When
you are done, you can click on another object or on the pointer
tool of the View palette.

Once you have laid out objects, you can drag and size them, and you
can manipulate them with the editing tools supplied in the Drafting
Board module.

Note: To lay out a radio button, you must first lay out a radio group;
a radio button must be enclosed by a radio group.
5-10

Drafting Board
5.3.1. Dragging and Sizing the Objects

All CView objects are draggable and sizeable. Thus, when you select
an object using the pointer tool, a wire frame with sizing handles
appears. You can use the handles to size the object. You can also
move the object within its enclosure simply by dragging it, or you
can drag it out of its enclosure.

t To drag an object from one enclosure to another enclosure:

Press Control and drag the object.

As you drag the object, the current enclosure of the object is
highlighted.

5.4. Sizing the Window
In addition to sizing the view objects of your application, you can
size any window object. To do so, you must first locate the sizing
frame of the window by scrolling the Drafting Board’s sketch
region. If, in the Strata, you indicated that the window should have
a scrollbar, it will be represented by lines inside the sizing frame.

t To size the window:

“Grab” the frame and drag.

To adjust the height of the window, grab the frame on the bottom.
To adjust the width, grab the frame on the right side. To adjust the
height and width, grab the handle on the corner of the frame.

5.5. Navigating Between Modules
For each object, or instance of a class, that you lay out in
XVT-Architect, there is a Strata. The Strata is an attribute editor.
If you want to view and modify the attributes of an object, go to its
Strata.

t To open the Strata of an object:

Double click on the object.

t To return to the Drafting Board:

Click OK, which closes the Strata window.
-OR-
Click Cancel.
-OR-
Click the Back to Parent Window button on the Strata toolbar.
5-11

Guide to XVT Development Solution for C++
If you leave an object’s Strata open, you can also use the Child
Window list button on the toolbar of the Drafting Board to navigate
to the Strata for a specific object. This list button contains a list of
the Drafting Board’s open child windows. The Drafting Board can
have either Strata windows or a Menu Editor window as child
windows.

t To return to the Blueprint:

Press the Back to Parent Window button on the Drafting Board
toolbar.

See Also: For more information on the Strata, see Chapter 6, Strata.
5-12

Strata
6
STRATA

This chapter describes the interface and usage of the Strata module
of XVT-Architect—an object-attribute editor that provides quick
access for viewing and modifying the attributes of both application
and interface objects attributes. Every object in your application has
a corresponding Strata.

6.1. Strata Interface
t To open the Strata for an object:

Double click on the object.

Double clicking on an object, either in the Blueprint or the Drafting
Board, opens the Strata for the object.

The Strata window contains a menubar, a toolbar, a status bar,
but its main interface elements are a class browser and a notebook
control (see Figure 6.1). The class browser, along the bottom of the
window, contains a class hierarchy for the object.
6-1

Guide to XVT Development Solution for C++
Figure 6.1. Strata Interface

The Strata’s notebook control partitions an object based on its class
hierarchy. Each named tab in the notebook control contains a page
of the attributes declared at that inheritance level (i.e., the data
members of that class).

See Also: For information on the class browser and the notebook control,
see their individual sections below.

6.1.1. Closing the Strata

t To close the Strata without committing your changes:

Click Cancel.

t To commit all of the changes that you have made in the Strata, and
close the window:

Click OK.

t To commit the changes without closing the Strata window:

Click Apply.

Class Browser

Notebook Control
6-2

Strata
When you click Cancel or OK, the Strata window closes, and you
return to the window from which you opened the Strata.

While the Strata is open, it is listed in the Child Window list button
on the toolbar of the window from which it was opened. In this case,
you can bring that object’s Strata to the front either by double
clicking on the object, or by selecting its Strata in the Child Window
list button.

6.2. Class Browser
The class browser (the icons along the bottom of the screen)
illustrates the class hierarchy of the object. You can scroll across to
see a full class hierarchy of the object (to get an idea of the classes
from which an object is inheriting functionality). If you want to see
which attributes are declared for a specific class, click on its icon.
This action brings that class page in the notebook control to the
front.

See Also: For a picture of the XVT-Power++ class hierarchy and inherited
functionality, see the “XVT-Power++ 5 Hierarchy” poster, and see
the XVT-Power++ Reference.

6.3. Notebook Control
Using the Strata, you can learn and fully utilize each XVT-Power++
class’s inherited attributes.There is a Strata for each object of your
application. In the Strata, each class from which that object inherits
(every base class) is represented by a tabbed “page” in the notebook
control, and each page contains a control for each of the attributes
that you can view and modify for that class.

For example, the CWindow page has a group of decoration attributes.
These decorations are a part of the itsAttributes data member of
CWindow. Similarly, since itsGlue is one of CView’s data members, the
first CView page has controls defining an object’s glue properties.

When the you first open the Strata for an object, the attribute fields
all contain default values. Certain values, such as itsEnvironment, may
be inherited from the object’s enclosure. However, in the Strata, you
can attach an environment to any object in your application.

See Also: For more information on setting an object’s environment, see
section 6.4.1.
6-3

Guide to XVT Development Solution for C++
6.3.1. Using the Notebook Control

Using the notebook control, you can view and set attributes of an
object at each inheritance level of the class hierarchy. The data
members, or attributes, represented on each page of the notebook
control are the initial data of the specific object instance.

Once you are in the Strata, you can “page through” the notebook
control to view and modify the attributes at each inheritance level.

t To bring a page of the notebook control to the front:

Click on the tab of the specific class (tabs are in alphabetical
order).
-OR-
Click on the specific class icon in the class browser at the
bottom of the window (icons are ordered by class hierarchy).

When you first open the Strata for an object, the attribute fields are
populated with standard default values. You can change any value
by interacting with the controls that populate the page. You simply
tab to navigate through the controls on a page. Note that if there are
“page turning” buttons at the bottom-right corner of a page, there are
other pages containing attribute fields for that class.

The values that you specify can either be XVT-Power++-defined
values, or they can be values that you have defined for your project.
When you make a change and click OK or Apply, the object is
updated so that you can see the results in the Drafting Board.

Note: For all icon objects, there is a resource ID field on the page, which
contains the default ID for NULLicon, but you can type in any ID as
long as you define it in the <ProjectName>.url file.

In addition, you can reference .bmp files from the CPicture page,
using a directory path.

See Also: For more information on the attributes of a particular class, see its
entry in the XVT-Power++ Reference, and see XVT-Architect’s
online documentation for information on the following classes:
CToolBar, CStatusBar, CButton, CMenuButton, CDrawingContext, CStackable,
CUserView, and CUserSubview. For more information on specifying
resource IDs for icons, see the Guide to XVT Development Solution
for C, and see your XVT platform-specific book.
6-4

Strata
6.4. CView Pages
CView supplies a lot of functionality to its derived classes. It is
important to acquaint yourself with the pages of CView, and the
attributes that you can set at this level of the class hierarchy (to see
CView’s first page, see Figure 6.1). The attribute fields on the CView
page are:

Title
Sets the title of the object. For any object that has a title,
you set the title on the CView page.

Commands
Sets single-click and double-click commands. From these
fields, you can also get to the Command Editor.

Glue
Allows objects to have stickiness properties and helps in
geometry management. When a view’s enclosure is sized,
the view’s glue maintains a constant distance between the glued
object and its enclosure’s borders. For example, if you set
RIGHTSTICKY and BOTTOMSTICKY, the object will remain the
same distance from its enclosure’s right and left borders.

Environment
Determines if the object inherits an environment or has its own.
If you check the Own Environment box, the object will have its
own environment. You can press the Environment button and
use the Environment Attributes dialog to set the environment
attributes, which is described below (see Figure 6.2).

Decorations
Sets draggable, sizable, visible, enabled, and active attributes.

Frame
Sets the location and size of the object relative to its enclosure.

See Also: For more information on CView’s data members, see CView in the
XVT-Power++ Reference.
6-5

Guide to XVT Development Solution for C++
6.4.1. Environment Attributes dialog

Using the Environment Attributes dialog, you can set the
environment for the objects of your application. An environment
of an object contains information regarding text attributes, drawing
modes, brush and pen attributes, and colors. It is encapsulated by
an instance of the CEnvironment class.

By default, there is an environment object that is shared by every
visible object in an XVT-Power++ application. Because an
environment propagates down the object hierarchy, many objects
can share the same environment.

However, you can also attach a separate environment object at any
level of the object hierarchy, anywhere from the application object
to any view object in the application. That is, objects can share
environments, or they can have their own environment.

Using the Strata, you can attach an environment object to any object
in your application. Every CApplication, CDocument, and CView
page has an environment field. An environment field consists of an
“Own Environment” check box and an Environment button.

t To attach an environment object to a view object:

Check the Own Environment box.

When you check the box, the Environment button is enabled.

t To open the Environment Attributes dialog so that you can view and
modify environment attributes:

Click the Environment button.

Then, using the Environment Attributes dialog, you can set the
following environment information (see Figure 6.2):

• Text attributes, which include font family, style, and size and
background and foreground colors

• Brush attributes, which indicate the color and pattern used
to fill many closed shapes

• Drawing mode

• Pen attributes, which indicate the color, pattern, width, and
style
6-6

Strata
Figure 6.2. Strata, Environment Attributes dialog

See Also: For more information on environment settings, see the “Application
Framework” chapter in the Guide to XVT Development Solution for
C++, and see CEnvironment in the XVT-Power++ Reference.

6.4.1.1. Using the Environment Attributes dialog

The Environment Attributes dialog is a window containing edit
fields and list buttons that represent the environment variables. The
color list buttons have color buttons on the right, and clicking one of
the color buttons brings up a color palette. Using these controls, you
can modify the environment information.

t To commit the changes that you have made in the Environment
Attributes dialog:

Click OK, which closes the editor and returns you to the Strata.
6-7

Guide to XVT Development Solution for C++
6.5. CWindow Pages
You can use the CWindow pages for setting many window attributes.
Use the CWindow pages to set the Border Type, Size, Modality,
Decorations, and Initial Conditions of the window. In addition, use
the Menus list box to assign an existing menubar to the window.
Finally, use the fields on CWindow’s third page to specify a screen
height and width.

See Also: For more information on assigning menubars to windows, see
section 7.1.3. For information on CWindow’s attributes, see its entry
in the online XVT-Power++ Reference.

6.5.1. Sizing and Placing Windows

When you first create a window in the Blueprint, it is given an initial
default position and size, or frame rectangle. For top-level windows,
the frame indicates the initial location and size of the window
relative to the screen or task window, and relative to other top-level
windows.

XVT-Architect allows you to change a top-level frame rectangle in
the following three places:

• In the window’s Drafting Board, you can modify the size of
a window by adjusting the window’s sizing frame (see
section 5.4)

• In the window’s Strata, you can adjust both the position and
size by entering coordinates on CView’s second page

• In the window’s Strata, you can specify screen size and
relative placement by using the editor on CWindow’s third
page

On CWindow’s third page there is a rectangular region called the
Window Placement Region, which represents the size of the task
window or screen. You can modify these dimensions using the
controls to the right of the Window Placement Region (see Figure
6.3).

Within the Window Placement Region are rectangles representing
the relative size and position of all top-level windows that you have
created the Blueprint module. The current window (the window for
which you have the Strata open) is shown as a solid rectangle. You
can move and size this rectangle.

Other top-level windows are visible within this region as dotted-line
rectangles, and cannot be moved. Since all top-level windows are
6-8

Strata
given the same initial default frame, all rectangles within the
Window Placement Region are likely on top of one another initially.

Figure 6.3. CWindow’s third page, window placement

6.5.2. Creating a Modal Window

The XVT-Power++ CWindow class supports the creation of modal
windows.

t To create a modal window in DSC++:

1. Create the window using XVT-Architect.

2. Using the CWindow Strata tab, set the window’s type to "Modal".

3. In your code, invoke the CWindow::DoModal() method for the
modal window defined in XVT-Architect.

The following code fragment shows how a modal window defined
in XVT-Architect is created and made modal:

CMyWin *aWindow = MYFactory.CreateWindow(aDoc, MYWin);
aWindow->DoModal();

The call to DoModal does not return until the window is closed.

See Also: Refer to a sample application in ...samples/arch/about for more
information about creating modal windows in DSC++.
6-9

Guide to XVT Development Solution for C++
6.6. CUserView and CUserSubview Strata Pages
The CUserView and CUserSubview objects have Strata faces where you
can register information for your customized classes. On these Strata
faces, you must specify the name of the class, which must be a valid
identifier.

You can also provide #include file names in the Text Edit field
provided, but this is optional. Note that when typing in your #include
file names, you should type what would normally follow the #include
directive. That is, you must put quotes or brackets around those file
names that require them.

6.7. Factory Settings Page
In addition to setting the attributes of an object, you can also set its
Factory information in the Strata. Use the Factory Settings page,
indicated by the “Factory” bitmap on the tab, to specify the
information that XVT-Architect uses when generating Factory files.
The Factory object information includes the following:

• Name

• ID (read only)

• Base (read only)

• Comments

• Whether it is automatically created at application startup

• Whether it is included in its enclosure’s data member class

6.7.1. Using the Factory Settings Page

t To set Factory information:

Bring the Factory page to the front, and enter the information
(see Figure 6.4).
6-10

Strata
Figure 6.4. Strata, Factory Settings page

Name
The string identifier that you will use when accessing and
creating objects using the Factory interface. Object Names
are part of the #defines in the generated Factory files.

When you write your application code, you must access some
of the objects that you lay out in XVT-Architect. In general, you
must access those objects whose attributes you will be getting
or setting dynamically at runtime. To do this, you will use the
Factory ID Name.

Generally, it is a good idea to change the Factory ID Names of
objects that you know that you will be accessing in your code;
you should change the name to something that makes sense in
your application. Of course, you can change the Factory names
of all the objects in your application, but this is not really
necessary.

ID and Base
Read only values that are generated by XVT-Architect. These
variables are also included as part of the #defines in the generated
Factory files. However, you will only need to use the Name
when interacting with the Factory.

Comment
Field in which you can make any comments that you would like
to be in the generated Factory files.
6-11

Guide to XVT Development Solution for C++
Auto Creation
Determines if a window is visible on application startup.
By default, this box is checked.

Object is part of owner’s data members
Determines if a specific object is in the generated Factory data
member class of its enclosure. By default, this box is checked.
In this case, XVT-Architect generates a data member class with
a pointer to each object that you have indicated. Therefore,
when you call PAFactory::DoCreate* on nested objects, you will be
returned a pointer to these indicated objects.

XVT-Architect names the returned pointers by taking the
object’s Factory name and adding the prefix “its”. For example,
if you give an object the Factory name of “Text”, the returned
pointer will be “itsText”.

Note: If after you generate the Shell files, you change the Factory name
of any object, you must search for the old name in your application
code, and replace it with the new name.

See Also: For more information on the generated Factory files and data
member classes, see Chapter 8, Object Factory.

6.7.2. Using XVT-Architect’s Editors

XVT-Architect supplies many editors to refine your application and
manage global data. You can open the global editors from Editors
menu (in the Blueprint and Drafting Board). In addition, you can
open these editors from the Strata. When you open them from the
Strata, they are primarily local editors, but, in this case, some editors
can also function as global editors.

From the pages of the CView, CButton, NCheckBox, NEditControl, and
NListEdit classes, you can set commands. In addition, from the pages
for these classes you can access the Command Editor. Use the
Command Editor to define command variables, such as a command
base, base value, command name, command value.

From the CView page, you can also open the String Editor. Each
object has a “Title” string associated with it, and you can use the
String Editor to apply an existing string to an object, modify strings
and string information, and indicate strings that you want to be
generated for later use.

From the pages of the CListBox and CNativeList classes, you can open
the String List Editor. The String List Editor allows you to set the
string lists that appear in the list controls of your application.
6-12

Editors
7
EDITORS

XVT-Architect has several editors that you can use to refine your
application and manage your application’s global information. The
following is a list of XVT-Architect’s editors, which are described
in this chapter:

• Menu Editor

• Accelerator Editor

• Command Editor

• String Editor

• String List Editor

When opened from the Blueprint or Drafting Board, the Menu
Editor, Accelerator, Command, String, and String List Editors can
be used as global editors. Each of these editors give you the ability
to view, modify, and manage your application’s global information.

See Also: For information on the Layer Editor, see Chapter 9.

7.1. Menu Editor
In XVT-Architect’s Menu Editor, you can design and lay out
menubars. In XVT-Power++, a menubar, or an instance of the
CMenuBar class, is a collection of submenus. A submenu is a
collection of menu items and other submenus.

t To open the Menu Editor:

Click the Menu Editor button on the Drafting Board toolbar.
-OR-
Select Menu Editor from the File menu in the Blueprint or
Drafting Board.
7-1

Guide to XVT Development Solution for C++
When you open the Menu Editor from the Drafting Board, the
menubar that you create is associated with that window. If you
commit the changes in the Menu Editor, XVT-Architect generates
the menus in the Factory files.

When you open the Menu Editor from the Blueprint or Drafting
Board, you can edit the existing menubars in your application.

In the Menu Editor, you can do the following:

• Create a menubar that contains standard menus

• Create new menubars, by modifying and creating menu
items and submenus

• Arrange and rearrange menu items and submenus

• Access the Accelerator Editor to specify keyboard
accelerators for menu items

In addition, once you have created a menubar, XVT-Architect
allows you to associate it with other windows in your application
using the Strata.

Note: You do not have to associate a menubar with every window; some
window types are by definition not allowed to have a menubar.

See Also: For more information on associating an existing menubar with a
window, see section 7.1.3.
7-2

Editors
7.1.1. Using the Menu Editor

The Menu Editor window is divided into two areas. The top of the
window is a scrollable area that you use to lay out the menubar. The
bottom area of the window is an area populated with controls that
you use set the menu-item data (see Figure 7.1).

Figure 7.1. Menu Editor

t To close the Menu Editor without saving the menubar:

Click Cancel.
-OR-
Close the Menu Editor window.

t To commit the changes that you have made to the submenus and
menu items:

Click OK.

To further edit the menubar, you can reopen the Menu Editor at
any time.
7-3

Guide to XVT Development Solution for C++
7.1.1.1. Using the Standard Submenus

When you open the Menu Editor, the top, scrollable area contains
the standard File, Edit, Font, and Help submenus for your
development platform. These are the DEFAULT_*_MENU values as
defined by the XVT Portability Toolkit. You can click on each
standard submenu to see its items.

The items that appear on the standard menus are platform-specific.
When you port your application, the standard menus will be
appropriate for the new platform. If you modify the standard
submenus, they are no longer “standard”—in other words, they are
no longer platform-specific.

In addition, the Menu Editor’s Options menu contains the Standard
File, Edit, Font, and Help submenus as checkable items. When you
first open the Menu Editor, all of the standard submenus on the
Options menu are checked. You can remove a standard submenu
menu by unchecking it.

t To create a standard menubar:

In the Menu Editor, click OK.

This action closes the editor window and saves the Standard
submenus menus. If you do not open the Menu Editor and click OK,
XVT-Architect does not generate the standard menubar with that
window. In that case, the standard task window menubar is
generated.

t To close the Menu Editor without associating the standard
submenus with a window:

Click Cancel.
-OR-
Close the Menu Editor window.

See Also: For more information on menubars, see the “Menus” chapter in the
XVT Portability Toolkit Guide.
For more information on standard menus, see the
“DEFAULT_*_MENU Values” section in the online XVT Portability
Toolkit Reference.

7.1.1.2. Moving Menu Items

Once a menu item or submenu exists, you can move it in any
direction; you can drag and drop any submenu or menu item.
7-4

Editors
t To move a menu or menu item:

Drag it to its new location.

When you drop the item, XVT-Architect places it in that position.
The item in that position is moved behind the dropped item. If you
drag a menu item to the top of the menubar, it becomes a submenu.

However, if you drag a top-level submenu down into the menu, it
will remain a submenu, and it will retain its menu items. If you move
a top-level submenu into a menu, you can uncheck the “is Submenu”
state at the bottom of the window. This action deletes the menu items
that the submenu contains.

Note: In the Menu Editor, dragging is always enabled; if you drag across
the menubar in the Menu Editor, you will move an item.

7.1.1.3. Setting Menu-Item Data

Once you have named or renamed a submenu or menu item, you
may need to specify or modify the data that is associated with the
menu item. To do so, use the edit fields located at the bottom of the
Menu Editor window.

Title
The name of the submenu or menu item.

Menu Tag
The unique tag that is associated with the menu item. In the
Factory defines.h file, XVT-Architect generates the #defines for
the menu tags.

For the Menu Tag, you can indicate one of the M_* Menu Tags
defined by the XVT Portability Toolkit, you can use the tag that
XVT-Architect generates for you, or you can define your own.

If you modify the Menu Tag, you must use a valid tag, or
XVT-Architect issues an error and requests a valid tag. A valid
Menu Tag is a unique string that begins with a letter. The string
can be any combination of letters, numbers, and underscores,
but it cannot contain spaces.

Mnemonic
The mnemonic key associated with the menu item. This setting
is optional.

is Submenu
Indicates whether the item is a submenu or not. To make an item
a submenu, which has menu items and other submenus but is
not a menu item itself, check the “is Submenu” box. Note that
7-5

Guide to XVT Development Solution for C++
top-level items are always submenus. You can also have nested
submenus (i.e., a submenu can contain other submenus).

Flags
The Flags set for the item at application startup. You can set a
menu item to be Enabled (Disabled), Checked, or Checkable,
or you can make the item a Separator.

You can modify any of the data that you have set, or that
XVT-Architect has set for you. To modify the data, select the text in
the edit fields and change information, or check and uncheck items.
You can use the Tab key to move through all of these controls at the
bottom of the Menu Editor window.

t To make the item a separator:

Select the item, and check Separator.

When you define an item as a separator, you do not have to fill in
any menu-item data.

See Also: For more information on menubar variables, see the CMenu* and
the CSubmenu descriptions in the online XVT-Power++ Reference.
For more information on predefined menu tags, see the “M_EDIT_*,
M_FILE_*, and M_HELP_* Menu Tags” section in the online XVT
Portability Toolkit Reference.

7.1.1.4. Using the Accelerator Editor within the Menu Editor

You can set keyboard accelerators for the menu items that you have
defined.

t To open the Accelerator Editor:

Choose Accelerators from the Menu Editor’s Options menu.

See Also: For information on using the Accelerator Editor, see section 7.2.

7.1.1.5. Factory Name and Information

In the Factory files, XVT-Architect generates the menubar that you
have laid out in the Menu Editor. The files contain the name and
Factory ID of the menubar and its menu items. When you create
a window stored in the Factory, you also create its associated
menubar.

When you first open the Menu Editor from the Drafting Board or
Strata of a window, XVT-Architect gives the menubar a Factory
name. The Factory name is the window’s Factory name with a “MB”
suffix. In the Menu Editor, you can change the menubar’s Factory
7-6

Editors
name. This is the only way that a menubar’s Factory name is ever
changed.

For example, if after opening the Menu Editor for a window, you
change the Factory name of the window, XVT-Architect does not
change the menubar’s Factory name.

t To change the Factory name for the menubar:

1. Choose Factory Options from Menu Editor’s Options menu,
which opens a Factory Options dialog box.

2. Change the Menubar Name.

3. Click OK to commit the change.

7.1.2. Customizing Menus

In the Menu Editor, you can customize the menubar for each
window in your application. You can either modify the existing
menus, or you can delete these menus and define new menus.

Note, however, that when you modify a standard submenu in any
way, it is no longer a standard, platform-specific submenu; it is the
same on every platform.

7.1.2.1. Pop-up Menus

You can customize a menu to act like a pop-up menu.

t To change a menu from its normal status to a pop-up status:

1. Define a menubar with the Menu Editor. (Specify a menubar
with only one menu Title.)

2. Outside of XVT-Architect, in one of your user files, write code
that creates a CMenu using the menubar ID of the menu defined
earlier in XVT-Architect.

3. Call the special DoPopup method.

A pop-up menu is displayed with its left edge oriented along the
point where the mouse button was pressed. Depending on the way
you call the parameters of the DoPopup method, the top edge of the
menu can be oriented along the same point, or the menu can be
displayed with a particular menu command title centered vertically
over the point.
7-7

Guide to XVT Development Solution for C++
7.1.2.2. Modifying Standard Menus

If you modify a standard submenu or any of its items,
XVT-Architect changes the Menu Tag so that it is no longer a
DEFAULT_*_MENU value. The tool also unchecks the specific
“Standard” submenu on the Menu Editor’s Options menu.

However, since your code may reference existing menu tags,
XVT-Architect does not automatically change the Menu Tag when
you change a menu Title. You can change the Menu Tag, and any
of the menu-item data located at the bottom of the window (see
section 7.1.1.3).

t To change a menu item:

Select the item, and modify the menu-item properties using the
controls at the bottom of the window.

t To delete a submenu:

Select the submenu, and click the Delete button in the toolbar.
-OR-
If it is a “Standard” submenu, choose the submenu from the
Menu Editor’s Options menu (i.e., “uncheck” the submenu).

t To delete a a submenu or a menu item:

Select the item, and click the Delete button in the toolbar.
-OR-
Select the item, and choose Delete Menu from the Edit menu.

t To create a new submenu or menu item:

Click on an empty box on the menubar, and type in the menu-
item data.

XVT-Architect generates a valid Menu Tag for you, but you are free
to modify it. Once you have created a new submenu or menu item,
you can drag it to a new position.

Note: You can drag the empty menu field to a new location, but you
must give it a Title and valid Menu Tag before you leave the field.
If you try to select another field after moving an empty field,
XVT-Architect issues an error and requests a valid Menu Tag.

See Also: For more information on valid Menu Tags, see section 7.1.1.3.
7-8

Editors
7.1.2.3. Translating Exported Menu Strings

The menu strings that need to be translated to the language used by
a particular locale are contained in the PAUserString object files
discussed in section 11.2.1 on page 11-3. These files contain a series
of strings with the following syntax:

string Num
“String”

Each string enclosed in quotes needs to be translated for every target
locale you are supporting (see following example).

For example, here is a portion of an .aeo file, generated for the
“Spanish” layer of an XVT-Architect project:

string 258
"Nuevo"
string 261
"Abre..."
string 265
"Cierra"
string 268
"Asegura"
...

These four strings are found in almost all File menus, and in English,
correspond to the familiar File menu commands “New,” “Open,”
“Close,” and “Save.”

7.1.2.4. Five Languages Already Translated

Both at the Portability Toolkit level and at the XVT-Power++ level,
XVT provides localized versions of its standard menus for U.S.
English, German, French, Italian, and Japanese. These localizations
are encapsulated in include files referenced by XVT URL and help
source text files. You may control the inclusion of these files by
defining a LANG_* constant on the command line for curl or helpc,
or by defining the constant in your source files.

If you are localizing for one of these five languages, you will not
need to translate the titles of standard menus, e.g., M_FILE, M_EDIT,
M_FONT, and M_HELP. To ensure these localized versions are used by
the application, make sure to run curl with the correct language
definition for the locale.
7-9

Guide to XVT Development Solution for C++
Example: For example, German is one of the languages for which pre-
translated resources are provided at the XVT Portability Toolkit
level.

t To run the resource compiler and include German default XVT
resources for an XVT/Win16 application, use a command line
similar to the following:

curl -r rcwin -I..\..\include -DLANG_GER_W52
-DLIBDIR=.\..\..\lib sample.url

Using this command line will cause the file ugerw52.h (which is the
XVT-supplied German translation of the default resource file) to be
included in your resources. As discussed in section 7.1.1.1, the
standard menus contain different entries on the different platforms
that XVT supports.

See Also: For a complete list of URL resource compiler options, refer to the
online XVT Portability Toolkit Reference.
For a list of LANG_* constants supported by XVT, refer to the
“Multibyte Character Sets and Localization” chapter in the
XVT Portability Toolkit Guide.

7.1.3. Associating Existing Menubars with Windows

You can associate an existing menubar to the application, on the
CApplication Strata page, and you can assign an existing menubar to
each top-level window, on CWindow’s second page.

These pages have list buttons of predefined-menu selections. These
list buttons contain all menubars in this project that you have created
from the Menu Editor. They also contain the “no menu” and “default
menu” selections.

t To associate an existing menubar with an application or window:

1. Open the Strata for the window with which you want to
associate the menubar.

2. On the CWindow page, select the menubar from the list of
menubars, and click Apply (or OK).

Note: If you want to modify an existing menubar for a window, you should
make a new menubar and associate it with the window. You can use
Copy and Paste to move an existing menus to other windows, and
then make the desired modifications.
7-10

Editors
7.2. Accelerator Editor
You can open XVT-Architect’s Accelerator Editor from the
Blueprint, Drafting Board, and Menu Editor. In the Accelerator
Editor, you can set the key sequence, or keyboard shortcut, to send
a DoMenuCommand for any menu items. When you generate the files
for your application, XVT-Architect generates the proper
accelerator statements in the Factory files.

The Accelerator Editor allows you to specify keyboard accelerators
(shortcuts) for the menu items in your application. Once an
accelerator is set for a particular menu tag, the accelerator applies to
every instance of that menu tag (and associated menu item) in your
application.

For example, setting “Control+S” as the accelerator for the standard
menu tag M_FILE_SAVE ensures that pressing Control+S is
equivalent to selecting Save from the File menu. Since accelerators
apply to your entire application, pressing Control+S works in each
of your windows that has M_FILE_SAVE in its menubar.

t To open the Accelerator Editor:

From the Blueprint and Drafting Board, choose Accelerators
from the Editors menu.
-OR-
From the Menu Editor, choose Local Accelerators from the
Options menu.

In the Accelerator Editor, you can do the following:

• Set and modify keyboard accelerators for menu items

• Create, modify, and delete accelerators for non-menu items,
“ghost” items (only when opened, as a global editor, from
the Blueprint’s or Drafting Board’s Editors menu)

7.2.1. Using the Accelerator Editor

The Accelerator Editor contains an “Accelerators” list box, which
contains a list of Menu Tags and corresponding accelerators. The
editor also contains a set of controls, which allow you to set the
accelerators for these Menu Tags.

When opened from a Menu Editor, the Accelerator Editor only
allows you to set accelerators for menu tags specified in that Menu
Editor.
7-11

Guide to XVT Development Solution for C++
When opened from the Blueprint or Drafting Board, the Accelerator
Editor allows you to set accelerators for all menu items in your
application. It also allows you to specify accelerators for “ghost”
menu items, which do not appear on any of the menus in your
application.

In the Accelerator Editor, you can specify accelerators for all or part
of the Menu Tags.

t To set an accelerator:

1. Select a Menu Tag from the Accelerators list box.

2. Check Shift, Control, and/or Alt.

3. In the Key edit field, type the accelerator key.
-OR-
Choose a Key from the drop-down list.

By using this method, you can also modify any of the accelerators
that you have already indicated.

In addition, when you open the Accelerator Editor from the Menu
Editor, you can delete accelerators.

t To delete an accelerator:

Delete the contents of the Key field.

From the Accelerator Editor, you cannot create or delete Menu Tags
that are associated with menubars in your application. In this case,
you must use the Menu Editor to create and delete menu tags (and
menu items). However, if you open the Accelerator Editor from the
Blueprint or Drafting Board, you can create new tags that are
“ghost” items and specify accelerators for them.

7.2.1.1. Creating Accelerators for “Ghost” Menu Items

When you open the Accelerator Editor from the Blueprint or
Drafting Board, you can create new menu tags and assign them
accelerators. The tags are “ghost” tags, which are not associated
with menubars in your application.

Creating a “ghost” menu item with an accelerator is an easy way
to create a keyboard shortcut for any action in your application.
Simply, create a ghost menu item for the action, set the desired
accelerator key sequence, and all of your applications windows will
receive a DoMenuCommand call with the ghost menu item when the
user presses the appropriate key sequence.
7-12

Editors
Note: In this release of the DSC++, “ghost” menu items with accelerators
will not work on the Macintosh. However, when porting, having
ghost menu items does not affect your application code.

t To create a new ghost menu tag:

Click the Create New button at the bottom-right corner of the
Accelerator list box.

When you create a “New Tag,” it is selected in the Menu Tag field
and ready to edit. You can specify any valid tag. A valid Menu Tag
is a unique string that begins with a letter. The string can be any
combination of letters, numbers, and underscores, but it cannot
contain spaces. You can modify the accelerator and delete by
modifying or deleting the Key indicated. In addition, you can delete
the ghost menu tag and its accelerator.

t To delete a ghost menu tag and its accelerator:

Select the tag, and click the Delete button.

The Delete button is enabled only when you select a ghost menu tag
that you have created in the Accelerator Editor (i.e., the menu tag is
not associated with a menubar in your application). When you click
the enabled Delete button, the tag and the accelerator are both
deleted.

7.3. Command Editor
When end users manipulate views in an XVT-Power++ application,
they cause commands to be generated, which are trapped
programmatically (via the DoCommand method).

Using the Command Editor, you can assign project-specific
command information. These assignments are reflected in the
generated files. The Command Editor gives you a global picture
of the commands in your project.

Certain classes of the class hierarchy define commands, and their
subclasses inherit these commands. The following classes have
command attributes, and thus have the command fields on their page
in the Strata:

• CView has single and double command fields (itsCommand and
itsDoubleCommand)

• CButton has in command, out command, up command, down
command fields; if they are not NULLcmd, these commands
7-13

Guide to XVT Development Solution for C++
are sent when the pointer goes in or out of the button, or when
the mouse button is pressed up or down

• CMenuButton has a menu tag (itsMenuTag) attribute, which, when
the menu button is clicked, is sent to the window’s
DoMenuCommand method

• NCheckBox has select and deselect command fields
(itsSelectCommand and itsDeselectCommand)

• NEditControl has key focus, key focus lost, and text command
fields (itsKeyFocus, itsKeyFocusLost, and itsTextCommand)

• NListEdit has key focus, key focus lost, and text command
fields (itsKeyFocusCmd, itsKeyLostCmd, and itsTextCmd)

t To open the Command Editor from one of these pages in the Strata:

Click a Command Editor button next to the Command field.

In addition, you can open the Command Editor, as a global editor,
from the Blueprint or Drafting Board.

t To open the Command Editor as a global editor:

Choose Commands from the Editors menu.

In XVT-Architect’s Command Editor, you can view and specify any
of the following attributes for commands and command bases (see
Figure 7.2):

• Name

• Value

• Comments

The Command Editor allows you to organize commands by
specifying a command base for each command. The numeric value
for a command is the sum of its value and its command base value.
7-14

Editors
Figure 7.2. Strata with Command Editor

Example: You specify a “TOOL_COMMANDS” command base with a base value
of 1000. Then, you specify several commands within that base with
“TOOL1cmd”, “TOOL2cmd”, and “TOOL3cmd” as names and with
command values 1, 2, and 3, respectively. Your generated Factory
files will contain #defines for the commands as follows:

#define TOOL_COMMANDS 1000
#define TOOL1cmd (TOOL_COMMANDS + 1)
#define TOOL2cmd (TOOL_COMMANDS + 2)
#define TOOL3cmd (TOOL_COMMANDS + 3)

Note: XVT-Architect generates any numeric values that you do not
explicitly specify.

See Also: For information on generated Factory files, see Chapter 8, Object
Factory.
For information on specific XVT-Power++ commands, see the
descriptions of CView, CButton, CMenuButton, NCheckBox, NEditControl,
and NListEdit in the online XVT-Power++ Reference.
7-15

Guide to XVT Development Solution for C++
7.3.1. Using the Command Editor

The Command Editor has list boxes at the top, which list the
Command Bases and the Commands that are already defined for
your application.

t To get the list of commands that belong to a base:

Select the command base. The commands that belong to the
base appear in the Commands list box.

7.3.1.1. Creating New Commands and Setting Command Data

In the Command Editor, you can create new commands, indicate
command values, and specify comments.

t To create a new Command Base or a new Command:

Select a Base or a Command, click the Create button below the
Command Base or Command list box, and type in the
information.

t To edit a Command Base or a Command:

Select a Base or a Command, and type in the information.

The following are definitions of the variables that you can indicate
using the Command Editor:

Base Name
Each command is attached to a base (e.g., CmdBase). You define
the command bases for your project. Groups of commands can
belong to a single base. If you type in a new command base, it
is added to the list of command bases for the project. If you
change a base, it is changed globally.

Command Name
Each command has a name that is a valid string identifier
(e.g., NULLcmd). You can define the command names for your
project. If you type in a new command, it is added to the list of
existing commands belonging to the selected base.

Value
Each command base and command has a unique value
associated with it. You can set the value. However, a specific
base value is defined once per project, and if you change the
base value, you change the value for that base globally. You
can set this value, or you can use a value assigned by
XVT-Architect.
7-16

Editors
Comments
You can indicate comments for the Base and the Command.
XVT-Architect generates these comments in the header file
that contains the #defines for the commands.

Base
Used to select the Base to which the Command belongs.

Note: The Base and Command Names must be valid identifiers. A valid
identifier is a unique string that begins with a letter. The string can
be any combination of letters, numbers, and underscores, but it
cannot contain spaces.

7.4. String Editor
Using the String Editor, you can specify application-specific
resource strings. The strings that you indicate for your application
are placed within the Factory files.

The String Editor gives you the ability to view and modify the
strings in your application. Using the String Editor, you have control
over this global information.

You can open the String Editor from the Blueprint or Drafting Board
by choosing Strings from the Editors menu. In addition, when
indicating a Title on the CView page, you can access the String
Editor.

Every view object has a Title string associated with it. If you indicate
a Title on the CView page, the string is changed only for that instance.
However, you can also open the String Editor to view and apply
existing strings and to change global information.

t To open the String Editor:

In the Blueprint or Drafting Board, choose Strings from the
Editors menu.
-OR-
In the Strata, click the Sting Editor button next to the Title field
on the CView page.

In the String Editor, you can do the following:

• View the existing strings for the project

• Modify existing strings

• Create new strings, for use within XVT-Architect or directly
in your application

• Delete strings that are not referenced within XVT-Architect
7-17

Guide to XVT Development Solution for C++
• Select a string to be used as the Title of an object (only when
opened from the Strata)

See Also: For more information on generated Factory files, see Chapter 8,
Object Factory.

7.4.1. Using the String Editor

The String Editor has a list box that contains an alphabetical list of
the strings defined for your application. In the String Editor, you can
also modify the existing strings and create new strings.

The editor has these two edit fields: String Name and String Value.
When modifying an existing string or creating a new string, you can
indicate both its String Name and its String Value. XVT-Architect
gives all of the objects that you lay out a unique String Name.

String Name
The symbolic name of the string, which is the name you use
to reference the string from within your application, like this:

new CText(CStringRW(String5));

XVT-Architect assigns a String Name to each string, but you
can change the names. All String Names must be valid
identifiers. A valid identifier is a unique string that begins with
a letter. The string can be any combination of letters, numbers,
and underscores, but it cannot contain spaces.

String Value
The literal string.

t To modify the String Name or String Value:

Click in the appropriate edit field, and type the new information.

t To create a new string:

Press the Create New String button, and type the new
information.

When you create a new string, the String Value, “A New String,”
is selected and ready for editing.

t To delete a string:

Select the string, and click the Delete button.

If a string is not referenced, you can delete it. If you select a string
from the list box and it is not referenced, the Delete button is
enabled.
7-18

Editors
7.4.1.1. Using the String Editor Opened from the Strata

When you open the String Editor from the Strata, you can also select
an existing string from the list box and apply it to the object whose
attributes you are editing; objects can “share” strings.

t To apply an existing string to an object:

Select the string from the list box, and click OK.

Once you give an object an existing string, its old string is no longer
referenced (unless you have created another reference), and you can
delete it.

Note: To apply an existing string to an object, you must click OK.

7.5. String List Editor
Using XVT-Architect’s String List Editor, you can set string lists
that appear in the list controls of your application at startup. You can
access the String List Editor from the Blueprint, Drafting Board, and
Strata.

The string lists that you indicate for your application are generated
in the Factory files.

t To open the String Editor:

From the Blueprint or Drafting Board, choose String Lists from
the Editors menu.
-OR-
From the Strata, click the Sting List Editor button next to the list
button on the CListBox or CNativeList page.

In the String List Editor, you can do the following:

• Create or modify string lists

• Delete string lists that are not referenced in your
XVT-Architect project

• Create or modify the strings of a string list

• Order and delete the strings of a string list

• Select a string list to use with an object (only when
opened from the Strata)

See Also: For more information on generated Factory files, see Chapter 8,
Object Factory.
7-19

Guide to XVT Development Solution for C++
7.5.1. Using the String List Editor

On the top-left the String List Editor, a list box contains the String
Lists that are defined for your application. On the top-right of the
editor, a list box contains the Strings of the selected string list (see
Figure 7.3).

Figure 7.3. Strata with String List Editor

7.5.1.1. Setting String List Names

You can change the name of the string list or add new string list
names. The String List Name is the symbolic name of the string list,
which is the name you use to reference the string list from within
your application, like this:

aNListBox->IListBox(CStringCollection(
MY_STRING_LIST,
MY_STRING_LIST_END));

XVT-Architect assigns a String List Name to each string list, but
you can change the names.

Keep in mind that all String List Names must be valid identifiers. A
valid identifier is a unique string that begins with a letter. The string
can be any combination of letters, numbers, and underscores, but it
cannot contain spaces.
7-20

Editors
t To change a string list’s name:

1. Select the string list from the String Lists box.

2. Select the name in the String List Name edit field.

3. Type the new name.

t To create a new string list:

Click the Create New String List button (at the bottom-right
corner of the String Lists list box), and type in the new name.

When you create a new string list, the new String List Name is
selected and ready for editing, if you choose to do so.

t To delete an unreferenced string list:

Select the string list, and click the Delete button.

If a string list is not referenced in your XVT-Architect project, you
can delete it. If you select a String List and it is not referenced, the
Delete button is enabled.

7.5.1.2. Setting the Strings Values in String Lists

For each string list, you can indicate the Strings that it will contain.

t To add a string to a string list:

Click the Insert String button, which inserts a new string above
the selected string.
-OR-
Click the Append String button, which inserts a string below the
selected string.

When you create a new string, the String Value is selected and ready
for editing. You can simply type in the new string.

In the Sting List Editor, you can also edit, move, and delete existing
strings.

t To modify a string:

1. Select the string from the Strings list box.

2. Select the string in the String Value edit field.

3. Type the changes to the string.

t To move a string:

Select the string, click the Up or Down button.
7-21

Guide to XVT Development Solution for C++
t To delete a string:

Select the string, and click delete.

You can always delete strings in a string list, because the strings are
not directly referenced.

7.5.1.3. Using the String List Editor Opened from the Strata

When you open the String List Editor from the Strata, you can also
select an existing String List from the list box and apply it to the
object whose attributes you are editing; objects can “share” string
lists.

t To apply an existing string list to an object:

Select the String List from the list box, and click OK.

Once you give an object an existing string list, its old string list is
no longer referenced (unless you have created the reference), and
you can delete it.

Note: To apply an existing string list to an object, you must click OK.
7-22

Object Factory
8
OBJECT FACTORY

This chapter describes XVT-Architect’s object Factory, including
the Factory interface that you use to instantiate objects that you
designed with XVT-Architect.

8.1. Object Factory
The Factory is a repository for application information, just like an
XVT-Architect project file. However, they are different in that you
use the Factory to instantiate the XVT-Power++ objects that you
have laid out using XVT-Architect.

After you have designed your application using the Blueprint,
Drafting Board, and Strata of XVT-Architect, generate the Factory.
Then, while writing your application code, use the public interface
of the PAFactory class to instantiate those objects. Using the PAFactory
public methods, you can create single objects or multiple nested
objects.

Note: You can generate the Factory at any point in your development
process. However, since generating the Factory updates the
application information, you should regenerate it if you modify
your project.

If you change the Factory ID Name of an object after you have
generated user Shell files and written code, you must search the
old name and replace it with the new name in your application code.

You should not modify the generated Factory files. Every time
you generate the Factory, the files are regenerated, and any
modifications that you have made are overwritten. Additionally,
if you modify the files, XVT cannot ensure compatibility with future
releases of XVT-Architect.
8-1

Guide to XVT Development Solution for C++
See Also: For more information on generating files, see section 2.4 on page
2-8.

8.1.1. Factory Interface

The Factory has an interface that allows you to create objects.
When you ask the Factory to create objects, you use an interface
defined by the PAFactory class.

XVT-Architect also supports “object layering,” which is the process
of creating variations of a window in which you can change the
objects that it contains to support different platforms or languages.
When you generate the Factory files, you can generate the code for
one or more of the layers. Then you can interact with the Factory
interface to create the different layers.

See Also: For more information on the PAFactory class, see section 8.2 on page
8-4.
For more information on object layering, see Chapter 9, Object
Layering.

8.1.2. Factory-generated Header Files

XVT-Architect generates Factory files, which include your project-
information files and several header files. The generated Shell files
reference these Factory files; they are automatically included in your
application. They contain the following information:

• #defines for all object IDs

• #defines for all command IDs

• #defines for all string IDs and string list IDs

• Definitions of the data member classes

8.1.2.1. Object IDs

XVT-Architect’s Factory generates a #define for each of the objects
in your application. The Factory generates this internal ID for each
object, but, when interacting with the Factory, you can use the
Factory ID Name, or string identifier, which you gave the object in
the Strata.

Both the PAFactory::Create* and the PAFactory::DoCreate* methods take a
Factory ID Name. The Factory “knows” which object to create
because XVT-Architect generates the necessary #defines.
8-2

Object Factory
See Also: For more information on indicating Factory names, see
section 6.7.1.

8.1.2.2. Command IDs

XVT-Architect’s Factory also generates a #define for each of the
command IDs in your application. You indicate the command IDs
in the Command Editor, which you can access from the Strata. In the
Command Editor, you can indicate the command’s name, value,
base, and base value, and the XVT-Architect uses this data when
generating the Factory files.

In addition, #defines are generated for the command IDs of menu tags,
which you can specify using the Command Editor.

See Also: For more information on using the Command Editor, see section
7.3.1 on page 7-16.
For more information on the Menu Editor, see section 7.1.1 on page
7-3.

8.1.2.3. String and String List IDs

XVT-Architect’s Factory also generates #defines for each string
ID and string list ID in your project. In addition, XVT-Architect
generates a string resource file, strings.url.

For your application, you specify strings and string lists in the String
and String List Editors.

See Also: For more information specifying strings and string lists, see section
7.4.1 and section 7.5.1.

8.1.2.4. Data Member Classes

Finally, in the Factory files, XVT-Architect also generates a data
member class for each object. A data member class contains pointers
to the nested views of an object.

However, a data member class contains pointers to only those
objects that you specified to be a part of the class on the Factory
Settings page of the Strata. You can include only the objects that
you will want access.

You use these classes when interacting with the PAFactory class. The
PAFactory::DoCreate* methods have an optional parameter,
the*DataMembers. If you want to be able to access an object’s nested
objects after you have created them, specify the*DataMembers
parameter.
8-3

Guide to XVT Development Solution for C++
When you call DoCreate*, the nested views of an object are created.
To access the nested views, pass in an instance of a data member
class. The DoCreate* method then returns pointers to the nested
objects specified in the data member class.

See Also: For more information on specifying whether an enclosed object is
included in the data members class, see section 6.7.1.

Example: If you have MyWindow that contains both Oval and Rectangle, the
generated data member class would look like this:

class MyWindowDataMembers : public CDataMembers
{

public:
COval* itsOval;
CRectangle* itsRectangle;

...
};

8.1.3. Generating Factory Files at the Command Line

An alternate way to generate XVT-Architect factory files is to enter
the following command at the command prompt:

arch -generate foobar.amf

Using this approach, you can generate factory files without starting
the GUI version of XVT-Architect.

Tip: You can use this technique to automate your build process.

8.2. Using the PAFactory Class
XVT-Architect generates the PAFactory class, which is an abstract
class. Through the PAFactory public interface, you can create
documents, windows, and views. In addition, you have a choice
of either creating a specific object, by calling one of the Create*
methods, or creating a specific object and all of its enclosed objects,
by first calling one of the Create* methods and then calling the
corresponding DoCreate* method.

Use the Factory names (the string identifiers) that you gave the
objects in the Strata to specify which objects should be created.

Note: XVT-Architect’s object Factory is a PAFactory-derived class, and
it can create the objects that you laid out in XVT-Architect. When
using the Factory, make sure that your application is linked against
the PAFactory library.

See Also: For information on naming objects, see section 6.7.1.
8-4

Object Factory
8.2.1. PAFactory Public Methods

This section lists PAFactory’s public methods.

See Also: For more information on the optional the*DataMembers parameter for
the DoCreate* methods, see section 8.1.2.4.

CDocument* CreateDocument(long theDocID);

Creates a single document based on theDocID. theDocID is the
string identifier of a document that you created and named
with XVT-Architect. To create all of the documents of an
application, call the DoCreateDocuments method. To create the
document and its windows, first call this method, and then call
the DoCreateWindows method.

CDocument* DoCreateDocuments(
CApplication* theApp, long theAppID, BOOLEAN createAll =
FALSE,
CDataMembers* theAppDataMembers = NULL);

Creates all of the documents of an application. theApp is a
pointer to the application. theAppID corresponds to the string
identifier of that document (the name you gave it in the
Strata). If createAll is FALSE, only the documents that you
checked to be automatically created (in the Factory Settings
page of the Strata) are created. If createAll is TRUE, all of the
documents are created. In addition, to get pointers to the
documents, you can pass in a pointer to an object of type
CDataMembers.

CWindow* CreateWindow(
CDocument* theDocument,
long theWinID);

Creates a single window based on theDocument and theWinID.
theDocument is a pointer to the document that manages the
window. theWinID corresponds to the string identifier of a
window that you laid out and named in XVT-Architect. To
create the window and its enclosed views, first call this
method, and then call the DoCreateViews method.
8-5

Guide to XVT Development Solution for C++
void DoCreateWindows(
CDocument* theDocument,
long theDocID, BOOLEAN createAll = FALSE,
CDataMembers* theDocDataMembers = 0);

Creates all of theDocument’s windows. To create a document
and all of its windows, call CreateDocument, and then call this
method.

theDocument is a pointer to the document that manages the
windows. theDocID corresponds to the string identifier of that
document (the name you gave it in the Strata). If createAll is
FALSE, only the windows that you checked to be automatically
created (in the Factory Settings page of the Strata) are created.
If createAll is TRUE, all of the windows are created. Finally, to
get pointers to the objects that the window encloses, you can
pass in a pointer to an object of type CDataMembers.

CView* CreateView(
CSubview* theEnclosure,
long theViewID);

Creates a single view based on theEnclosure and theViewID.
theEnclosure specifies the enclosure of the view that you are
creating. theViewID is the string identifier of a view that you
laid out and named in XVT-Architect. To create the view and
its enclosed views, first call this method, and then call the
DoCreateViews method

void DoCreateViews(
CSubview* theEnclosure,
long theEnclosureID,
BOOLEAN createAll = FALSE,
CDataMembers* theEnclosureDataMembers = 0);

Creates all of theEnclosure’s views. If you want to create a
window or subview and any or all of its enclosed objects, call
CreateWindow or CreateView, and then call this method.

theEnclosure is a pointer to the enclosure. theEncloureID
corresponds to the string identifier of the view (the name you
gave it in the Strata). If createAll is FALSE, only the views that
you checked to be automatically created (in the Factory
Settings page of the Strata) are created. If createAll is TRUE, all
of the views are created. Finally, to get pointers to the objects
that the view encloses, you can pass in a pointer to an object
of type CDataMembers.
8-6

Object Layering
9
OBJECT LAYERING

XVT-Architect provides you with the ability to “layer objects.” This
feature allows you to create variations of objects in a project. Each
layer can be a modification of the layer that is defined as its parent.

You can adjust the windows of your project to achieve the
appropriate look-and-feel on each platform to which you are porting.
In addition, if you are localizing an application, you can create layers
of objects that accommodate different languages.

This chapter describes the usage of XVT-Architect’s layering
feature.

9.1. Default and Parent Layers
When you create a new XVT-Architect project, you are working
in the “default” layer. As you develop your application, you can
add layers, but the first layer remains the default layer of the project.
Based on this layer as the root, you can define your own layer
hierarchy.

The default layer is the root that defines the common features of
your application. Additional layers are “derived” from the default
layer, and therefore they inherit all the attributes of that parent layer.
If you make a change to the parent layer, all derived layers are also
changed. However, derived layers can override certain aspects of
their parent layer.
9-1

Guide to XVT Development Solution for C++
Example: In Figure 9.1, layers A and B inherit the objects of the parent layer,
but some of the object attributes (position and size) have been
modified.

Figure 9.1. Object layering

9.2. Layering Objects
Using the Layer Editor, you can create new layers, indicate that
XVT-Architect should generate the information for this layer in the
Factory files, assign parent layers, and view a layer. You can open
the Layer Editor from both the Blueprint and the Drafting Board.

t To open the Layer Editor:

Choose Edit Layers from the Layers menu in the Blueprint or
the Drafting Board (see Figure 9.2).

Parent Layer

Layer A Layer B
9-2

Object Layering
Figure 9.2. Layer Editor

9.2.1. Creating Layers

t To create a new layer:

1. In the Layer Editor, click the Add New button.

2. Name the layer and indicate whether you want XVT-Architect
to include it in subsequent generations of the Factory. You can
do so by checking the Factory Generated box.

3. Select the new layer’s parent by selecting a parent from the
Parents list box. The new layer “inherits” the objects and their
attributes from the Parent that you indicate.

4. Click OK.

When you click OK, the Layers Editor closes and you return to the
module from which you opened the editor. Note, however, that you
are now in the new layer, which you just created.

Note: If you indicate that the layer should be generated, you can create the
entire application based on that layer, using the Factory interface.

See Also: For more information on creating a layer from the Factory, see
section 9.4.
For more information on the Factory, see Chapter 8, Object
Layering.
9-3

Guide to XVT Development Solution for C++
9.2.2. Viewing and Modifying Layers

t To open a layer for viewing or editing:

Select the layer from the Existing Layers list box, and click OK.

See Also: For information on indicating attributes in a layer, see section 9.3.

9.2.3. Using the Layers Menu

The Layers menu provides access to the functionality related to
layering. To open the Layer Editor, you can use the Edit Layers item
from both the Blueprint and the Drafting Board. However, the other
item on the Layers menu are only enabled in the Drafting Board.
Using the Layers menu in the Drafting Board, you can view the
layered objects and revert objects to be defined by their parent.
First, choose a layer, and then use the Layers menu.

Viewing Layered Objects

t To view the layered, or overridden, objects:

Choose Show Layered objects from the Layer menu, which
selects the objects that have overridden one or more attributes
of the inherited layer.

Reverting an Object to be Defined by the Parent Layer

t To revert a layered object:

Select the object, or objects, and choose Revert Selected
Objects from the Layers menu.

This action everts the selected layered objects to be defined by the
parent, or base layer.

Selecting Multiple Objects

When using the Layer Selected Objects and Revert Selected Objects
menu items, you can select multiple objects.

t To select multiple objects:

Press Shift, and click on the objects.
-OR-
Using the Pointer tool, drag out a section rectangle around the
objects.
9-4

Object Layering
9.3. Indicating Variations in Layers
Once you enable an object to be layered, you can modify any layer
just as you would the default layer, by using XVT-Architect’s
various features. Most of your modifications will only change the
attributes of objects in the current layer, and the layers that inherit
objects from that layer. These actions includes the following:

• Sizing or moving objects in the Drafting Board

• Editing most object properties in the Strata

• Editing menus

• Editing strings and string lists

Note however that some actions are layer-independent and will
affect all layers. These actions include the following:

• Editing in the Blueprint

• Creation or deletion of objects

• Creation and deletion of commands and accelerators
(available in all layers as global information)

• Changing the enclosure of objects in the Drafting Board

9.4. Factory Code
You can generate Factory code for one, some, or all defined layers.
Using the Layer Editor, you can indicate which layers you want
XVT-Architect to generate in the Factory files.

XVT-Architect always uses the default layer when generating the
Shell files. If you have generated the Factory code for a layer, you
can modify and add code to create that layer. You can create the
entire layer, or you can create a portion of that layer.

Example: To create all objects from a layer, set the default Factory creation to
that layer. For example, suppose your project has a layer for a
French-speaking locale named “FRENCH”. You can ensure that the
application uses this layer at runtime by setting the default factory
creation in your application class constructor like this:

factory.SetDefaultLayer(CFooFactory::FRENCH);

To create a portion of the layer, you would use the specific
constructor. For example, if you want to create the German window,
you would create that window using that constructor, like this:
9-5

Guide to XVT Development Solution for C++
CWindow* aWindow =
factory[CFooFactory::GERMAN].CreateWindow(
FavoriteWindow);

See Also: For more information on the Factory interface, see Chapter 8, Object
Factory.

9.5. Creating Localized Projects Using Object Layers
XVT-Architect’s layering capabilities allow you to create special
versions of the same application specialized for different needs, such
as language. In order to localize an application, you create a specific
layer to represent each locale. In general, an XVT-Architect
application is localized by going through the following steps:

1. Identify and define the locales that need support

2. Create a layer for each locale

3. Localize the attributes of the objects in each layer

4. Generate a localized factory

Each of these steps is described in detail below.

See Also: XVT differentiates between internationalization and localization—
the characteristics and needs of your end users will determine
whether you fully implement both in your application. For more
information about internationalization and localization, including a
comparison of the two processes, refer to the chapter on Multibyte
Character Sets and Localization in the XVT Portability Toolkit
Guide.

9.5.1. Choosing and Defining Locales

The first step in localizing an XVT-Architect application is to define
the attributes of the locale.

A locale usually corresponds to a particular geographic area or
district that shares the same language and the same conventions for
representing culturally meaningful information.

9.5.1.1. Defining the Attributes of the Locale

To localize an XVT-Architect application, use the Global Options
dialog, shown in Figure XXX. To invoke the Locale Options Editor,
select Options=>Global, and within the dialog select the Locales tab.
The contents of the Locales tab is shown in Figure XXX.

[Place snapshot of dialog]
9-6

Object Layering
Using this dialog, you create new locale definitions which are then
displayed in various Locale list boxes, such as the one in the Layer
Editor. Once created, you can reselect any of the locales to edit its
settings. The settings you can modify are:

Name
Enter the string you wish to use to identify the locale. This name
is used throughout XVT-Architect to refer to this locale.

Codeset
The codeset used to represent the characters of the language
used with this particular locale. Before adapting your
application strings and help files, you must select a character
codeset that supports the target language. In making this
decision, evaluate the language characters that must be
represented, the fonts that support these characters, and the
relative availability of these character codesets and fonts on
your target windowing and operating systems.

Advanced
Reserved for future use. (Future attribute settings may include
date formatting, monetary formatting, color preferences, etc.)

XVT-Architect pulls its codeset definitions from files created with
XVT’s codeset mapping tool, and uses these codeset definitions to
“codeset map” each textual object. The conversion itself occurs
inside XVT-Architect.

To locate these codeset files, XVT-Architect searches the ...bin/
codemaps directory in the $XVT_DSP_DIR path. Each time you
invoke the Locale Options Editor, the directory is searched and
available codeset files are presented as choices for each locale.

See Also: Refer to your native platform documentation for more information
on setting up a system to support a particular locale.
For more information on XVT’s codeset mapping tool, refer to the
XVT Platform-Specific Book for your platform.
Different codesets used on the various platforms that XVT supports
are listed in section A.2 in Appendix A.
9-7

Guide to XVT Development Solution for C++
9.5.1.2. Scope of Locale Definitions

Locales are defined via the Global Options dialog, using the Locale
Options Editor. This means that the definitions of locales are stored
in XVT-Architect’s global options file. A global options file is
associated with each version of XVT-Architect on each platform.
Since all projects have access to these files, the locales themselves
are not part of any project. Consequently, your locales must be
defined on each platform where you are running XVT-Architect.

Implementation Note: Different platforms use different codesets for representing the same
language. For example, the codeset used to represent Swedish on a
Macintosh is not the same as the codeset used on a Windows
platform. The Locale Options Editor allows you to correctly assign
codesets for each locale for each supported platform.

9.5.2. Creating Layers

The second step in localizing an XVT-Architect application is to
create a layer for each locale. To create or edit a layer, open the
Layer Editor, shown in Figure XXX.

[Place snapshot of Layer Editor]

Once you have created a layer, you can assign it its own locale by
choosing from a list of locales known to XVT-Architect. This list is
displayed in the list button near the bottom of the Layer Editor. The
locales listed there correspond to those created earlier using the
Locale Options Editor.

After you assign a locale to a particular layer, XVT-Architect
automatically transforms certain object attributes to match the
settings chosen for an application. For example, XVT-Architect
ensures that the strings displayed by the objects of each layer are
processed using the correct codeset defined in the locale of the layer.

See Also: For more information on the fundamental concepts of layering, refer
to section 9.1.
For more information on how to use XVT-Architect’s Layer Editor,
refer to section 9.2.

9.5.3. Localizing Each Layer’s Objects

After creating a layer and assigning it a locale, you may need to
adjust specific objects for the locale. This frequently includes
changing the position or size of some objects. You may also need to
choose different colors or images for certain contexts.
9-8

Object Layering
9.5.3.1. Replacing Colors and Graphics

End users will be more successful using your application if it
conforms to their expectations and does not contain culturally
offensive symbols or colors. Be sure to replace any locale-sensitive
colors and graphics (drawn bitmaps, icons, or images) with ones
appropriate to your target locale.

See Also: For more information on externalizing colors and graphics (to
simplify the process you use when localizing your XVT
applications), refer to the chapter on Multibyte Character Sets and
Localization in the XVT Portability Toolkit Guide.
To see hundreds of examples of international symbols used in
various fields of endeavor, refer to Symbol Sourcebook: An
Authoritative Guide to International Graphic Symbols, by Henry
Dreyfuss, published by Van Nostrand Reinhold, New York, N.Y.,
1984.

9.5.3.2. Translating Strings

In almost all cases, the localization process involves translating the
text displayed in the application to the correct language. Any strings
that are displayed to your users are candidates for language
translation. These include, but are not limited to, menu item titles,
keyboard accelerators and mnemonics, window titles, dialog titles,
control titles, text and mnemonics, error messages, and help topics
and text.

The following subsections describe methods you may wish to
consider to translate the various textual components of your user
interface.

Note: When translating strings directly in XVT-Architect, you must be
working at a system that has been set up to support the language(s)
and any special codesets that are required to represent those
language(s).

Object Titles

The most direct method for translating text displayed in the views of
the application is to edit the titles or text contents of those objects
directly. To do this, you select a specific view at a time and bring up
its Object Strata. Of course, this method of translation is not very
convenient and would be inefficient for a large project.
Nevertheless, this method is sufficient when you only need to
change a few view titles at a time for different locales.
9-9

Guide to XVT Development Solution for C++
String Editor

A more robust method for translating most strings is to open the
String and String List Editors for the project. The function of these
editors is to simultaneously display all the strings that the
application will ever display at runtime inside its various views. The
editors provide a “one-stop” place for translating all strings in a
convenient and efficient manner. After making the changes, the
views in XVT-Architect will display their newly translated titles and
text contents.

See Also: For more information about the String and String List Editors, refer
to Chapter 7, Editors.

Menu Titles

Each menu in an application can be translated directly by editing the
titles of each menu item. Menu item titles are not displayed by the
String or String List Editors, so they must be edited within the Menu
Editor.

You may not need to translate the titles of standard menus, e.g.,
M_FILE, M_EDIT, M_FONT, and M_HELP, since the XVT Portability
Toolkit already provides localized versions of them for five
languages.

See Also: For more information on localizing menus with XVT-Architect,
refer to section 7.1.2 on page 7-7.

Import/Export Files

Another convenient way to translate all strings in an XVT-Architect
application is to export the project. The exported project contains a
set of text files that can be manipulated with a text editor. This is
especially convenient when you have decided to use a third party to
help you with the translation, since the text files can be translated
using any word processor running on virtually any platform the
“third party” wishes to use.

See Also: For more information about the content of the exported text files,
refer to section 11.1.1 on page 11-2.
9-10

Object Layering
Help Topics and Help Text

XVT provides pre-translated help topic text for several of the
reserved topic symbols, including XVT_TPC_HELPONHELP,
XVT_TPC_KEYBOARD, and others. You have access to this pre-
translated help topic text at the XVT Portability Toolkit level.

A basic subset of help topics have been translated into the following
five languages:

• Japanese

• Italian

• French

• German

• English

Help source text files are compiled, using helpc, into binary
resource files. The resultant binary file can be associated with your
XVT application at start-up time or runtime. This means that a
program executable can be the same in all environments and only the
binary resource files (including help) have to be customized for a
target locale.

Help source text files and the binary help files generated by helpc
are portable between XVT-supported platforms if the target
character codesets are compatible. Specifically, characters used in
the help source files must come from the invariant character codeset.
U.S. English and Japanese Shift-JIS are generally the only two
languages and character codesets for which this is true.

See Also: For more information on providing help with your XVT
applications, refer to the chapter on Hypertext Online Help in the
XVT Portability Toolkit Guide.
For more information on the invariant character codeset, refer to the
chapter on Multibyte Character Sets and Localization in the XVT
Portability Toolkit Guide.

9.5.4. Generating a Localized Factory

The final step of the localization process is to generate an
XVT-Architect factory that represents the locale for the executable
application. The two options when doing this are:

Generate all layers
Generate a factory file that contains all layers of the application.
When you do this, your application end users will be able to
9-11

Guide to XVT Development Solution for C++
choose a layer, or locale, at runtime. However, generating all
project layers results in a larger factory file.

Generate just a few layers
Limit the generation to just the one or more layers that are
needed by the executable that you are currently building for a
particular group of end users. This results in a smaller factory
file, but the application is restricted at compile time to support
only the generated layers, or locales.

For either approach, the Layer Editor allows you to specify which
layers should be generated in the factory. To find out how to select
the layer to use within the generated application, see section 11.2 on
page 11-2.
9-12

Customizing XVT-Architect
10
CUSTOMIZING XVT-ARCHITECT

10.1. Where to Save Shell and Makefile Templates
To change where XVT-Architect searches for its shell and makefile
templates, select Options=>Global after starting XVT-Architect—this
opens an Options dialog. Click the Generation tab of the Options
dialog, then enter a new path in the Shell Path field.

Note: You can make a similar change by selecting Options=>Project, but
then the new path is used for the current project only. (In previous
releases of XVT-Architect, the path to the shell and makefile
templates was set using the environment variable XA_SHELL_PATH.)

10.2. Number of Files Used to Store Generated Factory
Code

To change the number of files used to store generated factory code,
select Options=>Global after starting XVT-Architect—this opens an
Options dialog. Click the Generation tab of the Options dialog, then
enter a new number in the Factory File Count field.

Note: You can make a similar change by selecting Options=>Project, but
then the change affects the current project only. (In previous releases
of XVT-Architect, the number of files used to store generated
factory code was set using the environment variable
XA_FACTORY_FILE_COUNT.)
10-1

Guide to XVT Development Solution for C++
10.3. File Extension Used When Generating Shell or
Factory Files

To change the file extension used when generating shell or factory
files, select Options=>Global after starting XVT-Architect—this
opens an Options dialog. Click the Generation tab of the Options
dialog, then enter a new string in the Source File Extension field. The
extension string you specify must include the period. Also, the string
must constitute a valid extension for your platform, specifically, no
more than three characters on platforms that require eight-dot-three
filenames.

For example, you can set the filename extension to “.cxx”, forcing
XVT-Architect to append this extension rather than the default
“.cpp” extension. Many platforms do not limit the length of
filename extensions, and XVT-Architect does not, either. In other
words, you can define the filename extension to be as many
characters as you wish, as long as that string is valid for the platform
on which you are compiling.

Note: You can make a similar change by selecting Options=>Project, but
then the change affects the current project only. (In previous releases
of XVT-Architect, the file extension of generated files was set using
the environment variable XA_FILE_EXTENSION.)
10-2

Import/Export
11
IMPORTING AND EXPORTING STRINGS

XVT-Architect provides you with the ability to import and export
strings and menu titles of a project. Using the import and export
feature, you can do the following:

• Import strings into an XVT-Architect project

• Export XVT-Architect project strings to a human-readable
format

• Export the layers of a project, so that they can be localized
and then imported back into XVT-Architect

When you export a file from XVT-Architect, you create an
“externalized project.”

This chapter describes the format of the “externalized project,”
and it describes how to use the importing and exporting feature.

Note: Before you import or export the strings of a project, you should have
an understanding of using XVT-Architect. In particular, you should
understand object layering.

See Also: For more information on object layering, see Chapter 9, Object
Layering.
11-1

Guide to XVT Development Solution for C++
11.1. Externalized Projects
An externalized project consists of several files containing the
project information. Each file is referenced in the master file.

A master file contains an “overview” of an externalized project’s
information. It also indicates the file in which specific information
is stored. The master file contains the following:

• Name of the project from which it originated

• The layers in the project (that have been exported)

• The classes of objects that are in the project, separated by
layer

• The locations of these instances of data

See Also: For more information about exporting strings for the purpose of
localizing an XVT-Architect application, refer to section 11.2.1.

11.1.1. Export File Types

Two types of export files are generated. The first type is a file with
the extension .ame. This file is an index that tells you where to find
externalized data specific to a specific object type in XVT-Architect.
The other type of export file has the extension .aeo. These files
contain the actual object definitions for the contents of the project.

Each layer has its own set of object files. An object file contains all
of the instances of a specific class of object in that layer. An object
file first enumerates the attributes of the class, and then lists the
values for each instance of that class.

11.2. Exporting Project Strings
You can export XVT-Architect project strings to the externalized
project format.

t To export XVT-Architect project strings:

1. Choose File=>Export Strings; the Export Strings dialog is
displayed.

2. In the Save File dialog that is displayed, indicate the location
and name of the master file. The default filename extension of
a master file is .ame.
11-2

Import/Export
The Export dialog contains a list of all the layers in the project.When
you click OK, all layers in the list are exported. The entire
externalized project is saved in the same location.

Once you export the strings, it is best not to modify the project
(.amf) with XVT-Architect until the strings are imported back into
XVT-Architect. The externalized strings are identified by IDs
that are referenced by the objects in the XVT-Architect project.
Modifying the project could invalidate some of the ID references.

11.2.1. Exporting Strings for Localization

One obvious reason to export a project is to localize one or more of
its layers. XVT-Architect generates numerous files, but you only
need to localize a small subset of them. Follow the standard steps for
exporting, as described in section 11.2. When you export a layer, all
strings in it are located in a single object file, and it is easy to
translate the strings in that file.

XVT-Architect generates all strings for each layer in a separate file.
This includes strings used inside views as well as the titles of menu
items. The first step you must take after exporting the project is to
open the project’s .ame file and use it to identify the files for each
layer that contain the text of the application. For example, the
following is a portion of the .ame file generated for the sample
project in ...samples/arch/i18n:

project I18N
layer Spanish DEFAULT
layer French DEFAULT
objfile 0 CStringRWC DEFAULT 0 00004e90.aeo
objfile 0 CStringRWC Spanish 1040 41004e90.aeo
objfile 0 CStringRWC French 1041 41104e90.aeo
objfile 0 PAUserString DEFAULT 0 00005617.aeo
objfile 0 PAUserString Spanish 1040 41005617.aeo
objfile 0 PAUserString French 1041 41105617.aeo
...

This project contains three layers: Default, Spanish, and French. The
three lines of the file highlighted with the callout represent the three
files that define all the displayable strings (or “UserStrings”) in each
layer. Once the strings in each file are translated to the desired
language, the project can be re-imported into XVT-Architect, and
will appear to be localized.

Tip: To translate these files into another language, or to have them
translated by a third party, you must: 1) have access to an editor that
supports the target language, 2) have fonts for that language, and
3) have access to the character codeset that matches the language
and platform from which XVT-Architect will import the file.

user strings for
each layer of project
11-3

Guide to XVT Development Solution for C++
11.2.2. Additional Files that Can Be Localized

Both at the Portability Toolkit level and at the XVT-Power++ level,
XVT provides localized versions of its standard resource text and
help source text for U.S. English, German, French, Italian, and
Japanese. These localizations are encapsulated in include files
referenced by XVT URL and help source text files. You may control
the inclusion of these files by defining a LANG_* constant on the
command line for curl or helpc, or by defining the constant in your
source files.

If your target locale is not one of the encapsulated locales listed
above, you create your own external resource and help source text
files. Files you will need to translate (and rename) include
uengasc.h, pengasc.h, hengasc.h, and ERRCODES.TXT. You
also need to modify url.h to add references to the names of the
newly translated files.

See Also: For more information about this alternate approach to
internationalization and localization, refer to the chapter on
Multibyte Character Sets and Localization in the XVT Portability
Toolkit Guide.

11.3. Importing Project Strings
You can import externalized project strings into XVT-Architect.

t To import externalized strings:

1. Open a project (.amf) file.

2. Choose File=>Import Strings, and specify a master (.ame) file that
contains the strings for the project.

XVT-Architect begins to read the strings and inserts them into the
project’s string manager and menubars. The objects in the project
that use string resources will then start using the newly imported
strings.

11.3.1. Detecting Problems

When XVT-Architect encounters a problem during the import
process, it stops the process, reports the problem, and allows you
to choose how to handle the problem.

For example, if there is an object ID conflict between the existing
XVT-Architect project and the project that you are importing,
XVT-Architect stops importing and opens a dialog that allows you
11-4

Import/Export
to handle the problem in different ways. You could choose to give
the imported object a unique ID, skip the imported object in the
import process, or override the existing object.

11.3.2. Detecting Errors

If XVT-Architect encounters an error during the import process, it
stops the process and opens a dialog that describes the problem. For
example, if XVT-Architect detects a syntax error in the external
project files, or if the master file references a file that does not exist,
you are alerted with the dialog. You can then fix the problem and try
to import the project again.
11-5

Guide to XVT Development Solution for C++
11-6

Application Programming with XVT-Power++
12
APPLICATION PROGRAMMING WITH
XVT-POWER++

This chapter gives you an overview of the roles assigned to different
parts of the XVT-Power++ system so that you will know how the
various components interact with one another. The main parts that
are discussed are: Application, Document, and View. The chapter is
organized in terms of the specific development tasks that you are
likely to perform.

12.1. Application Level
The application level of an XVT-Power++ application controls
various aspects of the program: starting it and shutting it down and
initializing the network connections, database connections, and any
other connections needed by the application.

The following development tasks are handled at the application
level:

• Controlling the program

• Handling application startup and cleanup

• Providing global objects and global data

• Getting access to global objects and global data

• Finding out about global definitions

• Creating documents

Each one of these tasks is now discussed in more detail.
12-1

Guide to XVT Development Solution for C++
12.1.1. Controlling the Program

Each XVT-Power++ application has one CApplication object that
takes the thread of control when the program is started. This object
is the first one to be instantiated and the last one to be destroyed.
CApplication is an abstract class from which you derive the specific
application object for your program.

Once the CApplication object is instantiated, it sets up any default
menus and may put up a menubar, display a splash screen, or display
an About window. It has basic functions for managing and creating
documents and for communicating with different objects within the
application through the use of XVT-Power++’s commands and
messages. It also provides some basic means of communicating with
the user, such as bringing up dialog boxes to open files, set up
printing, create a document, add a document, notify all documents to
close, and indicate which document has a particular piece of data.

12.1.2. Handling Application Startup

Your program transfers control to XVT-Power++ inside of main.
To start your program, giving control to XVT-Power++, create an
instance of your user-derived CApplication class and invoke the Go
method. An example of this procedure, found in the startap.cxx file,
is shown here:

void main(int argc, char* argv[])
{

CMyApp theApplication;
theApplication.Go(argc, argv, MY_MENU_BAR_RID,

ABOUTBOX, "BaseName", "Application Name",
"Task Title");

}

Since XVT-Power++ never returns control to your program once the
Go message is processed, no code should be placed after the call to
Go.

12.1.3. Handling Application Cleanup

The CApplication class has a virtual Shutdown method that is invoked
during the termination of the program. You can override this method
to handle any special cleanup required by your application.
12-2

Application Programming with XVT-Power++
12.1.4. Providing Global Objects and Global Data

XVT-Power++ provides a class, CGlobalUser, which you optionally
can derive. Use the derived class to define your own references to
global objects, flags, or attributes. If you derive off this class, keep
in mind that it is instantiated by your user-defined CApplication object
and is processed through the CApplication initializer.

Another class, CGlobalClassLib, contains the global variables for the
class library. This class is privately defined, and you should not add
any application-specific information to it.

One example of a global object is the XVT-Power++ desktop. It is a
class in charge of managing the windows on the screen (e.g., their
placement and stacking order). Each application has one desktop
object that is global to everything and that is activated through
CGlobalClassLib.

12.1.5. Getting Access to Global Objects
and Global Data

Your application gets access to all global data through CObjectRWC,
which is initialized through the CApplication class. The CApplication
initializer allows you to set up the global user
data for your user-derived application object.

CObjectRWC contains two static functions: GetGU() for user-supplied
globals and GetG() for XVT-Power++ globals. Anything that inherits
through CObjectRWC has access to the global data through one of
these functions. You must set each of these functions to an actual
object. When a CGlobalUser object is created, the CBoss initializer
informs CBoss of the existence of the global utilities for the user
application.

12.1.6. Finding Out About Global Definitions
in XVT-Power++

The class that contains global definitions for XVT-Power++ is
Global.h, which is actually a file. You may need to refer to it
occasionally to find out how something is defined; do not modify
this file.

Consult Global.h when you need to know about glue types, default
parameters, internal XVT-Power++ commands, etc. You may need
to know the resources that XVT-Power++ defines internally or the
XVT-Power++ ID number base.
12-3

Guide to XVT Development Solution for C++
See Also: For more information about Global.h, see the description of Global
in the online XVT-Power++ Reference.

12.1.7. Creating Documents

Your user-defined CApplication object is responsible for instantiating
one or more user-defined and -derived CDocument objects.

12.1.8. Propagating Messages

CBoss, which is never itself instantiated, supplies the basis for the
event and message-passing structure. It has three methods for event
hooks that are located inside objects throughout the application
framework hierarchy: DoCommand, DoMenuCommand, and ChangeFont.

DoCommands can be passed up the entire hierarchy, from the deepest
subview on up to the window, from the window to the document,
and finally from the document up to the application.

It is very important when you overload a DoCommand that
it call the inherited DoCommand by default, which in turn calls the
CApplication object’s DoCommand. Calling the inherited DoCommand as a
default permits the propagation of data.

12.1.9. Creating a Desktop to Manage Screen
Window Layout

The user-derived CApplication object creates one CDesktop object per
application. All core XVT-Power++ classes have access to the
desktop through the global references stored by the following:

CObjectRWC::G->GetDesktop();

12.1.10. Setting Up Menus and
Handling Menu Commands

The setting up of menus is typically done in the following two
places:

• For a task window, the menubar is set up in CApplication's
SetUpMenus method

• For any other window, the menubar is set up in the respective
window’s constructor

Menu commands are propagated via the CBoss virtual
DoMenuCommand method. This method allows the handling of
12-4

Application Programming with XVT-Power++
menu commands at a variety of levels—either at the window, the
document, or the application levels.

12.2. Document Level
The document level of XVT-Power++’s application framework is
responsible for accessing and managing data. The CDocument object
manipulates files or internal pieces of data and acts as the link
between the application and the views of the data. A document
cannot itself display data, so it instantiates a window in which the
data can be viewed.

The following development tasks are handled at the document level:

• Getting access to data

• Creating windows

• Creating variations on the basic window

• Creating dialog windows

• Managing data

12.2.1. Getting Access to Data

Objects of the CDocument class are responsible for providing access
to the model data to be displayed inside views, in the form of files,
records, hooks to a database, and so on.

How a document obtains its data is up to the individual application.
If a document is to be in charge of a file, it must be able to open a
file, read and write from it, and close it. If a document needs
information from a database, it must be able to make the connections
to the database, select from it, commit changes to the database, and
so on. You may write your own data access methods, or you can use
XVT-Power++’s TDI adapter classes. You may choose to put some
of the code for obtaining and setting up data in the CDocument
constructor—if there is not much initial setup to do or if the
document is going to use the data upon creation.

12.2.2. Managing Data

A CDocument object serves as a central means of communication for
changes and updates in different windows. It has hooks for saving
data, printing it, closing it, and so on.

Even after the document is created, you can delay the obtaining of
data until a method of the document is called. This depends on how
12-5

Guide to XVT Development Solution for C++
you design your documents. Basically, keep in mind that you must
add methods that obtain data, and these methods should be called at
different points by the application. A CDocument-derived class could
override the CDocument DoOpen method so that it is called by the
application after it creates the document or when a user selects Open
from the menubar.

Automatic Data Propagation (ADP) and Transparent Data
Integration (TDI) both provide a way for you to build complex
models and have associated views updated automatically. Using the
Model View Controller approach, ADP automatically propagates a
change of data from objects to other objects. TDI is a good
alternative to ADP when working with complex data sources
through an abstract interface. TDI can serve as a bridge between
objects developed independently in separate products/projects.

See Also: For more information on ADP, see Chapter 29.
For a comparison of ADP and TDI, see section 30.4.

12.2.3. Creating Windows

Objects of the CDocument class are responsible for instantiating and
managing a common set of windows. Group your application
windows based on functionality or other similarities and use one
CDocument object per group to create and manage the windows. The
BuildWindow method of CDocument is where you put the code that
instantiates a window. The BuildWindow mechanism can be called
from DoOpen or DoNew.

12.2.3.1. Creating a Task Window

Inheriting from XVT-Power++’s basic window class, CWindow, is a
variant child class: CTaskWin.

CTaskWin is used on platforms that require a task window to enclose
all other windows in the application, such as MS-Windows,
Windows NT, Windows 95, and OS/2.

12.2.3.2. Creating Modal Windows

Use the DoModal method of CWindow to make a window modal. Modal
windows are useful when your application needs an item of
information or a commitment from the user before it can continue.
When a modal window is opened, it takes over the screen and
disables all other windows so that nothing else can happen while it
is open.
12-6

Application Programming with XVT-Power++
12.2.3.3. Creating Dialog Windows

XVT-Power++ has a class for creating dialog boxes: CDialog. In
XVT-Power++, dialog windows are different than regular windows.
Dialogs are defined in URL resource format and thus do not inherit
the properties of CWindow, such as the ability to nest other objects.

Dialogs can contain only objects that are defined as controls in a
URL resource file Like windows, dialogs can be made modal with a
call to CDialog:DoModal() so that they take over the screen when they
are invoked, disabling all other objects and operations until the user
clicks on the necessary button or responds to the dialog in some
other way that is indicated. In contrast, a regular, modeless dialog
does not take over the screen and can go into the background when
another window or dialog is brought to the front.

See Also: For more information on dialogs, see the “Dialogs” chapter in the
XVT Portability Toolkit Guide.
For more information on using resources, see the “Resources and
URL” chapter in the XVT Portability Toolkit Guide.

12.3. View Level
The view hierarchy is the most extensive branch of XVT-Power++.
It comprises all of the classes that display some type of object on the
screen when they are instantiated. The parent of all these classes is
CView, an abstract class.

12.3.1. Displaying Data

Any class that inherits from CView can display itself.This includes
CWindow, which constitutes the link between views and documents.
CWindow is responsible for displaying data. The window is the
topmost view in the nesting of views.

CWindow is an abstract class. but each CWindow object corresponds to
an actual window on the screen. A window object can be of any
XVT Portability Toolkit type and receives all window events. Most
of the window management, such as moving and sizing, is done by
the window manager or the XVT-Power++ desktop. (CDesktop is a
class in charge of managing the placement and stacking order of
windows on the screen.)

See Also: For information on the XVT window types, see CWindow in the
online XVT-Power++ Reference; also see the “Windows” chapter in
the XVT Portability Toolkit Guide.
12-7

Guide to XVT Development Solution for C++
12.3.2. Supplying Native Controls

CNativeView is an abstract class from which several different types of
controls have been derived for you, among them buttons, icons,
check boxes, scrollbars, list edits, list buttons, list boxes, and radio
buttons. When native view classes are instantiated, they adopt the
look-and-feel of the native window system in which the application
is running.

Native views are the means of communication between the
application and the user who is operating the mouse. The user
performs such operations as:

• Clicking on a button to start an event

• Scrolling by clicking on a scrollbar

• Making selections by clicking on check boxes

• Making different choices by clicking on radio buttons

• Selecting an item from a list box

While native views can be placed inside views, they cannot contain
any views themselves.

12.3.3. Nesting One View Within Another

CSubview and its subclasses can nest views recursively within other
views. For example, you can display your own bitmap drawings and
other GUI objects inside subviews. This is the basic property that
distinguishes subviews from other classes in the CView hierarchy.
CSubview classes can propagate events to all of their nested subviews.
Subviews can have a selected view or selected key focus, which is the
first (and possibly only) subview to receive a certain kind of event.

12.3.4. Drawing Basic Shapes

The shape hierarchy, probably the most self-explanatory of the
XVT-Power++ view hierarchies, includes squares, circles, arcs,
polygons, rectangles, and other basic shapes that a user can draw.
Some of the objects can be rotated. Application designers can use
the shapes to decorate windows and other objects or to communicate
with the user pictorially.

Like all objects in the frame hierarchy, the XVT-Power++ shapes
can receive and communicate events. Like all views, shapes can
generate automatic DoCommands when the user clicks the mouse on
them. Thus, they are useful not only for purposes of decoration but
12-8

Application Programming with XVT-Power++
also as building blocks to create other objects, such as new buttons.
Several of the shapes are very easy to create. For example, you can
easily create the following:

• A polygon by giving a number of sides

• An arc by giving starting and ending positions

• A circle by giving a center and a radius

Suppose that you want a stop sign shape that can act as a button.
You would create an octagon using the regular polygon class, nest
within this shape a piece of text that says “STOP,” and then give
it a command number indicating that you want it to act as a Stop
button. The result is a new button object that allows the user to
interact with your application.

12.3.5. Creating Grids of Cells

A grid object is a grouping of cells that are arranged into rows and
columns. XVT-Power++ offers three grid classes: the abstract class
CGrid, and the classes CFixedGrid and CVariableGrid that allow you to
create grids with either fixed or variable-sized cells, respectively.
For a color palette window in which you want all squares
representing color selections to be the same size, you would use the
fixed grid. In a spreadsheet, however, you would use the variable
grid so that the columns can have different widths.

 A grid has these characteristics:

• It can be either visible or invisible

• It is placed inside a view or window

• It enforces sizing and clipping of items

Grids are useful in CAD-type applications or other applications
where you want to set the granularity of placement within the
drawing area or designing board to a set of grid cells rather than to
pixel locations. An item inserted into a grid snaps to a certain corner
of its cell and can be centered within the cell; objects snap as they
are moved or sized within a cell.

See Also: For information about two classes that provide other approaches
for displaying data in neatly aligned rows and columns, see the
descriptions of CTreeView and CTable in the online XVT-Power++
Reference.
12-9

Guide to XVT Development Solution for C++
12.3.6. Displaying Lists of Selectable Items

Use the CListBox class to display a scrollable box containing a list of
selectable text items. The list box is used for choosing from a listing
of directories and for navigating among directories.

12.3.7. Providing Text Editing Facilities

The abstract class CNativeTextEdit and its subclasses provide:
1) a one-line text area, 2) a variable-sized text editing area, and 3) a
scrolling text area.

CNativeTextEdit objects can be nested inside a subview, clipped, or
hidden. This class has easy-to-use methods for getting and setting
part or all of the regular and selected text. It supports quick selection
(e.g., selection of all text upon any event, such as clicking once, and
backspacing). CNativeTextEdit provides text validation hooks upon
key events.

Below CNativeTextEdit, the text editing tree branches out into these
three variations of text editing objects:
NLineText

Commonly used for one-line text entries, such as a place for
users to enter their everyday name or computer username.

NTextEdit
A variable-size text editing area in which you can set several
attributes, to scroll or not to scroll, for example.

NScrollText
Provides scrollbars and automatic scrolling.

Note: All of these classes can handle multibyte characters (in a multibyte-
enabled XVT application).

12.3.7.1. CText versus CNativeTextEdit

CText is a static text drawing class that supports control characters
such as tabs, carriage returns, and line feeds. CText also supports
justification and multibyte (wide) characters, and can be customized
with specific fonts and colors. It is useful for one-line instructions,
titles, and button names.

You can always use the more flexible NTextEdit class in read-only
mode to display single lines of text inside a window or subview.
However, while NTextEdit is more flexible than CText, it also carries
more baggage with it than you may want for one-line displays of
read-only text.
12-10

Application Programming with XVT-Power++
12.3.8. Designating an Area of the Screen
as a Sketching Area

The CSketchPad class is provided for interaction with the user who
wants to dynamically draw or create new objects inside a window.
CSketchPad can be a basis for CASE or drawing programs.

Like most drawing programs, CSketchPad has an area—called a
sketchpad in XVT-Power++—in which the user can drag the mouse
to sketch out or draw such shapes as rectangles, circles, lines, and so
on. The user can drag out a region to select multiple objects within
that region.

Figure 12.1. Defining a sketchpad on the screen

12.3.9. Creating a Rubberband Frame

To get a rubberband frame that surrounds a CView object, enabling it
to be dragged or sized with the mouse, use CWireFrame. This CView
class acts as a helper to all other CView classes. Typically, you do not
need to be aware of CWireFrame since it is used internally. However,
you can override this class and modify the way the wire frame draws
or alter the way the rubberbanding is implemented.

12.3.10. Representing an Area on the Screen with a
Virtual Size Larger Than its Display Area

CVirtualFrame is an abstract class that has two regions associated with
it—a real, visible region that is located inside a window or some
other view, and a virtual region. Its subclass, CScroller, represents a
virtual frame with scrollbars attached to the viewing area.

Virtual frames are created for cases when the screen is not large
enough to display all of the viewable information at once. The
virtual frame allows you to create subviews that are of any virtual
size you want (e.g., 3,000 pixels by 5,000 pixels). The information
is actually displayed on the screen inside the real frame, which can
be much smaller than the virtual frame. Only a certain area of the

dragged
region
12-11

Guide to XVT Development Solution for C++
viewable information can be viewed through the real frame at one
time.

Figure 12.2. Virtual frames display small portions of large datasets

The user views the different areas of the virtual frame by scrolling
the real frame up and down. CVirtualFrame is used in conjunction with
the CScroller class, which attaches scrollbars, either vertical or
horizontal or both, to the real frame area. Thus, the user can scroll
the virtual frame around to view whatever displayable text resides
inside the virtual area.

12.3.11. Attaching Scrollbars to a Window or View

XVT-Power++ contains two classes that pertain to scrollbars.
NScrollBar provides a horizontal and/or vertical scrollbar that has the
look-and-feel of scrollbars in the native window manager. These
scrollbars can be created anywhere inside a CSubview. Several views
automatically create NScrollBar objects to allow users to scroll though
the view’s contents—this includes view classes like CScroller,
CListBox, NScrollText, and CTable.

The second scrollbar class is NWinScrollBar. NWinScrollBar provides
scrollbars that are instantiated internally when windows with
scrollbars are created. This is done by using the window creation
flags WSF_HSCROLL and/or WSF_VSCROLL as attributes during
window construction. These scrollbars are part of the window itself,
whereas NScrollBars are not attached to the window and can be
resized or moved around inside the window.

See Also: For more information about window creation flags, such as
WSF_HSCROLL and WSF_VSCROLL, see the “GUI Elements” chapter
in the XVT Portability Toolkit Guide.

0,0

65535,65535

“Real Frame”

data, data, data, data,

ta, data, data, data, da
12-12

Application Programming with XVT-Power++
12.3.12. Resizing and Moving Views with Glue

The CGlue class gives stickiness properties to objects. If an object has
an associated CGlue object, then its stickiness properties enable it to
stay fixed by a constant distance from the borders of its enclosure.
There are glue types for sticking an object to the bottom, top, left,
right, bottom-right, top-left, top-right, or bottom-left of a view—or
over all of the view.
12-13

Guide to XVT Development Solution for C++
12-14

Coding Conventions and Style Guidelines
13
CODING CONVENTIONS AND
STYLE GUIDELINES

This chapter presents the coding conventions and language/style
guidelines that XVT-Power++ follows. Awareness of these
guidelines will help you to use XVT-Power++ more efficiently.

13.1. File Structure
With few exceptions, XVT-Power++ consists of a set of C++
classes. The most basic rule is that there must be one class per file.
The name of a file matches the name of the class to which it pertains.
Each class has a pair of files, a .h (header) and a .cxx (source) file.
Thus, a class named CApplication would be stored in two files:
CApplication.cxx and CApplication.h. The .h file contains the
definition of the class and any other information that the class needs
in order to be accessed by users of the class. The .cxx file is the
source file; it contains the actual functions and methods for the class.

Occasionally, a header file will contain more than one class. In such
a case, the classes must be very closely related. One is a helper class
for the other.

Implementation Note: .cxx is the convention used by UNIX platforms. Substitute .cp on the
Macintosh and .cpp on DOS. This manual uses the .cxx convention.
13-1

Guide to XVT Development Solution for C++
13.1.1. Including Files for Usage

When you write a piece of code that uses a certain class, you must
include that class’s definition. The name of the file containing the
definition of the class may vary from platform to platform. For
example, on some platforms CRegularPoly is stored in a file
named CRegularPoly.h. However, for applications running
on MS-Windows, this is an invalid filename because DOS restricts
filenames to only eight characters with a three-character extension.

XVT-Power++ provides a special structure for including files that
allows you to name your files as you desire, without worrying about
platform restrictions. This structure is illustrated as follows:

#include "PwrDef.h"

#include CRegularPoly_i
#include CCircle_i
#include CScroller_i
#include CRect_i

This code uses the CRegularPoly, CCircle, CScroller, and CRect classes and
thus needs the definitions of those classes. Each class name with the
_i appended to it is a macro that finds the appropriate file containing
the class definition. Before you can include the classes, you must
include the XVTPwr.h file, which defines the macros.

13.2. Naming Conventions
This section describes XVT-Power++ naming conventions. It is not
exhaustive, but it does cover the most common cases. Mangling is
also discussed.

13.2.1. Classes

Class names begin with a prefix letter, a C for most classes.
XVT-Power++ requires capital letters rather than underscores as
separators. That is, the prefix and the first letter of each word in
the class name are capitalized. For example:

CApplication

CRadioGroup

Native classes use the prefix N. For example:

NButton

NScrollBar
13-2

Coding Conventions and Style Guidelines
The classes that are in the Rogue Wave toolkit use the prefix RW.
For example:

RWCString

RWOrdered

The classes that XVT-Power++ derives from other classes in the
Rogue Wave toolkit use the suffix RW, while classes that are also
collectable, derived from RWCollectable, use the suffix RWC.
For example:

CStringRW

CStringRWC

13.2.2. Data Members

Class data members use a lowercase prefix of its, it or is. The latter
two typically apply to BOOLEAN data members. For example:

itsData

itIsSelected

isCreateAll = TRUE

13.2.3. Methods

The initial letter of each word in a method name is capitalized, as
follows:

Draw

DoDraw

Event methods are handled by the view object itself, while DoEvent
methods are both handled and passed down to the rest of the
subviews, which, in turn, pass them on down to any subviews
they may contain. For example:

Draw
Draw this view object.

DoDraw
Draw this view object and inform all of its
subviews to draw.

Initializer methods use the class name but replace the class prefix
with an I, as follows:

IScroller

IIcon
13-3

Guide to XVT Development Solution for C++
The methods defined in the Rogue Wave libraries begin with a
lowercase letter, but the subsequent words in the method name
are capitalized. For example:

clearAndDestroy

getString

13.2.4. Class Statics

Static class methods or data members take as a prefix the name of
the class to which they belong. Also, constants appear in capitalized
letters (all-caps), as shown here:

CWireFrame::WIRESIZE // constant static

CWindow::itsNumberOfControls // not constant

CWindow::GetNumberOfControls() // a static method

13.2.5. Constants and Defines

The first word of a constant appears in all-caps. Any other words
must appear in either all-caps or initial caps. For example:

NULL

NULLIcon

MAXSize

13.2.6. Functions

Functions are not treated differently from methods. That is, the
first letter of each word in the function name is capitalized:

Foo

PrintMessage

Within the signature of a method or a function, the parameters
have a prefix of the to distinguish them from local variables:

theNewRegion

theData

13.2.7. Variables

Local variables have a prefix of a or an to distinguish them from
parameters for methods and functions:

aRect

anEnvironment
13-4

Coding Conventions and Style Guidelines
XVT Portability Toolkit-related names contain the word XVT,
as follows:

GetXVTWindow

itsXVTControl

Table 13.1 presents an overview of the naming conventions used by
XVT-Power++:

Table 13.1. Naming conventions used by XVT-Power++

Type Rule Example

XVT-Power++
CLASS NAME:

[PREFIX+[Word]] CRect

ROGUE WAVE
CLASS NAME:

[PREFIX(RW)+[Word]] RWOrdered

ROGUE WAVE-
DERIVED
CLASS NAME:

[PREFIX+[Word]+SUFFIX] CStringRW or
CStringRWC

DATA MEMBERS: [its+[Word]] itsPoint

STATIC MEMBER: [class::its[Word]] CWindow::itsPlatform

METHODS: [[Word]] DoSomething

INITIALIZER
METHODS

[PREFIX+[Word]] IScroller

ROGUE WAVE
METHODS:

[word+[Word]] clearAndDestroy

VARIABLE: [word+[Word]] charCounter

OBJECT: [a+[Word]] aPoint

XVT OBJECT: [XVT+[Word]] XVTWindow

PARAMETER: [the+[Word]] theItem

#define: [WORD] COMPILER

const: [k+[Word]] kPi

C++ FILE: [PREFIX+[Word]].[h|cxx] CRect.cxx

COMMANDS: [WORD]+cmd UPDATEcmd

ids: [WORD]+id UPDATEid
13-5

Guide to XVT Development Solution for C++
13.3. Mangling
Mangling is a useful utility that ensures that the names of
XVT-Power++ classes will not clash with the names of any other
classes that you define. Assume, for example, that you are also using
some other class library that, by coincidence, also contains a class
named CStringRW. The compiler and linker must be able to tell
whether the term “CStringRW” refers to the XVT-Power++ class of
that name or to another party’s CStringRW class.

By default, XVT-Power++ mangles the names of all of its classes
by giving them a prefix of PWR_. At compile time, XVT-Power++
converts its class named CStringRW to PWR_CStringRW. The
XVT-Power++ library does not have a definition for CStringRW;
rather, it has a definition for PWR_CStringRW. Thus, you do not
usually have to worry about name clashes.

Suppose you are in a file, foo.cxx, in which you want to use both the
XVT-Power++ CStringRW class and another party’s CStringRW class.
Immediately following the inclusion of the string header file, you
would put in the following line:

#undef CStringRW

In the rest of the file, you must explicitly put the mangling prefix on
the XVT-Power++ CStringRW class. CStringRW will now refer to the
other CStringRW class, and PWR_CStringRW will refer to
XVT-Power++’s string class.
13-6

Coding Conventions and Style Guidelines
Example: The following code shows how to avoid classname collisions:

// Include PwrFiles:
#include ...
#include CStringRW_i
#include ...

#undef CStringRW

// Include Non PwrFiles
#include ...
#include "SomeOtherCStringRW.h"
#include ...

// Code:

void foo(void)
{

CStringRW s1 = "This is a non-Pwrstring";
PWR_CStringRW s2 = "This is a Pwrstring";

}

// Now redefine CStringRW to be a Pwrstring:

#define CStringRW PWR_CStringRW

void goo(void)

{
CStringRW s1 = "This is a Pwrstring";
CStringRW s2 = "This too is a Pwrstring";

}

13.4. C++ Style Guidelines
This section presents C++ style guidelines that XVT-Power++ users
follow. Understanding them will enable you to use XVT-Power++
more efficiently; following them will make your code more
compatible with XVT-Power++.

13.4.1. const and enum

Use const and enum rather than #define whenever possible, allowing
your programs to take full advantage of C++’s type
safety, like this:

const float pi = 3.14159;

typedef enum {TRUE = 1, FALSE = 0} BOOLEAN;
13-7

Guide to XVT Development Solution for C++
Make full use of constant methods whenever applicable, as shown
here:

CRect CWindow::GetFrame(void) const;

A caller to GetFrame is assured that this call will not change the
state of the object through which it was called.

13.4.2. Inlines

Separate inlines from the actual class definition to avoid cluttering
the interface. Most inline code is placed in a separate include file
so that implementation is not revealed when the interface is the only
concern. For example:

File 1:

// File CRect.h

class CRect
{

public:
...
CRect Inflate(int theInflation);
...

};

#include "CRectInline.h"

File 2:

// File CRectInline.h

inline CRect CRect::Inflate(int theInflation)
{

// ... code ...
}

13.4.3. Overloaded Methods

XVT-Power++ strives to overload methods only while preserving
semantics. For example, the following two methods take different
parameters but have the same outcome:

CCircle::Size(int theNewRadius,
const CPoint& theNewCenter);

CCircle::Size(const CRect& theNewBoundingRegion);
13-8

Coding Conventions and Style Guidelines
13.4.4. Internal Structure of Classes

Classes are always organized as follows:

Class CApple
{

public:
// Data:
// Methods:

protected:
// Data:
// Methods:

private:
// Data:
// Methods:

};

When you organize your classes as shown here, users of the class
who are interested simply in the interface to the class need only look
at the top of the file. They do not have to wander through the entire
class definition looking at protected and private information that
they cannot call.

13.4.5. Function Parameters

Many times programmers calling methods or functions wonder what
they can validly pass into them, whether they need to delete what
they pass in later, whether they need to worry about their object
being modified or not modified, or whether the object they are
passing in will actually be copied into another object.

Because all of these questions arise, XVT-Power++ simplifies the
number of case situations that can happen for parameters when a
function is called. Thus, you should look at the type of the function
parameter, and, depending on the type, you can make some
assumptions about the semantics of the function call.

XVT-Power++ function parameters can have only one of the
following four combinations; these four flavors represent a
progression in the number of things that can happen, from least to
most. Of the four function parameter combinations, the non-constant
pointer is the case where the most things can happen, and XVT
recommends that you closely read the documentation on any method
taking such parameters in the online XVT-Power++ Reference.
13-9

Guide to XVT Development Solution for C++
13.4.5.1. Pass by Value

void SetId(int theNewId);

Normal pass by value semantics can be assumed. Objects of user-
defined types are seldom passed in this way. Instead, the syntax of
constant references (discussed below) is used. However, note that
from the caller’s point of view, the semantics of pass by value and
XVT-Power++’s use of constant reference are identical.

13.4.5.2. Constant References

void SetSize(const CRect& theNewSize);

Whenever a function takes a constant reference, the user can assume
pass by value semantics. The reference is used only for efficiency.
Thus, after the call, for example, the new size can be deleted without
side effects. In addition, calling SetSize twice with two independent
yet identical CRect objects has the same result each time. The identity
of the object pointed to is irrelevant.

13.4.5.3. Constant Pointers

int GetId(const CView* theView);

The address of the object is needed, but the object itself will not
be modified. The identity of the object pointed to is important to
the method. Furthermore, the function guarantees not to store the
address of the object for future use. After a call to the method, the
object might be destroyed or mutated.

13.4.5.4. Non-constant Pointers

void SetGlue(CGlue* theNewGlue);

The method requires the address of the object. Depending on the
method, the object pointed to may be modified or destroyed, or its
address might be stored for later usage. It is therefore very important
to read the documentation on such a method so that you can use it
correctly.
13-10

Coding Conventions and Style Guidelines
13.4.6. Return Values

The issues here are similar to those for parameters, except that now
we are concerned with what is returned. XVT-Power++ returns only
the following four values: temporary values, references, constant
pointers, and non-constant pointers.

13.4.6.1. Temporary Values

int GetId(void);
CRect GetFrame();

On the safest side are the temporary values. These are usually used
on the spot or are copied into local variables. Note that returning
temporary copies to large objects can be inefficient. XVT-Power++
sometimes avoids this by using reference counting. For example,
the following function retrieves a paragraph of text and returns a
temporary CStringRW object:

CStringRW NTextEdit::GetParagraph()

Since CStringRW is reference counted, making a copy of the entire
paragraph into a local object has very little overhead.

13.4.6.2. References

CRect& operator=(const CRect& theRect);

The return value can be used as an lvalue. XVT-Power++ guarantees
to return references only to the object through which the method is
invoked. References to newly allocated objects are never returned.
The example shown here makes possible the following assignment:

a = b = c;

13.4.6.3. Constant Pointers

const CEnvironment* GetEnvironment(void);

The pointer returned points to an object that must not be modified
or deleted. The compiler enforces the fact that the object pointed to
cannot be changed. Take care not to cast away the constants. The
pointer’s “life span” varies, depending on the function.The pointer’s
life span is the length of time the pointer remains valid. Will the
pointer be valid ten function calls from now? That is, will it still be
pointing to the same object? To find out how long a pointer will be
useful to you, read the documentation on the method in the online
XVT-Power++ Reference.
13-11

Guide to XVT Development Solution for C++
13.4.6.4. Non-constant Pointers

In this fourth case, simply a pointer is returned. Read the
documentation on the method in the online XVT-Power++
Reference to see what you are and are not allowed to do. Usually,
you are allowed to modify what the pointer points to, but be careful
about deleting the pointer. XVT-Power++ does not return non-
constant pointers if it can avoid doing so.

13.4.7. Inherited Methods

You can assume an is-a relationship when one XVT-Power++ class
is derived from another. Thus, only public inheritance is used unless
otherwise noted in the documentation. Following are two examples
of inherited methods:

CView::Size(const CRect& theNewRect);

CScrollBar::Size(const CRect& theNewRect);

XVT-Power++’s main goal when overriding a method, which
should be the goal of all XVT-Power++ users, is to maintain the
semantics of a method. The Size method of a view has its own
semantics, meaning that the view now has a new size, and that is all.
If the documentation says that this method simply sizes and resizes
the internal structure of the class and does not redraw it, then the
scrollbar Size method should only size the internal structures and not
redraw. Different derivations might change the implementation and
take care of some extra things the class has to do in order to deal with
the method, but they do not change the semantics or do anything that
is not expected of the inherited method.

13.4.8. Basic Class Utility Methods

There are some utility methods present in every XVT-Power++
class. Every class is guaranteed to have a constructor and a
destructor. Also, an assignment operator is defined for every class.
Many classes allocate some memory and have pointers to other
objects, so it is important to override the equal operator to ensure
that it is safe. The same is true of the copy constructor, which is
overridden everywhere for safety purposes.

Many times, usage of the copy constructor is not recommended;
sometimes its usage is disabled. Nonetheless, you are guaranteed
that your program will not crash because you have used an equal
operator or a copy constructor.
13-12

Coding Conventions and Style Guidelines
An additional zero-argument constructor is provided for as many
classes as possible. This constructor allows users to do such things
as create an array of class objects. However, many XVT-Power++
classes currently do not have a way to be constructed without any
parameters, and thus lack such a constructor.

13.4.9. Templates

XVT-Power++ does not use templates in its current implementation,
and it will not use them until they are more portably supported
across all XVT-supported platforms. Of course you are free to use
templates in your own code provided they do not present portability
problems among the platforms you need to support.
13-13

Guide to XVT Development Solution for C++
13-14

The Appl-Doc-View Hierarchy
14
THE APPL–DOC–VIEW HIERARCHY

This chapter describes:

• the tasks performed at the application level in
XVT-Power++’s application framework and also describes
the startup and shutdown mechanisms for applications

• the different tasks performed at the document level: accessing
data, building windows, managing data, and managing
windows

• the possible relationships between the various view objects in
the XVT-Power++ application framework

The hierarchy created by the application and its documents and
views is an important concept that once understood, will help you
use XVT-Power++ effectively.

14.1. Introduction to CApplication
CApplication is an abstract XVT-Power++ class that you must override
for each application that you write; it creates and manages the
application object. The application object resides at the top-level of
the XVT-Power++ application framework, performing several
application management functions. It controls the program from
start to finish—its direction, its modes, different documents that are
open at various times, and so on.

The application object initiates any object the program needs when
it starts running and cleans up after the program upon shutdown. It
also sets up the global objects and global data that are provided to all
objects through CObjectRWC. Moreover, the application class is
responsible for creating and managing the application’s documents.
14-1

Guide to XVT Development Solution for C++
14.1.1. Application Startup and Shutdown

The application object for each program is created in the main
function, which is located in the StartUp source file. The main
function creates an application object, giving it the information that
it needs upon creation, and then invokes a Go method. The following
code shows how to start an XVT-Power++ application:

void main(int argc, char* argv[])
{

CMyApp theApplication;
theApplication.Go(argc, argv, MY_MENU_BAR_RID,

ABOUTBOX, "BaseName", "Application Name",
"Task Title");

}

The definition of Go is as follows:

void CApplication::Go(int argc, char *argv[],
 short theMenuBarId,

short theAboutBoxId,
char *theBaseName,
char *theApplicationName,
char *theTaskTitle)

argc and argv are passed literally as they are supplied to main.
theMenuBarId is the resource ID number of the application’s menubar,
theAboutBoxId is the resource ID number of the About box, and
theBaseName is the name of the application stored on disk. The string
passed to theApplicationName is used as the title of the windows
belonging to the application. Finally, the string passed to theTaskTitle
is used as the title of the application’s task window, if there is a task
window.

Once the Go method is called, the XVT-Power++/XVT Portability
Toolkit system takes over. Execution is never returned to the main
function. When the application starts executing, the XVT-Power++
library hooks up to the main event loop of the XVT Portability
Toolkit system.

When both XVT-Power++ and the XVT Portability Toolkit have
finished initializing, the application’s StartUp method is called. As its
name indicates, StartUp handles startup activities for the application.
It is a virtual method that you can override, but keep in mind that it
must be called by any derived classes if it is overridden. That is,
CApplication::StartUp is called before anything else inside of StartUp.
After that, you specify what you want your application to do when it
starts, such as create certain windows, open specified documents,
connect to a database, and so on.
14-2

The Appl-Doc-View Hierarchy
As the application runs, the user opens documents by selecting menu
items. At some point, the user will perform an action indicating that
he or she is ready to quit the program, perhaps by selecting “Quit”
from the File menu. The CApplication::ShutDown method is called to
perform application-dependent shutdown tasks, such as closing any
files and disconnecting from a database. Normally, ShutDown does
not have to perform any actions related to XVT-Power++ objects.
For example, if windows are up, they are closed and deleted
automatically through XVT-Power++. If you override ShutDown,
keep in mind that the first thing it should do is call the inherited
ShutDown method. You should perform any necessary clean up
of your application within your CApplication-derived class’s
shutdown.

14.1.2. Tasks Handled at the Application Level

When an XVT-Power++ application starts, it initializes various
program defaults, such as enabling or disabling some menu items
on the menubar and bringing up a default window such as a splash
screen or a dialog box.

One of the responsibilities of the CApplication class is to manage
global objects and global data for the application. The objects
managed by the application include the following:

• The global environment that is used by any view object,
unless it has a specific environment.

• The global objects inside the global class library,
CGlobalClassLib, that contain information about the
state of the application.

• The desktop, which manages window layout on the screen.

• Some event handler objects that channel all events coming to
the application to the appropriate objects, such as windows or
views. Some of these event handler objects can be accessed
through the application, but most of them can be accessed
through the CGlobalClassLib object. Every object that inherits
from CObjectRWC (i.e., any object in the application
framework), has access to those global objects through
CGlobalClassLib pointers.

CApplication contains a number of “Do” methods that are
called automatically when different menu actions are selected.
For example, when a user selects “Open,” “New,” “Save,” and so
on, from the menubar, the application object automatically takes
care of these operations, channeling them through the DoOpen,
14-3

Guide to XVT Development Solution for C++
DoSave, DoNew methods and so on. You can override these “Do”
methods to perform such actions as you choose. DoOpen typically
creates a document and sends it a DoOpen message. DoNew creates a
new document and sends it a DoNew message. DoSave sends a DoSave
message to all of the application’s documents.

DoClose, another mechanism automatically provided by the
application, closes all open documents. Similarly, if at any point
the user elects to cancel a certain operation, DoClose ceases this
operation. In addition, the application includes a number of
document management functions, such as finding open documents,
closing all documents, and adding and removing documents from
the application.

See Also: For more information, see the description of CApplication in the online
XVT-Power++ Reference.

14.2. Introduction to CDocument
The document is the link between the application level and
the view level of the XVT-Power++ application framework. The
CApplication object instantiates and manages CDocument objects, which
in turn instantiate and manage CView objects for displaying data (see
Figure 14.1).

14.2.1. Sharing Data at the Document Level

Each application normally needs to manage data in some form,
whether it be stored as a file or as a record in a database. The data
can be accessed in different ways, perhaps through the network from
a server process. The XVT-Power++ class that is in charge of
accessing and managing data is CDocument, an abstract class from
which you must derive and instantiate your own specific document
classes.

Consider how a document displays data in multiple windows.
Suppose there is an application containing a graph and a spreadsheet
that share the same data but display it in very different formats. The
graph merely displays the information. The spreadsheet not only
displays it but also provides the means to edit it directly. In
XVT-Power++, the spreadsheet and the graph will have both been
created by a CDocument object that they share. This document object
manages the data and stores the information for both windows; the
document manages the data that is used by the windows.
14-4

The Appl-Doc-View Hierarchy
Figure 14.1. Order in which objects are created within the
application

Another use of a document is communication. When you make a
change inside the spreadsheet window and then click on a button to
commit the changes, you also want to notify the graph window to
refresh its graph. In this case there are two windows that need to
communicate with each other. The need to stay “in sync” becomes
even more critical when several windows sharing the same data need
to communicate with each other.

Using the CDocument object to communicate changes works well,
especially when more than two windows are sharing the same
data. They are sharing not only the place where the data is
accessed (the document) but also an object that is orchestrating
the communication of data changes—all in one place.

data data data
data data data
data data data
data data data

New

CMyApplication

Open Help Exit

Median Income by District

Median
Income by
District

An application instantiates a document.

A document builds a window. (The
window class is usually the first class
to be instantiated by a document.)

The window builds up all the views.
14-5

Guide to XVT Development Solution for C++
14.2.2. Data Propagation

CDocument can create totally different type of views for viewing the
same set of data in different display formats. When a document has
constructed multiple types of views to display the same set of data,
it is in charge of coordinating changes in the data and updating the
views to reflect the changes. To accomplish this, you can use either
Automatic Data Propagation (ADP) or Transparent Data Integration
(TDI).

14.2.2.1. TDI Compared to ADP

TDI is a very powerful feature in XVT-Power++. Using CNotifiers
and CTdiValues, TDI automatically propagates a change of data from
TDI-enabled objects to other TDI-enabled objects.

ADP provides a slightly different approach to building complex
models where associated views are updated automatically. For
example, the spreadsheet and the graph introduced in section 14.2.1
display the same information in two different ways. When the
information is modified in one window through the ADP model, that
change will automatically be reflected in the other window through
a central CModel.

See Also: For more information on ADP, see Chapter 29.
For more information on TDI, see Chapter 30.

14.2.2.2. Sharing of Data

One way to update the graph would be for the spreadsheet window
to communicate directly with the graph window through their
common CDocument object. Yet another way is to use transparent data
integration (TDI) to establish direct channels of communication
between various views in the application. There are benefits to both
approaches.

In the first case, the spreadsheet informs the document object of the
change, which it has to do anyway since the commit button has been
pressed and the document object is managing the data. The
document then communicates the change to the graph and to any
other window that needs to know about the change because it is
sharing the data. In the second case, the edit fields in the spreadsheet
use TDI messages to send this information, bypassing the central
CDocument. In response, the graph window updates its graphical
representation to reflect the new data.
14-6

The Appl-Doc-View Hierarchy
14.2.3. DoCommand Chain of Message Propagation

Another way that XVT-Power++ propagates data is through its
DoCommand mechanism, known more descriptively as the DoCommand
chain. A DoCommand naturally flows upward through the event
structure of XVT-Power++, starting from a view, perhaps moving
through a series of enclosures to the window containing that view,
and finally arriving at the document that owns the window.

Typically, if the data inside a view changes, the view generates a
DoCommand to the document. In response, the document sets its
“needs saving” state to TRUE and may update the data display in
several of its windows to reflect the change.

Similarly, if a window associated with a particular document needs
to send messages to other windows of that document, it sends a
DoCommand to the document and lets the document take care of
propagating that message to all of the other windows. Thus, in a
sense, the document acts as a message server to all of its client
windows. The windows can request the document to do something
or pass on messages to other windows by simply generating a
DoCommand.

See Also: For more information on DoCommand, refer to Propagating Messages
on page 12-4.

14.2.4. Tasks Handled at the Document Level

The following sections describe in detail the data access and data
management features provided in XVT-Power++’s CDocument class.

14.2.4.1. Accessing Data

XVT-Power++ provides different ways of creating new documents.
Typically, a document object is instantiated when the user selects
“New” or “Open” from the File menu. Some applications may create
several documents and open them by default when the application
comes up. In XVT-Power++, to open a document means to
instantiate a CDocument object, and to close a document means to
delete or destroy the CDocument object.

When a document is opened, its first task is to get access to data. The
way a document does this partly depends on whether it is opened
with or without data. A new document, of course, has no data
associated with it at first. By default, to create a new document, you
call the CDocument::DoNew method. Part of DoNew’s task might be
14-7

Guide to XVT Development Solution for C++
to create a new document that contains no data but is simply on the
screen, ready to display whatever data the user specifies.

It is important that you define DoNew and DoOpen because in many
applications documents are created through the “Open” or “New”
File menu items. It is also important that you define the appropriate
actions to take inside those methods.

For example, the user might create a new spreadsheet that does not
yet have any data to manage. In this case, the CDocument object would
instantiate a window with an empty spreadsheet. On the other hand,
if the CDocument object instantiates a window that displays some
initial data, call the CDocument::DoOpen instead of DoNew. You can
override DoOpen so that it retrieves data from a place that you specify
and then sets up the views to display the data.

When you define the document interface for your application by
deriving new document classes from CDocument, you can add
parameters to the constructor that tell the document what data it
should access, perhaps a pointer to a filename or an indication of
which database record to get. Next, initialize the data in the
CDocument::DoNew and DoOpen methods. If you call the inherited
methods as well to take advantage of their default behavior, another
method, named BuildWindow, must also be called.

14.2.4.2. Building Windows

Once you have accessed some data, probably through the CDocument
constructor, and have opened it (i.e., have created an empty
document), you are ready to build a window to display the data.
Every document must define how to build a window. The
CDocument::BuildWindow method handles this task. This method
is declared as a pure virtual at the CDocument level. BuildWindow
notifies the document to build the window to display its data.

Building a window involves instantiating some window objects,
initializing them, perhaps creating other objects to go inside the
window objects, and so on.

14.2.4.3. Managing Data

The main CDocument management tasks pertain to opening and
closing documents, updating/saving their data, and printing their
data.

Each document keeps track of the state of its data, that is, whether
the data needs to be saved. The save state of a document is typically
reflected in the File menu, and is a visual cue that reminds the user
14-8

The Appl-Doc-View Hierarchy
to save (or not save) a document’s data. Not all documents need this
feature. Some documents contain data that is read-only or that never
changes.

CDocument has several methods for finding out whether a document’s
data needs to be saved and for setting the “needs saving” state of the
data to TRUE or FALSE. When you are defining your own document
classes, you must also define whether the data contained in a certain
type of document needs to be saved and, if so, how the data can be
saved, either to a file or a database.

14.2.4.4. Default Data Management Mechanisms

XVT-Power++ provides the following default data management
mechanisms that you can either choose to use or override in your
particular documents:

• When you create a new document by calling DoNew, the
default DoNew mechanism simply generates a BuildWindow
message to that same document.

• When you open a document by calling DoOpen, the default
DoOpen mechanism first brings up a dialog window that
prompts the user for the name of a file to open. DoOpen then
fills in the specified document’s file pointer and calls
BuildWindow. The user has the option of cancelling the
open operation rather than entering a filename, in which
case BuildWindow is not called. If you override the DoOpen
method, perhaps to do some extra things, but still use
these default mechanisms to find out filenames, then the
overridden method should call the inherited
CDocument::DoOpen method.

• When you close a document, the default DoClose mechanism
goes through all of the document’s open windows and
notifies them to close. When notified to close, each window
checks its document’s data to see if the data needs to be
saved. If it does, a dialog box appears that prompts the user to
save the data, close without saving, or cancel the close
operation completely. If the user chooses to save the data, the
appropriate save message is sent to the document. If the user
chooses to discard the data, the window closes. If the user
opts to cancel, then the window notifies the document that it
did not close. That is, the window returns a value of FALSE.
When this happens, the document stops the closing operation
for all of its windows.
14-9

Guide to XVT Development Solution for C++
• When you save a document by calling DoSave, the default
mechanism is for the document to verify whether it has a
defined filename to which it should save the data. Each
document has an XVT file pointer for storing the filename; it
is a protected data member that derived documents can set. If
you are not dealing with files in your system, you will need
to override this default behavior. If there is a filename for the
document, then DoSave simply returns a value of TRUE. If no
filename has been defined for the document, then the
document calls DoSaveAs. It is up to you to override DoSave and
put in the actual code for saving the data and then calling the
inherited CDocument::DoSave to find out whether the filename
has been defined.

• The default DoSaveAs mechanism is to display a dialog box
that prompts the user for a filename to which it should save
the data. Then it sets the specified filename and calls DoSave
to do the actual saving.

• When you call DoPrint to notify a document that you want to
print it, the document goes through all of its views and sends
them print messages. In response, the views redraw
themselves for the printer rather than for the screen. When the
user selects “Print” from the File menu, these actions are
performed automatically. You do not have to tie the fact that
someone selects “Print” to having a document print. The
same is true for page setup. If you are working on a platform
that allows you to set up a page before you send it to print,
then DoPageSetUp invokes the appropriate application-specific
dialog box for setting up the printing page.

Note: Keep in mind that the default mechanisms of CDocument work in
conjunction with those of CApplication, discussed in section 14.1.2,
which are called automatically when different menu actions are
selected. For example, when the user selects “Open,” “New,”
“Save,” and so on, from the menubar, the application object
automatically takes care of these operations, channeling them
through the DoOpen, DoSave, DoNew methods and so on, to CDocument.
14-10

The Appl-Doc-View Hierarchy
14.2.4.5. Managing Windows

As already stated, BuildWindow must be defined by each derived
document class in order to specify what should be done to build a
window. As more windows are created for the same document, you
will want to take advantage of CDocument’s window management
functions. If you need to find a particular window, CDocument has a
FindWindow method that takes the ID number of a window and returns
a pointer to that window.

Another method, GetNumWindows, returns the number of windows
associated with a given CDocument object. The CloseAll method closes
all of a document’s windows, regardless of whether their data has
been saved—in contrast to the DoClose method, which halts if a
window returns FALSE to the closing operation because the user
cancelled the operation, data has not been saved, or there is some
other impediment.

14.2.4.6. Printing Data

In addition to defining how data can be saved, you must define a
mechanism for setting up printing of the data. For each document
type, you must define how to set up the printing page.

See Also: For details on how to set up printing, refer to Application
Programming with XVT-Power++ on page 12-1.
Also see the description of CPrintMgr in the online XVT-Power++
Reference.

14.3. Introduction to CView
The view resides at the third level of the XVT-Power++ application
framework, serving as the layer that permits the programmer
to display information on the screen. Some views are built up out of
other views, as discussed in Subviews on page 16-15.

CView and its derived classes compose by far the largest branch of the
XVT-Power++ class hierarchy and are the basis for much of the
power and usefulness of XVT-Power++.
14-11

Guide to XVT Development Solution for C++
14.3.1. Views Provide a Graphical User Interface

Together, the various view classes give you access to a model for
visual display that is functionally complex, yet easy to use, once you
understand the model. Views display textual and graphical data,
allow the user to interact with the application, and reflect the state of
the application.

Views display a representation of different kinds of data in an
application. When a user reads in a file, the application opens a
new document that represents the file. A view within a window
associated with the document—say, an NScrollText object—displays
the contents of the file on the screen.

Views not only display information, such as a message or a drawing,
but may allow the user to interact with the application. For example,
a user not only sees a button but also can interact with it by clicking
the mouse on it. Other views can interact with the user through the
keyboard, displaying typed text. Still other views allow the user to
make selections from a list of choices.

As the user interacts with views, their differing states may be
represented visually. For example, a set of check boxes draws
differently once the user has selected one of them.

14.3.2. Tasks Handled at the View Level

All of the graphical objects in a view (or any of its enclosed views)
can send and receive events in response to actions that occur within
the system. Whenever you move the mouse, click on a button, or
release the mouse over a button, a view receives the message and
may respond to it. Some views may ignore a certain message while
others react to it.

In addition to mouse clicks, a view may respond to a keyboard event,
a sizing event, or a move event. As an application runs, views may
draw and redraw at different points. For example, when the user
clicks on the border of a window to bring it to the front of the
window stack, the part of the window that was covered and all of the
views it contains (such as a scroller, buttons, and a text box) must
redraw themselves. When the user clicks on the scroller, it responds
to the scroll event by scrolling upwards/downwards or left/right.

If the user selects a print option, sending a print message to the
window and all of its views, they may respond by drawing
themselves somewhat differently so they can be drawn on a
printer rather than on the screen.
14-12

The Appl-Doc-View Hierarchy
14.3.3. General Characteristics of Views

The primary characteristic shared by all views is that they draw
themselves on the screen. Each view must supply its own drawing
mechanism, which is done through a method called Draw. This
method takes a constant CRect reference that indicates the clipping
region for the drawing and performs all the operations necessary for
drawing. XVT-Power++ takes care of the clipping automatically, so
you usually ignore the clipping region.

The following code shows how the drawing and clipping is handled
when a DSC++ application draws a line:

void CLine::Draw(const CRect& theClippingRegion)
{

CShape::Draw(theClippingRegion);
xvt_dwin_draw_set_pos(GetCWindow()->GetXVTWindow(),

*itsStartPoint + itsOrigin);
xvt_dwin_draw_aline(GetCWindow()->GetXVTWindow(),

*itsEndPoint + itsOrigin,
itHasStartArrow, itHasEndArrow);

}

14.3.3.1. Drawing

If you examine the Draw method for different types of views, you will
notice the native XVT Portability Toolkit calls to XVT’s functions
for drawing such objects as icons, arcs, lines, and
so on, as shown in the following example:

xvt_dwin_draw_rect(GetCWindow()->GetXVTWindow(),&rct);
...
xvt_dwin_draw_oval(GetCWindow()->GetXVTWindow(),&rct);
...
xvt_dwin_draw_icon(GetCWindow()->GetXVTWindow(),

HPhysical(itsFrame.Left() + itsOrigin.H()) + itsCenter,
VPhysical(itsFrame.Top() + itsOrigin.V()),
itsCurrentRID);

A view can actually contain several other views, as is the case with
a list box, which is a composite of a scroller, a grid, and several text
objects. The outermost view (the list box object itself) may do very
little of the drawing and allow the inner views to finish everything
else. More specifically, the list box object draws the border area of
the list box but does not draw the text items contained within it.
There is no DrawText function called inside of the CListBox Draw
method. Instead, the text views inside the list box draw the text
items.
14-13

Guide to XVT Development Solution for C++
To summarize, the drawing can either be done by the enclosing view
itself, or part of it can be done by the view and the other part by any
other view inside it.

14.3.3.2. Showing and Hiding

Related to a view’s capacity to draw itself is its ability to show and
hide itself. There may be times when you want to tell a view not to
draw itself any more by sending it a Hide message as shown here:

aView->Hide();

When you send a view a Hide message, you are notifying it not to
respond to update events from that point on. You are not notifying it
to change the way the screen looks by immediately becoming
invisible. You are just changing its behavior. You will at least have
to send a Draw method to the enclosure of the view you are hiding and
give it a clipping region big enough to cover the view like this:

aView->Hide();
aView->GetEnclosure()->DoDraw(aView->GetFrame());

You may wonder why, when you tell a view to hide, you don’t just
redraw the region so that this view is no longer visible on the screen.
The reason is that sometimes you do not want to hide just one view;
you may want to hide three or four or one hundred views at a time—
without the flashing that would occur if every single view that
received a Hide message also got an update event to redraw its
part of the screen.

Instead, you notify all views involved to hide themselves (or
perhaps change their state in some other way by sending a different
message). Once you are done, you send one update event that takes
care of redrawing an entire region that is now in a new state. The
same applies when you tell a view to show itself when it was
previously hidden. You are notifying the view to respond to update
events and draw itself from now on. (The change does not take effect
until the next update event.)
14-14

The Appl-Doc-View Hierarchy
14.3.3.3. Activating and Deactivating

In addition to changing the visibility of views through Show, Hide, and
Draw messages, you can notify views to be active or inactive.
For example, a window may contain a spreadsheet with a grid full
of text fields that can be activated one at a time so that a user can type
something into each field. An active view is currently receiving
keyboard events (it has focus). This does not mean that other views
are disabled, just that they are not active. You can activate another
text field simply by clicking on it. Now when you type, all of those
events will go to that particular view.

Any view can receive an Activate or Deactivate message. Some views
have customized definitions of what it means to be active
or inactive. It is up to you to override the Activate message for a
particular view that you are designing and specify its behavior when
active. You can set a view so that it becomes active when a user
selects it for dragging. You may want to deactivate it later.

Windows, like other views, can be active or inactive. A window that
is at the front of the window stack and is receiving events is the
active window. Any window behind it is not active at the moment.

See Also: For more information about navigating (traversing) through views
using solely the keyboard, refer to Keyboard Navigation on page
16-18.

14.3.3.4. Enabling and Disabling

Enabling or disabling views is different from making views active or
inactive. Disabling a view notifies it not to respond to any events
from the user (i.e., keyboard or mouse events). If a user clicks on
a disabled view, it will not respond. However, the view will still
respond to certain other events. For example, an update event telling
a view to redraw itself is not deterred by the fact that the view is
disabled. If you want to enable the view again, you must send it
an Enable message like this:

aView->Enable();

A disabled view will not accept an event from the mouse or
keyboard, and in addition, it may look different when it is disabled.

Implementation Note: On many platforms, the look of a view when it is disabled is fuzzy
or grayed out. Specifically, this is often the case with icons.
14-15

Guide to XVT Development Solution for C++
14.3.3.5. Dragging and Sizing

Every view has a certain size and location, which can be changed
when the user drags it. You can set the dragging or sizing properties
of a view to be on or off. Some views act as enclosures for other
views and can scroll their contents when the user manipulates a
scrollbar. Views automatically take care of any scrolling that has to
be done on the screen.

You can also set a view to be automatically selected when the user
clicks on it so that the user can drag the view to move it or size it, as
is done in many drawing programs. This behavior is achieved
through the CWireFrame class, which is a friend class that can respond
to sizing and dragging mouse events.

See Also: For more details about scrolling in views, see Chapter 24.
For more details about wire frames, see Chapter 21.

14.3.3.6. Setting the Environment

Another characteristic of views is that they each have access to a
helper environment object (CEnvironment) that specifies the colors
pen, brush pattern, and fonts to be used to draw that view.

If the environment changes, it signals to the view to change the way
it draws itself. A view may have to change its size if the font has
changed or it may change the width or height of its borders,
depending on the width of the pen.

void CText::SetFont(const CFont &theNewFont,
BOOLEAN isUpdate)

{
CView::SetFont(theFont, isUpdate);
RecalculateSize();

}

See Also: For more information about CEnvironment, refer to Setting the
Environment on page 15-8.
14-16

Application Framework
15
APPLICATION FRAMEWORK

This chapter explains the three levels of XVT-Power++’s
application framework in terms of the basic tasks performed at each
level, and then it explains how messages and keyboard events are
propagated throughout this structure. The chapter also discusses
how to define the look-and-feel of your application by setting
display properties such as colors and fonts and drawing modes. The
chapter concludes by discussing: 1) the role of factories , and 2) how
to print from a DSC++ application.

15.1. Levels of the Framework
The purpose of an application framework is to provide a well-
defined structure, and thus a common design, for every application
developed around it. An application framework allows the
developer to reuse a program design. Here, “reuse” goes beyond
code reuse in which the developer reuses classes or extends them by
deriving from them. If an application framework is generic enough
to meet the needs of very different programs, then its entire design
and structure is reusable. The XVT-Power++ application framework
is designed to be reusable in such a way. This framework is built to
accommodate the tasks that most applications with a graphical user
interface typically perform. It is structured to deal with these tasks
on three different levels: flow of control, accessing and managing
data, and displaying data.
15-1

Guide to XVT Development Solution for C++
15.1.1. Flow of Control

There must be a logical order to the events that occur within the
system, whatever they may be. The XVT-Power++ application
framework assigns responsibility for the flow of control to its top
level, where the CApplication class resides. For each application
developed on XVT-Power++, this role is performed by a user-
derived object of type CApplication, as discussed in section 14.1. This
object takes care of starting the application, initializing it, shutting it
down, and cleaning up—in short, the overall top-most logic for
execution.

15.1.2. Accessing and Managing Data

The second level of the XVT-Power++ application framework, the
CDocument level, is in charge of any data that an application will be
using, regardless of its type—whether it is graphical or textual data,
and whether it is statically stored or dynamically created during
execution and discarded when the program terminates.

15.1.3. Displaying Data

The third and final level of XVT-Power++’s application framework,
the CView level, is responsible for the generic task of displaying data.
The term “data” is a bit misleading because it refers to all viewable
features of an application. Perhaps you do not normally think of a
button in a window as having data associated with it. Rather, it has
an associated action, as when you click on a button to cancel your
selection or Quit from the File menu. XVT-Power++ uses views
either to display data, as with a text file, or to interact with the user
and then give information to the application, as with the button.

Figure 15.1. Application framework for a typical application

1. Application Class Level

2. Document Class Level

3. View Class Level

CApplication

CDocument CDocument

CWindow CWindow
CWindow

NButton NButton CScroller NTextEdit

CIcon NButton
15-2

Application Framework
15.2. Propagating Messages
The core of XVT-Power++’s application framework is the ability of
its different levels to communicate with each other and to delegate
tasks to each other. For example, the user interacts with the
application through the view level and sees the application in terms
of the views that have been created on the screen. The user can send
information to the application by interacting with those views
through the mouse or keyboard.

Some of the user input or some of what the application
communicates to the user may be information that should be handled
at a level other than the view level. There must be a defined
communication scheme, event propagation scheme, or delegation
scheme to make possible the communication between the user and
the appropriate level of the application framework.

XVT-Power++ has three main channels for message passing.

15.2.1. Bidirectional Chaining

In bidirectional chaining, messages (typically XVT Portability
Toolkit event messages) go from an event handler to some window
to some particular subview. Once it is at that subview, the message
may turn around and start propagating back up. Some events go to
a selected object and some keep going until they find a particular
point or region.

15.2.2. Upward Chaining

In upward chaining, messages start at some subview and then chain
upward, stopping at any point. These are the DoCommands. It is
important to remember the path the DoCommand travels is based
on a supervisor relationship. It follows the rule of looking for its
enclosure (the object that is in charge of it).

15.2.3. Downward Chaining

In downward chaining, messages start at some object and then
spread downward to all the subviews inside that object. The
messages can start anywhere in the system. Examples include
DoDraw messages and DoSetEnvironment.
15-3

Guide to XVT Development Solution for C++
Figure 15.2. Channels of message propagation

15.2.4. The Role of CBoss and CObjectRWC

Tying the entire XVT-Power++ application framework together is a
class called CBoss. More specifically, almost every class in the
application framework derives from CBoss, which defines the basic
messages that any object in the framework is capable of receiving.
CObjectRWC provides access to global, shared objects and global,
shared data. It defines some messages that can be passed along or
delegated through the levels of the application framework.

15.2.4.1. DoCommand Messages

The most often used type of message is the DoCommand. Any
object in the XVT-Power++ application framework can receive a
DoCommand message. The DoCommand allows you to send any generic
message to any object. Two items of information can be passed
along with a DoCommand message:

virtual void DoCommand(long theCommand, void*
theData=NULL);

The first is a command ID number. This parameter is of type long and
can take any number. You are responsible for managing the ID
numbers that you give different commands.

XVT-Power++ reserves some predefined, internal XVT-Power++
command ID numbers. As is noted in the section on Global in the
online XVT-Power++ Reference, the XVT-Power++ ID number
base is 20,000. All user-defined ID numbers should be lower than
this base. In addition to the ID number, you have the option of
passing a pointer to any object you desire along with the DoCommand.

By default, DoCommands are used for mouse events. Views trap the
logic of MouseDown, MouseUp, MouseMove, and MouseDouble events to
determine whether a mouse click has occurred inside them. If a click

XVT Portability Toolkit DoCommand
Downward chaining
from a random point

Events (bidirectional) (upward from
some point)
15-4

Application Framework
has occurred, a view generates a DoCommand message that is sent
upwards through the application framework.

15.2.4.2. ChangeFont Messages

Any object can receive a ChangeFont event when a user selects a
change of font from the menubar. This font change can be handled
on any level of XVT-Power++’s application framework: 1) at the
view level as a particular view changes its font, 2) at the document
level as all of the views associated with a document change their
font, or 3) at the application level as every view of every document
in the application changes its font.

When a user selects a change of font, a ChangeFont message is sent to
the window from which the menu selection was made. The window
either sends the message to the selected view, if there is one, changes
its own font, or propagates the message up to its document. The
document may either change its own font or propagate the message
up to the application. By default, the messages are propagated
upwards until a non-inherited environment is encountered. For
example, if a document is not inheriting an environment, it changes
its own font. You can, of course,
override ChangeFont to define different logic.

15.2.4.3. DoMenuCommand Messages

Similarly, DoMenuCommand messages can be propagated and
delegated from one object to another, from a window to its
document and on up to the application if no view object handles
it. This type of message is sent when a user selects a generic item
from the menubar, perhaps a user-defined item.

15.2.4.4. Unit Messages

You can specify the units of measure that are used by any object in
your application— such as inches, centimeters, characters, or a user-
defined unit—as an alternative to the XVT-Power++ default pixel
units. You can propagate “update unit” messages to notify objects
that the units have changed and that they must recalculate
measurements based on the units.
15-5

Guide to XVT Development Solution for C++
15.3. Handling Keyboard Events
By default, keyboard events are handled the same way as menu
events. When a keyboard event comes into a window, it goes
through several layers of processing, as shown in Figure 15.3.
CSwitchboard uses the information in the parameters of the E_CHAR
event to construct a CKey object. Then the CKey object finds it way
from the switchboard to the view that has keyboard focus.

Figure 15.3. Order in which keyboard events are processed within a
DSC++ application

A native keyDown or autoKey

Event is passed to the framework’s

event is received.

XVT Portability Toolkit (PTK) key
hook function.

E_CHAR event is built by the PTK.

switchboard.

CKey object is “built” using
information from the PTK event.

native event

ATTR_KEY_HOOK

PTK event handler

CSwitchBoard

CKey

native PTK
control, e.g.
edit control

TRUE

FALSE

CWindow::DoKey

Keyboard event is sent to
the appropriate view (the one

CView::Key

possessing keyboard focus).

CNavigator::DoKey
15-6

Application Framework
The event is passed to the view possessing focus using the DoKey
method. If that view elects not to consume the event, it is propagated
on up to the document level and perhaps to the application—
whichever level can take care of it. A keyboard event goes directly
to the application level if no windows are open.

CSubview has a method called SetKeyFocus for setting the view
that is to receive the keyboard event. This view then receives the
keyboard input, regardless of which view is “on top.” Setting the
key focus is necessary because, unlike mouse input which uses the
mouse cursor to point to a specific screen coordinate, keyboard input
does not clearly point to the view to which it is directed.

15.3.1. Keyboard Navigation in Windows

Keyboard navigation is the use of keyboard input, in lieu of mouse
pointing and clicking, to interact with GUI objects. Generally, native
look-and-feel for keyboard navigation includes using the Tab key
and Shift-Tab key (back-tab) to traverse through a list of controls.
Groups of controls (such as radio buttons) may be traversed with the
arrow keys.

The CNavigatorManager class manages the navigation list of windows
for the entire application; it allows you to specify the navigation
order for your application’s windows. The CNavigator class manages
the navigation for a specific window, including all its nested
enclosures.

By default, XVT-Power++ uses the navigation classes to provide
each window with default support. When a window is created, it
automatically creates a keyboard navigator that navigates across all
the top-level views in the window. The navigator is created in the
virtual CWindow::ConstructNavigator() method. You can override this
method if you want to provide a different type of navigator for that
window and its views. An alternate approach would be to specify a
different type of default navigator by defining a new CWindowFactory
object. SeeFactories on page 15-11.

Navigators created internally in CWindow are automatically
registered with the global navigator manager. As keyboard events
arrive at the application’s switchboard, the following actions are
taken:

• The navigator for the window is located in the navigator
manager.

• The navigator’s DoKey() method is invoked to handle the
event.
15-7

Guide to XVT Development Solution for C++
• If the navigator knows how to handle the view, it does so.
This normally means that the navigator sets the focus to the
next view in the navigation sequence. You can plug in your
own navigators to handle keys in a completely different
manner.

• If the navigator does not know how to handle the key, the
event is sent to the window’s DoKey() method for normal
processing.

15.4. Setting the Environment
The “look-and-feel” is another aspect of a graphical application
that is determined on all three levels of XVT-Power++’s application
framework, through XVT-Power++’s CEnvironment class.
CEnvironment allows you to give the various windows and views in
your interface a consistent look-and-feel while reserving the option
to make the look of a view or set of views as distinctive as you like.

Using CEnvironment, you set such display properties of objects as
color, font type, pen attributes, brush attributes, drawing mode, and
anything else that pertains to displaying an object that can have
different attributes on the screen.

15.4.1. Global Environment Object

By default, there is a global environment object that is shared by
every displayable object in an XVT-Power++ application. An
environment object can be attached at any level in XVT-Power++,
all the way from the application object to the deepest subview. An
environment propagates downward, so many objects can share the
same environment. If you change a property of an environment, then
every object that is sharing it is affected. Each object that is using the
environment for its own drawing gets an update message notifying
it of the change. For example, if the font changes, a text view must
resize itself to accommodate the new font.

You must create environment objects when you want specific
environments for different documents. One document might have an
environment with a blue background while another has a yellow
background. If there is a document environment, the document’s
descendant windows use the document environment as their own.
Each window can have its own environment object, with its own
colors and fonts. If it does, it uses the environment and passes it
down. If it does not, it uses the document environment. If the
15-8

Application Framework
document does not have an environment, then it uses the global
application environment stored in CApplication (see Figure 15.4).

You can attach a different environment object to each of the
windows—or to the windows that you want to have specific
environments. You can go still further, allowing some of the views
in a window to have their own environment objects. The subviews
of those views can also have their own environment objects (see
Figure 15.4).

Note: Typically, you do not want to give environment objects to each
view because many of the views can share the same environment,
eliminating a lot of storage and overhead. Attaching an environment
at a higher point allows every object to share it from there on down.

Figure 15.4. The use of environment objects in the XVT-Power++
object hierarchy

15.4.2. Customizing Colors and Fonts in Native Views

XVT-Power++ lets you assign colors and fonts to the native views,
or controls, of an application. The interface for doing this is the same
as the interface for setting the colors or fonts of any CView:

void SetEnvironment(const CEnvironment& theEnv,
BOOLEAN is Update)

void SetFont(const CFont& theFont, BOOLEAN isUpdate)

New

CMyApplication

Open Help Exit

Window Subview 1

Subview 2

Deepest Subview

Application

Document
15-9

Guide to XVT Development Solution for C++
These CView methods are overridden by CNativeView to supply the
specific implementation of font and colors within different types of
controls. Each native platform supports different control component
colors, but there is much overlap.

See Also: XVT portably supports the most significant component colors, even
though some component colors are not supported natively on all
platforms. For details, refer to Figure 8.5 (the multi-page figure) in
the “Controls” chapter of the XVT Portability Toolkit Guide.

CEnvironment contains several color attributes specific to native
views. These include:

XVT_COLOR_FOREGROUND Control text and the arrows on
scrollbars

XVT_COLOR_BACKGROUND Fill color of rectangular region
occupied by control

XVT_COLOR_BLEND Secondary background for some
controls so they blend into their
container window’s background
without visual indication of a border

XVT_COLOR_HIGHLIGHT Visual indication that a control has
keyboard focus

XVT_COLOR_BORDER Outside edge of control
(rectangular)

XVT_COLOR_TROUGH Slider area behind scrollbar thumb
XVT_COLOR_SELECT Indication that a control has been

selected
XVT_COLOR_NULL Value indicating last element of

XVT_COLOR_COMPONENT array

You may set as many or as few of these component values as are
needed for your application.

Implementation Note: A CEnvironment object can also be initialized to the default runtime
color settings for controls in each platform. This is done using the
INativeViewColors() method.
15-10

Application Framework
15.5. Factories
As part of an object-oriented application framework, many
XVT-Power++ classes must instantiate other classes as part of
their implementation. There are many reasons why objects are
instantiated internally. For example, CView instantiates CGlue objects
to delegate its geometry management; CView also instantiates
CWireFrame objects to delegate its moving and sizing implementation.
Elsewhere in the framework, the CButton class instantiates CPicture
and CText objects to display inside the button’s border. Examples like
this proliferate inside the XVT-Power++ framework.

15.5.1. Abstract Factories

You may occasionally want to customize the behavior of a class in
the framework by changing the types of objects it creates. For
example, you may want to create your own type of CGlue object that
provides specialized geometry management. One way of making
this change is to derive your own set of view classes and override the
code which instantiates CGlue. Such an approach is not always
convenient. It would be better to simply reuse the existing
framework classes and have them somehow be aware that there
is a new CGlue class that they should use.

The XVT-Power++ framework gives you this extra flexibility by
utilizing a design pattern known as the abstract factory pattern.
Abstract factories provide an interface for creating families of
related or dependent objects without specifying their concrete class.
Basically, the framework classes have been set up to delegate the
instantiation of other classes. The job is delegated to a set of factory
classes which can be overridden to create your own custom objects
instead.

15.5.2. Framework Factory Manager

A special factory manager object is created automatically by the
framework. This manager acts as a central place where all other
abstract factories are registered. The CApplication::InstallFactories()
method automatically installs all the default factories used by the
framework. You can install your own factories or override the
default factories used by the framework by providing your own
InstallFactories() method inside your application derived class.
15-11

Guide to XVT Development Solution for C++
Example: For example, the framework contains an abstract factory named
CViewFactory. This factory is used by CView classes to instantiate any
objects they use. The CViewFactory instantiates classes like CGlue.

t To override the CGlue generation used by all CView objects:

1. Define a concrete subclass of CViewFactory and override
the virtual methods that create the objects that you have
customized:

class CMyViewFactory : public CViewFactory
{
public:

 virtual CGlue* ConstructCGlue(CView*
theView);

 { return new CMyGlue(theView); }
 CMyViewFactory() : CViewFactory()

 {}
};

2. Install an instance of this factory into the factory
manager as soon as the manager is created within
CApplication::InstallFactories():

void CMyApplication::InstallFactories(CFactoryMgr*
mgr)

 {
 CApplication::InstallFactories(mgr);
 itsMyViewFactory = new CMyViewFactory;

 mgr->AddFactory(kViewFactoryTypeId,
itsMyViewFactory);

 }

3. Delete the factory after it is no longer used, because the factory
manager will not delete it for you:

void CMyApplication::ShutDown()
{

CApplication::ShutDown();
delete itsMyViewFactory;

}

15-12

Application Framework
15.5.3. Framework Factories

XVT-Power++ defines several factories that are automatically
registered into the application’s factory manager. These factories are
used internally to create a variety of objects within the framework.

This section lists the factories and what objects they create. If you
would like to change the type of certain objects created within the
framework, all you need to do is install a derived version of the
appropriate factory.

CApplicationFactory, CApplicationFactoryDefault

Global CTaskDoc object

Global CTaskWin object

Global CPrintMgr object

Global CDesktop object

Global CResourceMgr object

Global CControllerMgr object

CMenuFactory, CMenuFactoryDefault

CSubmenu objects created by CWindow (or code in your
application)

CMenuItem objects created by code your application

CMenuBar objects created by code in your application

CPlatformFactory, CPlatformFactoryDefault,
CWin32PlatformFactory, CMacPlatformFactory

CControlDelegate objects created for movable and sizable native
views

CAttachmentWindow objects created by floating CAttachment
palettes
15-13

Guide to XVT Development Solution for C++
CResourceFactory, CResourceFactoryDefault

NButton objects created from URL resources

CRadioGroup objects created from URL resources

NCheckBox objects created from URL resources

NScrollBar objects created from URL resources

NEditControl objects created from URL resources

NText objects created from URL resources

NListBox objects created from URL resources

NIcon objects created from URL resources

NListButton objects created from URL resources

NListEdit objects created from URL resources

NGroupBox objects created from URL resources

NScrollText objects created from URL resources

NRadioButton objects created from URL resources

CResourceWindow objects created from URL resources

CResourceMenu objects created from URL resources

CValidatorFactory, CValidatorFactoryDefault

CValidator objects created by users of the framework

CViewFactory, CViewFactoryDefault

CText objects created by views in the framework

CPicture objects created by views in the framework

CFixedGrid objects created by views in the framework

CGlue objects created by views in the framework

CWireFrame objects created by views in the framework

CWindowFactory, CWindowFactoryDefault

CMouseManager objects created by CWindow

CNavigator objects created by CWindow

NWinScrollBar objects created by CWindow
15-14

Application Framework
15.6. Printing
XVT-Power++’s interface to the XVT Portability Toolkit’s printing
facilities is called CPrintMgr. This class is in charge of queuing up
data and printing it. At any point, you can notify any object in
XVT-Power++’s application framework to print and it will place
itself into the print queue and print to the designated printer. For
example, when you want to print a view, you call DoPrint inside the
view.

The actual implementation of printing is handled inside CPrintMgr.
Upon receiving a print command, the following occurs:

• A window prints all views inside of it

• A document sends every window associated with it to the
printer, which prints each window on a separate page

• The application notifies all of its documents to print all of
their windows, each on a separate page

By default, whatever is drawn on the screen is drawn on the printer
paper. However, you may want a given object—say, a window—
that draws a certain way on the screen to draw differently on the
printer, perhaps using a different font. In this case, you can override
the CView::PrintDraw method for a view to define how you want it to
print.

PrintDraw is a method that is in charge of doing any drawing that
should be sent to the printer. This drawing is just like the drawing
that is done on the screen using the XVT Portability Toolkit
xvt_dwin_draw_* functions.

If you were to write your own printer Draw method, it would look just
as if you were printing from the screen. You would still print using
the view’s XVT Portability Toolkit window, which can
be obtained through the CWindow::GetXVTWindow method.
GetXVTWindow can return either a regular screen window or a
printed window, depending on whether printing is being done.
PrintDraw just calls the regular Draw method, and in most cases this is
adequate.
15-15

Guide to XVT Development Solution for C++
15-16

Manipulating Views and Subviews
16
MANIPULATING VIEWS AND SUBVIEWS

Views display a representation of different kinds of data in an
application. Views display textual and graphical data, allow the
user to interact with the application, and reflect the state of the
application. This chapter considers the possible relationships
between the various view objects in the XVT-Power++ system.
The chapter also discusses coordinate systems, subviews, and
keyboard navigation.

16.1. Enclosures and Nested Views
As discussed in section 14.3, many views are built up by putting
several views together and inserting them into a larger view that is
capable of containing different kinds of smaller views. This
composition is made possible by a relationship between an
enclosure and a nested view:

Enclosure
Contains one or more views.

Nested view
Views inside of the enclosure.

Note that every view must have an enclosure. A text view may be
nested inside a list box, which in turn is nested inside a window.
In other words, the window is the enclosure of the list box, and the
list box is the enclosure of the text view.

Note: Windows are a special case because a window cannot be enclosed
inside another view. However, they still have a logical enclosure,
which is the screen, or, on some platforms such as MS-Windows and
OS/2, a “task window.” The enclosure of a window is something you
can control only at the platform-specific (PTK) level.
16-1

Guide to XVT Development Solution for C++
16.1.1. Similarity Between Enclosures and Owners

The concept of view ownership is discussed in section 16.2 on page
16-6. It is worth noting that while the distinction between enclosures
and owners is real and useful, there is an important similarity
between them that contributes greatly to XVT-Power++’s ease of
use.

The relationship between an enclosure and the views nested within
it resembles an owner/helper relationship. When an owner view is
destroyed and deleted, so are all of its helper objects. Similarly,
when an enclosure is destroyed and deleted, so are any views nested
inside it.

Moreover, if the views contained within the window also contain
nested views of their own, these views will also conveniently close.
This means that you have to take care of very little memory
management. You can simply create views as desired, knowing that
if at a certain point you close a window, the window will take care
of closing anything enclosed inside it.
16-2

Manipulating Views and Subviews
16.1.2. Clipping

Enclosures ensure that every view contained inside them is clipped
to them. Clipping means that a view contained inside an enclosure
cannot draw itself beyond the boundaries of its enclosure. Thus, a
nested view may be only partially visible.

For example, a text object or a picture contained within a window
clips to the window’s border so that any text or part of the picture
extending beyond the window’s border is not visible and will need
to be scrolled or otherwise moved in order to become visible within
the window’s borders. Similarly, when you set different enclosures
inside a window, whatever is nested is also clipped to the border of
its enclosure. The nesting behavior of views, especially with regard
to clipping, is shown in Figure 16.1.

Figure 16.1. Nesting behavior of views; objects inside nested views
may be clipped

The rectangle contains a triangle that in
turn contains a circle. When the rectangle
is moved, all of the objects nested within it
move with it.

When the user clicks on the triangle to
move it, the triangle can move freely
inside the rectangle object.

The circle can move freely inside the
enclosing triangle and becomes partially
obscured as it extends beyond its
clipping region.

Each shape object is clipped to its
enclosure so that if a part of an enclosed
object extends beyond the clipping region,
that part is obscured—as the top of the
triangle is here.

Application Window

Application Window

Application Window

Application Window
16-3

Guide to XVT Development Solution for C++
16.1.3. Defining a View’s Enclosure

When a view other than a window is created, XVT-Power++ needs
to know what enclosure to give that view. Thus, the constructors of
most views have a parameter that passes a pointer to a view that is
acting as the enclosure, as shown here:

CScroller* aScroller = new CScroller(someWindow,
CRect(0,0,100,100));

CIcon* anIcon = new CIcon(aScroller, CRect(10,10,
42,42));

All views nested inside an enclosure are drawn relative to the origin
of that enclosure. In effect, each enclosure sets up its own coordinate
system, and the views it contains draw within that coordinate
system. If the entire enclosure is moved to a new location, the views
nested in the enclosure are oblivious to the move, continuing to draw
in coordinates that are relative to enclosure. In other words, the
enclosure defines space for a nested view, and the larger context of
the screen is irrelevant.

16.1.4. Limitations on the Hierarchy of Enclosures

While some types of nested views can act as enclosures, it is not true
that any view can enclose another view. The top-level view class is
CView, which defines all the properties of views that have been
discussed so far. From CView a class called CSubview has been
derived. Only views that inherit from CSubview can act as enclosures;
views that inherit directly from CView cannot act as enclosures. In
Figure 14.2, the views inheriting directly from CView are shown in
the gray area.
16-4

Manipulating Views and Subviews
Figure 16.2. XVT-Power++ view hierarchy

NButton

NCheckBox

NText

CButtonIcon

CSelectIcon

CSquare

CCircle

CRegularPoly

NScrollText

CListBox

CIcon

CWindow

CRectangle

COval

CArc

CPolygon

CLine

NTextEdit

NLineText

CScroller

CGrid

CShape

CSketchPad

CVirtualFrame

CAttachmentWindow

CFixedGrid

CVariableGrid

CHorizontalWireFrame

CVerticalWireFrame

CFaceWindow

CNativeList
CNativeSelectList

NListEdit

NListButton

NListBox

CSubview

CText

CWireFrame

CNativeTextEdit

CNativeView
NEditControl

CRadioGroup

CView

CPicture

CTaskWin

CPasswordEdit

NGroupBox

NIcon

NNotebook

NRadioButton

NScrollBar NWinScrollBar
16-5

Guide to XVT Development Solution for C++
As Figure 16.2 shows, a CText object is a type of object that does not
inherit from CSubview. CText is a view that allows you to display static
text on the screen, for example, the phrase “Enter Password:” on a
login window. Obviously, this text object does not need to function
as the enclosure of something else.

Another glance at the XVT-Power++ view hierarchy tree
reveals other CView classes that cannot act as enclosures, such as
CNativeView. Native views are objects that are drawn by the native
windowing system, not by XVT-Power++ and not by the user. Since
XVT-Power++ does not draw them, XVT-Power++ cannot draw
anything else inside them, either. While they can be displayed inside
other views, nothing else can be displayed inside them.

On the other hand, CGrid is a type of view that inherits through
CSubview and therefore can act as an enclosure. You can nest many
different kinds of views inside of a grid, inserting the items in its
rows and columns.

16.2. Owners and Helpers
Another relationship between view objects that needs to be
considered is ownership. Different views can be owners of other
views that act as helper or auxiliary objects and provide a service to
the owner view. If a view object that owns a helper object is closed,
the owned object is also closed. If a view is destroyed, any objects
that it owns are also destroyed.

16.2.1. CGlue

One example of a helper object is a CGlue object, which provides the
“stickiness properties” of its owner. Stickiness refers to the behavior
of a view when its enclosing view is sized. Depending on its type of
stickiness, a nested view will stretch with its enclosure or stay fixed
by a constant distance from the borders of its enclosure.

Suppose you want a rectangle to be “stuck” to all four sides of its
enclosure, which is a window. You would give it a glue type of
ALLSTICKY, as follows:

aRectangle->SetGlue(ALLSTICKY);

When the window stretches during resizing, the rectangle also
stretches. When the window shrinks, the rectangle does, too. If you
had specified a “bottom right” type of stickiness, only the bottom
and right sides of the rectangle would be stuck to the window. In this
16-6

Manipulating Views and Subviews
case, if the window were resized, the rectangle would move along
with the right bottom corner of its enclosing window.

Instead of embedding all the code inside CView that tells it how to act
as a “sticky” object, XVT-Power++ uses a separate CGlue object to
take care of the logic of stickiness. When you specify the stickiness
of a view, a CGlue object is automatically created, and it knows that
its owner is the particular view that you have made sticky. Thus,
there is an “owner” relationship in which the view owns the glue.

See Also: For a list of all the types of stickiness that can be set for a view, refer
to CGlue in the online XVT-Power++ Reference.
To see an example showing how to override the CGlue generation
used by all CView objects, refer to section 15.5.2 on page 15-11.

16.2.2. CEnvironment

Another helper class is CEnvironment, which provides an object that
keeps track of its owner’s colors, pen, brush, fonts, drawing mode,
and so on. You set the environment of a view as shown in the
following example:

CEnvironment anEnv(
COLOR_WHITE, // Background
COLOR_BLACK, // Foregound
COLOR_WHITE, // Brush color
PAT_SOLID, // Brush pattern
COLOR_BLACK, // Pen color
PAT_SOLID, // Pen pattern
1, // Pen width
STDFont, // Font
M_COPY, // Drawing mode
P_SOLID); // Pen style

aView->SetEnvironment(anEnv);

When you set the environment of a view, that view creates its
own environment object to store this data. When the owner view
is destroyed, its internal environment object is also destroyed.

An environment object can be shared by many views. For the sake
of a consistent look-and-feel, an application typically has several
windows and other views that use the same environment. Thus,
borders are drawn in the same color, the brush patterns and colors in
the view interiors are the same, the fonts used in textual views are
consistent, and so on.

Although one particular view acts as the owner of an environment
object that is destroyed when it is destroyed, other view objects may
also be using that environment while it exists. This is possible
because views can only share an environment with an object that
16-7

Guide to XVT Development Solution for C++
is above them in the object hierarchy; that is, with an enclosure.
The types of sharing relationships that can be established between
owners of environment objects is discussed in section 15.4 on page
15-8.

16.2.3. CWireFrame

CWireFrame objects are helper objects that can be owned by other
views. A wire frame is an object that enables a view to be moved and
sized. On the screen, a wire frame appears as a rubberband (flexible,
dynamically changing) frame surrounding an object that is being
sized or dragged. You set the sizing and dragging of an object as
follows:

aView->SetDragging(TRUE);
aView->SetSizing(TRUE);

When you thus specify that a view object is to be sizeable and
draggable, that view creates its own wire frame object. At the
appropriate times, the wire frame can take care of different events
that it may receive, such as mouse down events and mouse dragging
events. The wire frame also can notify its owner of the new location
to which it is being moved or of the new size to which it is being
stretched.

16.2.4. CPoint and CRect

Each view has its own CPoint and CRect objects that enable it to keep
track of where it is on the screen; that is, of the region where it is
located, the origin from which it is drawing, and so on. When the
owning view is destroyed, its CPoint or CRect object is destroyed as
well. These two heavily used helper classes are discussed in detail in
section 16.3.

16.2.5. CDrawingContext

CDrawingContext supports queue invalidation for high performance
drawing.

By deferring updates during complex rearrangements of the user
interface, such as geometry changes, you allow the native system the
chance to combine updates into a single, more efficient, update
event. QueueInvalidate() adds a rectangle to the update queue,
maintained by itsInvalidateQueue. FlushInvalidate() sends the queue
invalidated rectangles to the native system for updating.
16-8

Manipulating Views and Subviews
CDrawingContext flushes queued updates using one of two algorithms:

Region updates
This algorithm combines all the the invalidated rectangles into
one large enclosing rectangle and passes this region to the
native system for updating.

Pass-through updates
This algorithm simply passes each invalidated rectangle to the
native system for updating.

Implementation Note: The update method that works best depends on the native operating
system.

16.3. The Coordinate System
Coordinate systems are crucial to the use of views because the
screen location of a view must be specified before it can be
drawn. Understanding the coordinate system will help you use
XVT-Power++. You must learn about three types of coordinates:

• screen-relative coordinates

• global (window-relative) coordinates

• local (view-relative) coordinates

You also need to understand when these coordinates are applied in
order to use them correctly and manage them efficiently. The basis
for managing the coordinate system is provided by XVT-Power++’s
CRect and CPoint classes.

16.3.1. CRect

CRect is simply a class that provides a data structure for storing
information about a rectangular region of the computer screen. CRect
manages four different values: left, top, right, and bottom. Together,
these four values form a rectangle that is located somewhere in
space. Each of the four values represents a value in the coordinate
system. The CRect object itself has no information about what
coordinate system it is mapping. It merely contains the mapping.

CRect’s mapping allows you not only to set different rectangular
regions but also to perform many useful operations, such as
computing the union of some rectangular regions.

A union operation adds one region to another, which has the effect
of resizing the region. Suppose you want to update the entire region
that encompasses two overlapping views. You can take the union of
16-9

Guide to XVT Development Solution for C++
one view’s rectangular region with the other view’s rectangular
region; the result is a much larger region that contains both of the
regions. The union of two views in shown in Figure 16.3.

Figure 16.3. The union of two views

Similarly, you can compute the intersection of two views. For
example, if a view is partially covered by another view or is being
clipped by an enclosure, you can take the intersection of those two
views through the CRect to find the shared rectangular region. The
intersection of two views in shown in Figure 16.4.

Figure 16.4. The intersection of two views

In addition to union and intersection, you can perform several other
operations on a region. You can expand it or shrink it, and you can
translate it from one position on the screen to another. All of these
operations for managing regions on the screen are available through
the CRect class.

See Also: For more details, see the description of CRect in the online
XVT-Power++ Reference.

a

b

a = a + b

a

b

a = a - b
16-10

Manipulating Views and Subviews
16.3.2. CPoint

CPoint is similar to CRect in that it also manages positions within
XVT-Power++’s coordinate system. However, CPoint manages a
value for a single point or single unit. Instead of an entire rectangular
region, CPoint consists of a horizontal and a vertical value for one
position in space. It is irrelevant to CPoint where the coordinate
system is (that is, whether it originates at the top-left of the screen)
or what the sizes of the units are (whether in pixels, characters,
inches, or some other measure).

CPoint allows you to move from one point to another, set either
the horizontal or vertical coordinate of a point, add points together,
subtract one point from another, or make two points equal.
Moreover, it includes some methods for coordinate system
conversion so that you can translate the coordinates of a point,
convert a CPoint’s coordinates from view-relative to window-relative
coordinates, and vice versa.

See Also: For details, see CPoint in the online XVT-Power++ Reference.

16.3.3. The Point of Origin

Central to any coordinate is the point of origin from which the
coordinate is calculated. That is, before a coordinate such as 3,9
makes sense, you need to know the context for the numbers —
whether the point is screen-relative, window-relative, or view-
relative. In XVT-Power++, the need to know the context of a
coordinate is complicated by the fact that each enclosure defines
its own coordinate system. Therefore, the context is crucial.

Each XVT-Power++ view uses a point of origin to calculate its
position on the screen. This origin is the 0,0 point that normally
represents the position of the enclosure’s top-left corner. Every view
knows where its enclosure’s top-left corner is because it has a CPoint
object it uses called itsOrigin. The origin is automatically managed
and updated in XVT-Power++. If the enclosure changes from one
position to another, the origin of any nested views is updated
automatically and internally.

Note: XVT-Power++ has some methods for manipulating a view’s origin,
but these are reserved for advanced XVT-Power++ programming.
Normally, there is no reason for you to concern yourself with a
view’s origin.

Suppose your application contains a scroller in which a rectangle is
nested. Typically, the rectangle draws at a certain position relative
16-11

Guide to XVT Development Solution for C++
to the scroller’s top-left corner. However, when a user clicks on the
scrollbar, the rectangle draws at a different position because the
entire contents of the scroller have been scrolled to the left or right,
up or down, depending on the scrollbar’s orientation and the
direction of the click. Now the origin for the rectangle becomes the
top-left corner of the scroller, plus or minus some scrolling
coefficient. It is usually unnecessary for you to know these specifics
of how the point of origin changes with a scroller. It is mentioned
here to illustrate the importance of origins and how they are used to
keep track of where views should draw relative to an enclosure,
especially if the enclosure happens to be in a particular state, such as
a scrolled state.

16.3.3.1. Screen-relative Coordinates

Windows are the outermost enclosures. All windows are placed
relative to the screen’s top-left corner and are the only screen-
relative views in XVT-Power++.

16.3.3.2. Window-relative (Global) Coordinates

In many places in XVT-Power++, you will encounter the term
“global coordinates.” This term is synonymous with “window-
relative coordinates”—“global coordinates,” as it is used here, refers
to the window, not to the entire screen.

Several types of methods take window-relative coordinates. For
example, the “Do-” methods, such as DoMouse and DoDraw, all take
global (window-relative) coordinates, as do all the drawing methods
for any region these methods receive. More precisely, they take a
region or a certain point where the mouse is clicked, which is
relative to the entire window. Other methods, such as the so-called
narrow mouse methods (the ones without the “Do-” prefix), take
view-relative coordinates. Thus, when a view gets a MouseDown
message and the mouse is at point 5,5, this point is relative to the
view’s top-left corner. If you are calling the narrow methods
directly, it is imperative to look at the method and see what kind of
coordinates it takes.

Suppose that you want to insert a view, such as a rectangle, into a
window. You place the top-left corner of the rectangle at coordinate
10,10 and the bottom right corner at 35,40. These coordinates are
relative to the window’s top-left corner because the window, as an
enclosure, sets up its own coordinate system, and anything that is
inserted directly inside of it is positioned relative to its top-left
corner.
16-12

Manipulating Views and Subviews
16.3.3.3. View-relative (Local) Coordinates

Suppose you decide to place a view inside the rectangle, say, another
rectangle, as shown in Figure 16.5. The rectangle is inserted at
position 5,15 and extends to 15,25. These coordinates, as you may
have guessed, are relative to its enclosures’s top-left corner and are
thus view-relative coordinates.

Figure 16.5. View-relative coordinates for nested views

16.3.4. Units of Measure

Another critical issue for coordinate systems besides the point of
origin is the size of the units—whether they are pixels, inches,
centimeters, characters, or a user-defined unit. If the units are pixels,
each unit maps one-to-one with pixels on the screen. If the units are
pixels and a CLine object, for example, extends from point 0 to point
10, then ten pixels on the screen are turned a certain color to
represent the line.

By default, XVT-Power++ uses pixel coordinates. However, to
maximize the portability of an application, as well as the ease of
programming a graphical user interface, you often may not want to
use pixels because they provide device-dependent coordinates. An
application that looks beautiful running on one platform may not
look right any more when it runs on a different machine with a
smaller screen or completely different resolution. When you

10

CWindow

aView

CView

aView->GetFrame().Left() = 5
aView->GetFrame().Top() = 15aView->GetGlobalOrigin() = (15,25)

10 15 25

25

35

aView->GetFrame() = (5,15,15,25)

aView->GetWindow()

aView->GetEnclosure()

aView->GetLocalFrame() = (0,0,10,10)
aView->GetGlobalFrame() = (15,25,25,35)

aView->GetOrigin() =
(10,10)

15

25

155
16-13

Guide to XVT Development Solution for C++
combine text and graphics, you typically position the graphics and
shape/scale them in terms of the text. If the application runs on a
different machine where the font size is totally different, suddenly
the graphics will be “off.”

The solution to this problem is to use logical coordinates rather than
physical or device-dependent coordinates when you program a
graphical interface. Through the CUnits class, XVT-Power++ allows
you to use a variety of logical coordinate systems.

CUnits allows you to program in coordinates that map to inches,
centimeters, a user-defined unit that maps logical coordinates to
some physical representation on the screen, or character units in a
font that you choose (normally the system font). You can specify, for
example, that you want a two-inch by three-inch rectangle or an
object that is ten characters long and three characters wide.

16.3.5. Translating Coordinates

XVT-Power++ provides facilities for translating from one
coordinate system to another. Suppose you have defined a view that
inherits from CSubview and therefore can act as an enclosure. This
view contains several nested views. Moreover, it is defined to trap
and receive any mouse events that occur within its region, regardless
of whether an event occurs within the region of one of its nested
views. Now suppose that this enclosure gets a MouseDown message,
which, in XVT-Power++, has a CPoint coordinate that is relative to
the view receiving the message. This point indicates where the
mouse happened to be, in this case, at point 5,5. The view sends the
message down to another view that is nested within it at this location
by calling the nested view’s MouseDown method, which takes as its
first parameter a CPoint coordinate that is relative to the nested view’s
coordinate system.

The point that the enclosure received is in coordinates relative to the
enclosure itself. Thus, the enclosure must translate the point into
coordinates that the enclosed view can use. This is a case where we
want to translate a point from one view’s coordinate system (the
enclosure) to another view’s coordinate system (the nested view).
The CRect and CPoint classes provide several easy-to-use utility
methods that do the translation for you. There are methods for
localizing and globalizing different points. In the case considered
here, you simply call the CPoint::Translate method, which takes two
parameters: a view from which to translate the coordinate and a view
to which to translate the coordinate.
16-14

Manipulating Views and Subviews
Call Translate and pass it the enclosure and the nested view, as
follows:

aPoint.Translate(theEnclsure, theNestedView);

16.4. Subviews
All XVT-Power++ views can, and in fact must, be nested inside an
enclosing view, with the exception of the window, whose logical
enclosure is the screen or the task window. However, not all views
can act as enclosures; the subset of views that can act as enclosures
is clearly defined by a class called CSubview. This section discusses
in detail all of the views that can act as enclosures and the
implications of this property within the larger context of
XVT-Power++.

16.4.1. Nesting Behavior

“Nesting” means that an enclosure can contain numerous views that
are nested at the same level, perhaps overlapping, as well as views
that act as enclosures for nested views of their own. Figure 16.1 on
page 16-3 shows the behavior of nested views.

16.4.1.1. Overlapping Views

Suppose there is a window in which you have inserted a circle
object. You then place a square directly on top of the circle. In this
case, the square is not nested inside the circle. Both shapes are
nested inside of their common enclosure, a window, but they are
overlapping—or, more precisely, stacked. In a stack of views, the
last view to be created and inserted into the window is the top view
at that location. In this case, the square is on top of the circle. If you
click the mouse on the area shared by both the square and the circle,
the square will receive the event because it is covering the circle, and
it is as if the circle is not even there.

XVT-Power++ provides several ways to control which view is on
top of a stack of views. One way is through the order in which the
views are created since the last view created is the one on top. Also,
CSubview has two methods, PlaceTopSubview and PlaceBottomSubview, for
placing a certain view at the top or bottom of a stack. In the example
discussed here, the square lays directly on top of the circle and is the
top subview of the window, while the circle is the bottom subview.
If you decide that you want to reverse this order by placing the
square beneath the circle, call the window’s PlaceBottomSubview
method, which it inherits from CSubview, and give it the square as a
16-15

Guide to XVT Development Solution for C++
parameter. The square then becomes the bottom subview in the
window. PlaceTopSubview, as you can imagine, works very much the
same way.

16.4.1.2. Obtaining Information About Nested Views

The interface of CSubview allows you to find out several different
things about a given enclosure’s nested views. You can find a view
that is nested inside the enclosure, either by using a view ID or by
specifying a location in coordinates relative to the enclosure and
getting the top-level view that contains this CPoint. You can also get
a list of every view that shares this certain point. These operations
are made possible by the CSubview FindSubview and FindSubviews
methods.

16.4.2. Routing Events to a Specific Subview

There are times when it is desirable to circumvent FindEventTarget and
always send the event to a particular view. This is especially true
when you are dragging or sizing a view but want it to receive all
mouse events. In this case, you call the CSubview::SetSelectedView
method on a given enclosure so that the enclosure will send all
events to the specified view. If later you decide to take away the
view’s status as the selected view, you can call SetSelectedView again
and give it a value of NULL. Then the enclosure will revert back to
the default behavior of searching for a nested view via FindEventTarget
when it receives a mouse event.

16.4.3. Propagating Messages from
Enclosures to Nested Views

XVT-Power++ has many different types of messages that are
propagated from an enclosure to all of its nested views, and then
from each of these nested views (which may also be enclosures) to
their respective nested views, and so on in a recursive fashion all the
way down to the deepest views.

Suppose you have inserted into a window a rectangle that contains
many different kinds of objects. Several of the objects enclosed
inside the rectangle contain other objects inside of them. Now you
want to send an update message that will reach all of these objects,
from the rectangle enclosure to the tiniest and deepest enclosed
view. To do this, you send a DoDraw message which propagates
recursively as described here.
16-16

Manipulating Views and Subviews
Typically, the messages sent to CSubview objects—such as drawing,
showing/hiding, activating/deactivating, enabling/disabling,
dragging, and sizing—consist of two methods: the base method and
the “Do-” version of that method (i.e, Draw/DoDraw, Show/DoShow, or
Activate/DoActivate).

The “Do-” methods are in charge of the propagation scheme. Thus,
when a method such as DoDraw is called on an enclosure, the
enclosure uses its own Draw method to draw itself and then
propagates the message by calling all of the nested views’ DoDraw
methods. This means that each of the nested views will use its own
Draw method to draw itself and then call the DoDraw methods of all of
its nested views. In this way, the message propagates recursively
until all views have received it.

16.4.4. CView and CSubview—Interface Similarities

This schema (base method/“Do-” method) works quite well for all
views that can act as enclosures, that is, for objects derived from
CSubview. It is unnecessary for views that derive directly from CView.
A CView object, has no need to propagate messages because it cannot
contain nested views. Thus, when a view from a class deriving
directly from CView—for example, CNativeView—receives a Draw
event, it simply draws itself.

It is clear that only views inheriting from CSubview, that is, views that
can act as enclosures, need and use the “Do-” methods. For example,
you might expect DoShow to appear only at the CSubview level and not
at the CView level in the XVT-Power++ class hierarchy. However, if
you examine CView, you will notice that it contains the “Do-”
methods, just like CSubview does. For any CView, you can call DoShow,
DoDraw, DoHide, and so on.

XVT-Power++ is structured this way so that the CView and the
CSubview classes can have a very compatible interface. In other
words, when you get access to a view object, you do not have to
worry about whether it has the specific properties of a CView or
CSubview object. You can treat these objects in the same way.
16-17

Guide to XVT Development Solution for C++
16.4.4.1. Wide Interface

At the CView level, a “wide interface” is in place to make CView
objects almost identical in use to CSubview objects. CView’s “Do-”
methods simply call the view’s basic method and do not attempt to
do looping through enclosed views because there are not any
enclosed views. For example, DoDraw simply calls Draw.

While this “wide interface” may seem redundant, it is intended as a
convenient arrangement for you, the application developer. XVT
refers to this “wide interface” at several points in the XVT-Power++
Reference.

16.4.4.2. Narrow Interface

In general, avoid direct calls to the narrow interface; always call the
wide interface. The wide interface (DoDraw, DoActivate, DoKey, ...) is
for your use, while the narrow interface (Draw, Activate, Key, ...) is
used by the XVT-Power++ framework and also by experienced
programmers who are extending the framework. C++ does not
provide “package” type access control so these narrow methods
must be public, even though they must be used with care.

Caution: Unless you're extending the framework, avoid using the narrow
interface.

16.5. Keyboard Navigation
The XVT-Power++ framework contains a set of classes that work
together to provide keyboard navigation across multiple views of a
window. The architecture of the keyboard navigation system is very
flexible and allows you to customize it to the needs of even the most
complex interfaces.

16.5.1. Navigation Terminology

The CNavigator class provides many ways of customizing the
navigation across views. The following components are used to
define a navigation sequence:

Tabbing sequence
A navigator owns an ordered list of CTabStops. A navigator can
have any number of tab stops. Usually, each tab stop represents
a single view which is activated when reached by a navigation
sequence. However, a tab stop can also represent a nested
navigator which manages key movements for views in a nested
enclosure. For example, consider a window containing an edit
16-18

Manipulating Views and Subviews
field and a radio group with two buttons. This window’s
navigator contains two tab stops—one for the edit field and one
for the radio group. The second tab stop, however, represents a
nested navigator which manages navigation among the buttons
within the radio group.

Movements
A set of movements that the application will recognize and
advance focus when they occur. You can establish a dynamic
mapping of keystrokes to movements for your end user. For
example, you might want to map the right-arrow key (K_RIGHT)
to a right movement (M_Right). Usually, movements are defined
for the Tab and Back-Tab keys. Movements are defined with
the assistance of the CCourse class.

EndJump
A set of decisions for tabbing past the last (or first) tab stop in
the list. Options are:
EJ_Circular

Causes navigation to start over when the last (or first) tab
stop is reached.

EJ_None
Stop the navigation when the last (or first) tab stop is
reached.

EJ_Out
Used by those navigators that behave as if there is seamless
navigation between one navigator and a sibling navigator.

JumpInto
Defines the tab stop the application starts at when jumping
down into a nested navigator. Options include:
JI_Selected

Move down to selected tab stop.
JI_End

Move down to home or end.

Hot keys
CNavigator allows the mapping of hot keys to specific tab stops.

16.5.2. Automatic Default Navigation

CWindow automatically creates a default navigator to manage top-
level views (i.e., views nested one level deep). The type of navigator
created is of the class CWindowNavigator. By default, this navigator
performs the following:

• Defines movements for Tab and Back-Tab
16-19

Guide to XVT Development Solution for C++
• Defines a circular EndJump navigation

• Appends tab stops for all top-level views

• Initializes window focus to the first tab stop

• Registers itself with the global CNavigatorManager

The tab stops for the navigator are added using the
CNavigator::AppendSubviews() interface. This interface adds the views to
the navigation as long as they support keyboard focus. For example,
CText does not support keyboard focus, but NEditControl does. In
addition, AppendSubviews() creates special nested navigators for any
radio groups in the window.

The views are added to the navigator in their order of creation, or
stacking order. Views at the back of the stacking order are created
first.

Special Instructions for XVT-Architect Users

In XVT-Architect, you can set the default tabbing order of views
managed by a CNavigator object by following these steps:

1. Open the Drafting Board.

2. Select Palettes|Alignment.

3. Select the first view in the tabbing sequence.

4. Click on the "Send to Front" button in the Alignment palette.

5. Repeat steps 3 and 4 for the remaining views in the order that
they should be tabbed.

In other words, if the views in your application are created by
XVT-Architect, you can change their order of creation by using the
“Send to Front” and “Send to Back” buttons in the window’s
Drafting Board alignment palette.

See Also: The ...samples/arch/keynav creates a window containing all the
XVT-Architect views that support navigation; the sample shows
how automatic navigation is provided in an application with a
minimal amount of code.

16.5.3. Keyboard Navigation Classes

The following classes provide keyboard navigation:
CNavigatorManager

Global manager of keyboard navigators. It maintains the
16-20

Manipulating Views and Subviews
navigator associated with each window so that events can be
delegated to the navigator when they are sent to its window.

CNavigator
Delegate class which handles keyboard navigation for a
window or other enclosure.

CKey
Object representing information sent with a keyboard input
event.

CTabStop
Helper class that manages information relevant to each stop in
a navigation sequence.

CCourse
Helper class that manages information relevant to the direction
taken when navigating from one tab stop to another.

By default, XVT-Power++ uses the navigation classes to give each
window default support. When a window is created, the window
automatically creates a keyboard navigator that navigates across all
the top-level views in the window. The navigator is created in the
virtual CWindow::ConstructNavigator() method, which you can
override if you want to provide a different type of navigator for that
window and its views. In addition, you can specify a different type
of default navigator by defining a new CWindowFactory object; for
more details, see section 15.5.3 on page 15-13.

16.5.4. Handling Keyboard Events

Navigators created internally in CWindow are automatically
registered with the global navigator manager. As keyboard events
arrive at the application’s switchboard, the following actions are
taken:

• The navigator for the window is located in the navigator
manager.

• The navigator’s DoKey() method is invoked to handle the
event.

• If the navigator knows how to handle the keyboard event for
that view, it does so. This normally means that the navigator
sets the focus to the next view in the navigation sequence.
Alternatively, you can plug in your own navigators to handle
keyboard events in a completely different manner.

• If the navigator does not know how to handle the key, the
event is sent to the window’s DoKey() method for normal
processing.
16-21

Guide to XVT Development Solution for C++
• For more details on how keyboard events are handled, refer
to section 15.3 on page 15-6.

16.5.5. Customized Navigation

There are times when the default automatic navigation is not suitable
to the interface of an application. Navigation can be customized
using the following approach:

1. After a window’s views are created, obtain a pointer to the
window’s navigator:

CNavigator* aWindowNav = aWindow->GetNavigator();

2. Add tab stops as necessary. For example, the following code
adds tab stops for a window with nested groups of views:

// Clear old tab stops:
aWindowNav->ClearTabStops();

// Create a nested navigator for views
// inside itsTopViews enclosure.

CNavigator* aTopNav = new CNavigator();
aTopNav->AppendSubviews(itsData.itsTopViews);
aWindowNav->AppendSubNavigator(aTopNav);

3. Add more tab stops for a view in itsBottomViews enclosure.

aWindowNav->AppendSubviews(itsData.itsBottomViews);

In actual practice, you don’t have to create a nested navigator
just to add nested views. This was done above just to
demonstrate that by using nested navigators, you can add
specialized navigation to a subset of nested views.

4. Define hot keys if necessary. The following code maps the “A”
key to the selection of the “A” view.

aWindowNav->AddHotKeyToView(CKey('A'), itsData.itsA);

5. Add movements. The following code adds movements for the
Tab and Back-Tab keys:

aTopNav->DefineMovement(
CKey('\t'),
CCourse(CCourse::kRight, CCourse::kNear));

aTopNav->DefineMovement(
CKey(CKey::VirtualKey, K_BTAB),
CCourse(CCourse::kLeft, CCourse::kNear));

6. Set any other CNavigator attributes as needed.
16-22

Manipulating Views and Subviews
See Also: For more details about how to customize a navigator, refer to the
...samples/arch/keynav example, from which the code snippets in
this section were excerpted.
16-23

Guide to XVT Development Solution for C++
16-24

Native Views
17
NATIVE VIEWS

17.1. Introduction

Native views are views that have the look-and-feel of graphical
objects provided by the native window manager. “Native views”
is XVT-Power++’s term for controls, such as scrollbars, buttons,
list boxes, radio buttons, check boxes, and pop-down menus, all
of which provide some means for the user to interact with the
application. They are standard items on almost any GUI but look
a little different from platform to platform.

XVT-Power++’s native views “fit in” visually and functionally with
the analogous graphical items on your platform, whether you are
working on Motif, on MS-Windows, or on a Macintosh. They are
thus not implemented by XVT-Power++ but, at the lower level, are
implemented by the native toolkits. For this reason, you have less
flexibility in what you can do with them. For example, the native
classes are derived directly from CView and thus cannot act as
enclosures for other views. You cannot draw anything inside them
and would not expect to on most platforms.

CBoss
CApplication

CDocument

CView CNativeView

NButton

NCheckBox

NRadiobutton

NScrollBar

NEditControl

NIcon

NNotebook

CNativeList

NGroupBox

NText
17-1

Guide to XVT Development Solution for C++
However, when you instantiate one of XVT-Power++’s native view
classes, you do get a lot of extra features that you might not expect
to get out of controls. Since native views derive from the CView class,
they have all of the capabilities of other objects at the view level.
That is, they automatically propagate events and adhere to their
environment, plus they can be enabled/disabled, shown/hidden,
activated/deactivated, moved, and sized as discussed in section
14.3.3.

All of XVT-Power++’s native views have a DoHit method that
functions as the interface for the actual events the native views can
receive. Every native view class handles these events automatically,
and you do not have to do anything about the DoHit. However, if you
want to interact with the events at the lower level and create your
own native view class, you may need to override DoHit.

17.1.1. CNativeView

At the top of the native view hierarchy is CNativeView, which handles
much of the work that must be done to manipulate the native views
that inherit from it—all the way from moving and sizing to creation/
destruction, enabling/disabling, and so on. CNativeView is an abstract
class that cannot be instantiated because XVT does not know exactly
which native view you want to create. XVT-Power++ provides
several native view classes, and this chapter surveys them all.

See Also: For details on each class discussed in this chapter, see its respective
section in the XVT-Power++ Reference.

17.2. Types of Native Views

17.2.1. NButton

The NButton class allows you to create a button that you can “press”
using the mouse, to generate a DoCommand. You must set the number
of the command for the button to generate. Upon receiving a DoHit
message, a button generates a command that may be handled at
different levels in the XVT-Power++ application framework. When
you instantiate a button, you give it a CRect to specify its size and
give it a title. The title is clipped inside of the button.

Save
17-2

Native Views
17.2.2. NCheckBox

The NCheckBox class provides an object that becomes selected
(generating a select command) when the user clicks on it and
deselected (generating a deselect command) when the user clicks on
it again. Check boxes are commonly used for menu items or items
on dialog boxes so that the user can know whether an option is
currently turned on or off.

You can set the ID numbers for the select and deselect commands of
a check box. In addition, a check box can have a title beside it, just
as a button can have a title inside it. You give the check box a top-
left point for the title, and the entire check box is sized to fit the title.
Unlike the title of a button, then, the title is not clipped to the check
box.

17.2.3. NRadioButton and CRadioGroup

A radio button is similar to the check box. Because the radio button
object by definition must be used in groups, it is provided by two
classes, NRadioButton and CRadioGroup.

While check boxes allow you to select multiple options by checking
more than one box at a time, only one of the radio buttons in a group
can be selected at a time. Selecting one radio button means to
deselect another. The helper class CRadioGroup serves as a grouper.

To instantiate radio buttons, you must first create a CRadioGroup
object and then add the buttons to that group, either one-by-one or
as a set. If you add them as a set, the buttons are automatically placed
inside the group, vertically or horizontally, so you do not have to
calculate the locations. When the radio group is instantiated, it is
initially empty. You give it a point in the top-left corner to use as a
reference for placing the buttons, and as radio buttons are created,
the group’s size increases.

33 Bold Italic Underline

All

Print Page Range:

Start Page:

End Page:
17-3

Guide to XVT Development Solution for C++
Each radio button is assigned a URL resource ID number. When a
single button is added to a radio group, the AddButton method returns
an integer, which is the ID number of the radio button. When
multiple buttons are added to a group, the AddButtons method returns
the ID number of the button corresponding to the first resource ID.
The IDs of the remaining buttons follow sequentially.

If you indicate that you want the radio group to be drawn, it draws a
box around the buttons inside it. You can have several radio button
groups on the screen at one time that will act independently.

When you select a radio button, it generates a DoCommand. As with
check boxes, the titles of radio buttons are located beside the button
and are not clipped—unless the radio group itself is clipped, in
which case the titles will clip to that enclosure. The radio group, of
course, acts as the enclosure for the radio buttons it contains, and
you can nest other objects besides radio buttons within it if you
desire. For example, you might want to add a text field (such as an
NLineText object) beside a radio button or associate a small picture
with it.

17.2.4. NScrollBar

Another native view is XVT-Power++’s NScrollBar, which provides a
horizontal and/or a vertical scrollbar for a view. Many NScrollBar
objects are created automatically in XVT-Power++.
For example, CListBox, CScroller, and NScrollText use NScrollBar to create
scrollbars automatically. NScrollBar is a convenient class for creating
your own scrollbar by instantiating one of these objects, specifying
whether it is to be horizontal or vertical, and giving it a starting and
ending position and a range. You can find out an NScrollBar object’s
native height and width using its NativeWidth and NativeHeight methods.

The scrollbars are updated automatically. For a vertical scrollbar, the
topmost position is the minimum position and the bottom is
the maximum position. For a horizontal scrollbar, the left is the
minimum and the right is the maximum position. Through its DoHit
17-4

Native Views
method, an NScrollBar automatically captures the events it can
get, such as mouse clicks or drags on its thumb or clicks for a page
or line scroll. The scrollbar automatically sends these events up to its
enclosure after translating them into HScroll and VScroll messages,
which contain information about the type of event (e.g., line up, line
down, page up, or page down) and the thumb position.

A class derived from NScrollBar called NWinScrollBar uses special types
of scrollbars that are attached to the window. These scrollbars are
special because they can have a special look-and-feel when they are
attached to the window. For example, on the Macintosh, if a
scrollbar is attached to a window, it automatically becomes disabled
when the window moves to the background. On MS-Windows, a
scrollbar attached to a window disappears when there is nothing left
to scroll and reappears when there is something to scroll. When you
size the Program Manager, for instance, and objects are clipped,
scrollbars appear automatically.

An NWinScrollBar object is instantiated automatically when you create
a window and specify scrollbars as one of its properties.
This is one of the XVT Portability Toolkit properties that you can
give to a CWindow object. NWinScrollBar objects can also appear
on list boxes, scrollers, and other views if they are given a special
parameter that notifies them to use the window-attached scrollbar.

See Also: For information on native list controls, see NListEdit,
NListButton, and NListBox in the XVT-Power++ Reference.

17.2.5. NNotebook

A Notebook is comprised of three objects: The shell, the page
windows and face windows of the notebook. The notebook shell is
responsible for drawing the border of the notebook and the Tabs.
Each Tab has a border, and possibly text and an image. The notebook
shell is implemented by the NNotebook class.

The face window is where information is presented to the user (i.e.
static text, listboxes or other controls). The face window is
represented by the CFaceWindow class. The face is physically
contained within the NNotebook.

At the C++ layer, NNotebook is not physically set as the enclosure for
the face window, yet the NNotebook object contains it. This
arrangement might seem awkward at first, since CWindows (from
which CFaceWindow is derived) may only have other CWindows as
enclosures. To clarify the issue, we must look at the PTK layer.
17-5

Guide to XVT Development Solution for C++
In the underlying PTK, the shell is a window and is the parent of all
Face windows, each Face being associated with a particular Page. A
Page is a logical construct that contains the number of Faces associated
with each Tab and tracks the currently displayed Face. The
notebook shell contains the Page information and uses it internally.
Therefore, the NNotebook class is a special control, and Faces are
special windows which may have a notebook control as their
enclosure.

Navigation between Pages is user-defined, and objects can be
implemented for moving from one Page to another.

NNotebook provides methods for managing Tabs and Pages. Tabs and
Pages are created and destroyed through NNotebook, as are the methods
for displaying Faces and implementing Tab navigation. Faces
(CFaceWindow objects) inherit all of the capabilities for managing
other views (child windows, controls, etc.) with fully configurable
navigation.

17.2.5.1. Creating and Destroying a Notebook

There are five steps to creating a Notebook as follows:

1.) Create an NNotebook.

2.) Create a CFaceWindow.

3.) Create a notebook tab.

4.) Create a notebook page.

5.) Set the tab and page face.

Note: you cannot create subviews within the CFaceWindow until after the
call to SetFace to set the CFaceWindow to the NNotebook object.

Example: NNotebook* aNotebook = new NNotebook(theParentWindow, theCRectSize);

CFaceWindow* aFace = new CFaceWindow(theDocument, aNotebook);

aNotebook->AddTab (theTabNum, theTitle);
aNotebook->AddPage (theTabNum, thePageNum, theTitle);
aNotebook->SetFace (aFace, theTabNum, thePageNum);

To remove a tab or a page, use NNotebook->RemoveTab or NNotebook-
>RemovePage before deleting the CFaceWindow. The CFaceWindow may
be reused after the corresponding Remove method.

Note: Do not call Close on a CFaceWindow. The corresponding RemovePage
will call the CFaceWindow's Close.
17-6

Native Views
17.2.5.2. Interface Objects

After calling NNotebook->SetFace, objects may be added to or removed
from the CFaceWindow. Any desired Environment may also be set at this
time.

Example: aNotebook->SetFace (aFace, theTabNum, thePageNum);

NButton* aButton = new NButton (aFace, aRect, aCStringRW);

17.2.5.3. Navigation

There are three navigators of concern when discussing notebook
navigation. The three navigators involved are the notebook's
enclosure, the NNotebook, and the CFaceWindow.

The notebook's enclosure provides navigation to the NNotebook. This
is accomplished by adding the NNotebook's navigator to the
enclosure's navigator.

The NNotebook's navigator interprets navigation from both the
enclosure and the CFaceWindow for seamless navigation. The
NNotebook's navigator also provides Tab to Tab and Tab Hot Key
navigation. The zero'th CTabStop in the NNotebook's navigator is a
subnavigator pointing to the CFaceWindow for the current Tab and Page
of the notebook. When forward navigation comes from the
enclosure, the NNotebook passes navigation to the CFaceWindow found
in the zero'th CTabStop of the NNotebook's navigator.

When forward navigation comes from the last object in the
CFaceWindow, the NNotebook passes navigation back to the notebook's
enclosure's navigator. If the NNotebook's navigator receives a
backward navigation from the notebook's enclosure or from the first
object in the CFaceWindow, the current Tab is selected for Tab to Tab
navigation. The right and left arrow keys are used to navigate the
notebook tabs.

Finally, the CFaceWindow's navigator provides navigation of its views.
The CFaceWindow's navigator is fully definable. However, to change
17-7

Guide to XVT Development Solution for C++
or modify the behavior of the enclosure's and/or face's navigators,
The following conditions must be met.

1.) Navigation from the notebook enclosure to the CFaceWindow
must use a CKey of TAB and CCourse(kLeft, kFar).

2.) Navigation from the CFaceWindow to the notebook enclosure
must use a CKey of TAB and CCourse(kRight, kNear) from the last
object in the CFaceWindow.

3.) Navigation from the notebook enclosure to an NNotebook Tab
must use a Ckey of BTAB and CCourse(kLeft, kFar).

4.) Navigation from the CFaceWindow to an NNotebook Tab must
use a CKey of BTAB and CCourse(kRight, kNear) from the first object
in the CFaceWindow.

Note: To use tab hot keys with Motif, the ATTR
ATTR_X_PROPAGATE_ECHAR must be set to TRUE.

17.2.6. Icons

An icon resource is a bitmap picture that can be drawn on different
platforms. XVT-Power++ contains a basic icon class called NIcon.
NIcon derives from CNativeview, so icons have all the properties of
native views.

Each platform imposes its own restrictions on how the resources are
handled. For example, on some platforms, icons can appear in only
two colors, while on other platforms they can be drawn in a wide
range of colors. Some platforms limit the size of icons to 32-by-32
pixels, while others impose no limitations on size.

HELP STOP
17-8

Native Views
17.2.6.1. Icon Portability Issues

When you want the most portability from platform to platform, you
can safely assume that icons must be drawn in only two colors and
are limited in size to 32-by-32 pixels. If you are willing to sacrifice
portability to obtain more flexibility, you can choose to work with
each platform to its fullest extent when you draw your own
resources.

Tip: There are several programs on the market and in the public domain
that allow you to convert icon resources from one platform type to
another.

17.2.6.2. Environment Settings for Icons

On some platforms, the icon drawing appears in the foreground
color, as does its title. Open spaces in the drawing appear in the
background color. You can set the background and foreground
colors. On other platforms, the icon’s color is fixed as defined.

Tip: To ensure portability, set the colors appropriately even if the
information is not used.

17.2.7. Icon Resources

The inclusion of resources for GUI components such as icons (and
cursors) varies from platform to platform. Under X/Motif, icons are
created somewhat differently than they are for other platforms,
where they can simply be incorporated through a URL definition.

See Also: For step-by-step information on how to build an icon or cursor
resource, see the platform-specific book, XVT Platform-Specific
Book for Motif.
17-9

Guide to XVT Development Solution for C++
17-10

Windows
18
WINDOWS

Windows are a special type of view in XVT-Power++ because
although they inherit from CSubview, they have a predefined
enclosure. This enclosure is either the screen itself or, on platforms
such as Windows or OS/2 PM, the task window. Objects of
type CWindow are the only views derived from CSubview that cannot
be nested inside other views. In fact, windows are the topmost
enclosure for any other type of XVT-Power++ view, and their
layout on the screen is managed by a class named CDesktop.

This chapter discusses the attributes a window can have, the possible
types of windows, how they are constructed, and how you can derive
your own classes from CWindow. It briefly considers the task
window, an example of a class of windows that is derived from
CWindow. The chapter concludes with a look at CDesktop.

CBoss

CApplication

CDocument

CView

CSubview CModalWindow

CTaskWin
CWindow
18-1

Guide to XVT Development Solution for C++
18.1. Window Attributes
When you instantiate an object of type CWindow, you can set several
different attributes that are available through the XVT Portability
Toolkit in order to tailor the window to the very specific needs of
your application: deciding whether it has scrollbars or a menubar of
its own and whether it can be moved, sized, or iconized. The
possible window attributes are listed in Table 18.1. XVT supplies
other, platform-specific flags.

Table 18.1. XVT Portability Toolkit window-creation flags

WSF_NONE No flags set

WSF_SIZE Is user-sizeable

WSF_CLOSE Is user-closeable

WSF_HSCROLL Has horizontal scrollbar outside of the
client area

WSF_VSCROLL Has vertical scrollbar outside of the
client area

WSF_DECORATED A convenient combination of
WSF_SIZE, WSF_CLOSE, WSF_HSCROLL,
and WSF_VSCROLL

WSF_INVISIBLE Is initially invisible

WSF_DISABLED Is initially disabled

WSF_ICONIZABLE Is iconizable (XVT/Win16, XVT/PM,
and XVT/XM only)

WSF_ICONIZED Is initially iconized

WSF_FLOATING Is a floating window (XVT/Mac only)

WSF_SIZEONLY Lacks border rectangles (XVT/Mac
only)

WSF_NO_MENUBAR Has no menubar of its own (see Note)

WSF_MAXIMIZED Is initially maximized

WSF_DEFER_MODAL Modal status deferred (not processed
by xvt_win_create*)

WSF_PLACE_EXACT Modal window is placed exactly where
specified
18-2

Windows
Note: WSF_NO_MENUBAR implies that the window has no menubar. You
can use this only with top-level windows; child windows never have
menubars.

If the window has a scrollbar, you can choose between horizontal or
vertical scrolling; if it has a menubar, you must decide how it will
react to the menubar’s events when the user selects it. Of course, you
will want to ensure that the window can respond to events that come
through the system—such as mouse clicks, drawing events, moving
to the front of the window stack, and so on—unless you intentionally
disable it.

See Also: For more information on these window flags, see the
XVT Portability Toolkit Guide and the online XVT Portability
Toolkit Reference.
18-3

Guide to XVT Development Solution for C++
18.2. Interaction With the Document
A CWindow object can be of any XVT type; it receives all window
events. Most of the window management, such as moving and
sizing, is done by the window manager or the XVT-Power++
desktop. Possible XVT window types are shown in Table 18.2.

Table 18.2. XVT Portability Toolkit window-type flags

Windows are normally created inside CDocument::BuildWindow method
and are in charge of viewing the data that the document is managing.
Each window has access to its own document object through a
pointer, and interacts with it by default at several different points in
the life of the application. For example, when the window is going
to close, it checks to see whether the data in the document needs to
be saved. If it does, the window invokes a dialog box giving the user
the option to either to save the data, close without saving,
or cancel the close operation.

Windows also interact with their documents when they delegate
tasks to them. For example, if a window receives a DoCommand and
elects not to trap it, it delegates the DoCommand up the chain of the
application framework to its document. Similarly, this is true of the
menu events described in section 15.2 on page 15-3 and the
keyboard events described in section 15.3 on page 15-6.

W_DOC Document window

W_PLAIN Single-bordered window

W_DBL Double-bordered window

W_NO_BORDER No border

W_MODAL Modal document window
18-4

Windows
18.3. Window Construction
t To construct a window:

1. Derive your own application-specific window class.

2. Add some objects that will be nested inside the window,
creating them in the window’s constructor.

3. Give the window itself as the enclosure of the objects that
will be nested inside.

For example, if you want to create a window that has three buttons
and a text field object, you would instantiate three buttons and a text
field in the CWindow constructor and give the constructor the this
pointer as the enclosure of those objects, as follows:

MyWindowClass::MyWindowClass(CDocument* theDocument,
const CRect& theRegion)

: CWindow(theDocument, theRegion, "", NULL,
W_DOC, NULL)

{
NButton* aButton = new NButton(this,

CRect(10,10,60,50), "Button1");
...
aButton = new NButton(this, CRect(60,10,100,60),

"Button2");
...
aButton = new NButton(this, CRect(110,10,150,60),

"Button3");
...
NLineText* aField = new NLineText(this, CPoint(10,80),

140);
}

Once this specific class is defined and you want to create a window
with three buttons and a text field, you simply instantiate your new
window class, which is derived from CWindow.

To destroy a window, call the Close method on it. In response, the
window disappears and the memory that it occupies is freed. Closing
a window is semantically equivalent to deleting the window. If you
have a pointer to a window object, window object -> close is equivalent
to delete window object, except that you are not allowed to say “delete
window object” because the constructor of CWindow is protected.
18-5

Guide to XVT Development Solution for C++
18.4. The Task Window
The task window, CTaskWin, is a class that XVT-Power++
uses internally. It is a private class that can be instantiated only
by XVT-Power++. This class is created for use on platforms that
require a task window to enclose all other windows in the. CTaskWin
maps directly to the XVT task window representation, TASK_WIN.

A task window has several of the properties of other windows, but it
is much more limited in what it can do, especially since it is confined
to certain platforms. Even within those platforms, the limitations on
the task window depend upon whether the window is drawable, a
property that can be toggled through XVT’s xvt_vobj_set_attr function.

Figure 18.1. Sample task window

File Edit Utilities Special Font Style Help

Task Window Menubar

Partially obscured windowOverlapping window Resized window
18-6

Windows
18.5. The Desktop
No discussion of CWindow is complete without a consideration of
CDesktop, which is responsible for managing the layout of the
different windows on the screen. At any time while it is running,
an XVT-Power++ application will have a number of windows open
on the screen, without regard to their associated documents. The
desktop keeps track of all these windows and their active/inactive
states.

The desktop is notified each time a different window is brought to
the front of the window stack. It has methods for setting and getting
the front window and a method for placing a window on the screen,
staggering it with windows that are already present. Also, you can
use CDesktop::FindWindow to find out whether a certain window is in
the desktop and GetNumWindows to find out how many windows are
currently in the desktop. Finally, CDesktop has protected methods for
adding and removing a window from the desktop. These methods
can be accessed only by CDocument objects.
18-7

Guide to XVT Development Solution for C++
18-8

Mouse Events and Mouse Handlers
19
MOUSE EVENTS AND MOUSE HANDLERS

One of the key features of graphical user interface applications is
that they are mouse-driven. The mouse is a very popular way for the
user to interact with the application. This chapter considers the kinds
of interactions that occur as views receive mouse events.

19.1. Basic Mouse Events (Methods)
These are the four different kinds of mouse events that can occur in
XVT-Power++:
MouseMove

Generated as the mouse cursor moves around on the screen,
regardless of whether a mouse button is being pressed.

MouseDown
Generated when the user depresses a mouse button. Since a
mouse can have from one to three buttons, each button can have
a different meaning when it is pressed in an application. Thus,
different values are assigned to the MouseDown event, depending
on which button is pressed.

MouseUp
Generated when the user releases a mouse button and depends
upon the value that has been assigned to that particular button.

MouseDouble
Generated when the user double-clicks a mouse button; a
MouseDouble event has a different meaning than just clicking the
button once.

19.1.1. Clicking the Mouse

Typically, mouse events occur in a sequence. By default, all CView
objects generate a click command whenever the mouse is clicked on
them. A mouse “click” is a sequence of a MouseDown followed by
19-1

Guide to XVT Development Solution for C++
some possible mouse moves and concluded with a MouseUp. In other
words, to “click” the mouse, the user must at the very minimum
press and release the mouse button, generating a MouseDown, MouseUp
sequence. If the user presses down a mouse button over a view and
then drags the mouse outside the view’s region without letting go,
this is not a click. Such behavior enables a user to prevent an
unintended click by simply dragging the mouse away from a view
before releasing the mouse button.

See Also: For more information about implementing drag-and-drop behavior
in an application, refer to section 19.3 on page 19-9.

19.1.2. Mouse Event Parameters

Each of the four basic mouse methods has the following three
parameters:

• A parameter that contains a point, called theLocation, that
indicates exactly where the mouse was when the event
occurred. This location is a point representing, in logical
units, the coordinate relative to the view containing the point.

• A parameter indicating which mouse button, if any, is
associated with the event. This parameter takes a value of 0,
1, or 2 (with 0 representing the left-most button), depending
on which button was pressed. For a one-button mouse, the
button value will always be 0.

• A parameter that indicates whether the Shift or Control key
was pressed in conjunction with the mouse button.

19.1.3. The “Do-” Mouse Methods

The mouse events described in section 19.1 are not the only ones
included in the interface. Actually, there are four additional mouse
events:

• DoMouseDown

• DoMouseMove

• DoMouseDouble

• DoMouseUp

The “Do-” mouse methods are the methods that trigger the mouse
method calls. They are decision-making methods in that they
determine which view should receive a given method. Normally,
a window receives a “Do-” mouse event and a “Do-” mouse method
19-2

Mouse Events and Mouse Handlers
is called for the view (associated with that window) that lies under
the mouse pointer.

The “Do-” mouse methods carry the same kind of information as the
basic mouse methods—a CPoint location, a button value, and an
indication of whether the Shift or Control key was also pressed.
However, the CPoint that indicates where the mouse event occurred
is in window-relative coordinates because it has not yet been decided
which view should receive the event. The only thing known at this
point is the particular window that should be in charge of this
method.

To summarize, inside every “Do-” mouse method, the following
three steps occur:

1. It determines which view should receive the event.

2. It localizes the location to the coordinate system of the view that
is to receive the event.

3. It calls the receiving view’s basic mouse method theLocation with
the localized information.

19.1.4. Propagating Mouse Events Through Views

Most view classes are programmed to respond with very specific
behaviors to mouse events. For example, all moving and dragging is
handled by the views themselves. A button is an example of a view
that is programmed to respond to MouseDown and MouseUp events in a
certain way. When a user presses a mouse button over a button view,
the appearance of the button view changes to indicate that it has been
activated. Upon a release of the mouse button, the button view’s
appearance changes again, and the MouseUp event generates a
DoCommand message.

The mechanism in XVT-Power++ for deciding which view should
receive a mouse event is the concept of the “deepest subview.”
When a mouse event occurs at a certain location, that event first goes
to the window. The window then searches for the deepest view that
contains this location. “Deepest” means that several views can be
nested around a given point and that the target of the mouse event is
the view that is nested most deeply.

Finding the deepest subview is accomplished using the
CView::FindEventTarget method. For classes derived from CView, you
can override this method, perhaps changing the logic used to find the
deepest subview so that it returns a different target for the mouse
19-3

Guide to XVT Development Solution for C++
event. FindEventTarget is commonly overridden for views that handle
an event themselves instead of passing it on to another view.

19.1.5. Using the Mouse to Resize a View

If the view that is to receive the event is movable and/or sizeable,
this state is treated as a special case. For example, if a button
receives a mouse event, it typically changes its appearance when
pressed and generates a DoCommand when it is released. However,
if the button is movable and sizeable, the normal behavior does not
occur when the user clicks on it. Instead, a rubberband frame appears
around the button so that it can be dragged to another location or
sized. CWireFrame is the class that implements all the moving and
sizing in XVT-Power++.

XVT-Power++ must therefore be able to find out whether the view
that is to receive the event is movable or sizeable; this is achieved
using a method called FindHitView. Once FindEventTarget returns a view
as the target of the event, then FindHitView is called on that view.
FindHitView either returns the view itself or the view’s wire frame.
When a view is movable or sizeable, it channels the mouse events it
receives to its wire frame helper.

The following is a summary of the steps that occur in sending a
mouse event to a view:

1. A user clicks the mouse over a certain point on the screen.

2. A CSubview “Do-” method receives this event and interprets
the event’s location in window-relative coordinates; it is clear
which window should be in charge of the event.

3. The “Do-” method calls the CView FindEventTarget method to find
the deepest subview containing the event’s location.

4. FindEventTarget calls CView::FindHitView, which returns either the
target view or its wire frame.

5. If FindEventTarget returns the target view, the “Do-” method
localizes the event location to the coordinate system of the
target view.

6. The target view’s basic mouse method is called with the
localized information.
19-4

Mouse Events and Mouse Handlers
19.2. Mouse Event Processing
The XVT-Power++ framework provides different ways of dealing
with mouse events in an application. Events originate in the system
and are sent to the application’s CSwitchBoard object. As described in
section 19.1, CSwitchBoard may receive four kinds of mouse events:
down, up, double, and move. Figure 19.1 illustrates the flow of these
events into an application and the different objects that are involved
in handling these events:

Figure 19.1. Mouse event processing in an XVT-Power++
application

XVT-Power++ view classes “expect” to receive four types of mouse
events; with each event, the system provides the following
information:

• The window that is the target of the event

• A point representing the mouse location of the cursor,
relative to the target window’s coordinates

• Which mouse button has been pressed if any (e.g., left,
middle, or right)

• Is the Shift key down?

• Is the Control key down?

In the second phase of the event handling, (represented in Figure
19.1 with ²), the switchboard locates the CWindow object that is

CMouseHandler
Deepest or

CWindow Selected View

CSwitchBoard

System

itsHandlers

¹

² ³

¼

19-5

Guide to XVT Development Solution for C++
responsible for the event. When it is determined that a particular
view is the target of a mouse event, one of these four methods is
called and the view receives a message. However, before sending
the event to the window, the switchboard sends the events to the
window’s mouse handler objects. A window may have zero or more
such mouse handlers.

If the window has no mouse handlers, or if the mouse handlers do
not consume the mouse event, then the switchboard sends the event
directly to the window by a call to one of its virtual DoMouse*() event
methods. From this point, events are further delegated to the
window’s deepest or selected view through a call to the one the
view’s virtual Mouse*() methods.

19.2.1. Mouse Handlers

Mouse handlers are ideal when mouse behavior needs to be changed
for a window whenever a special kind of view is inserted into the
window. For example, suppose you define a special view that
requires that the cursor bitmap change whenever the mouse enters
or leaves the view. The view can accomplish this by registering a
mouse handler with its window. The alternative (old approach)
would have required that you override the DoMouse*() methods of
each window that contained the new kind of view to ensure it
changed cursors depending on the location of the mouse.

Tip: Mouse handlers also make it easy to combine several mouse
behaviors—simply plug in several handlers at a time.

19.2.1.1. Why Use Mouse Handlers?

CMouseHandlers are potential timesavers because they allow you to
define a mouse behavior once and reuse it with any window by
simply plugging an instance into the window. For example,
XVT-Power++ provides a predefined CMouseHandler derived class
that defines drag-and-drop mouse handling. By plugging one of
these handlers into a window, you can easily add drag-and-drop
mouse behavior to your application. This handler is described in
detail in section 19.3 on page 19-9.

Another handler provided as a sample with DSC++ provides “grid
snapping” behavior to a window with movable and sizable objects—
it modifies mouse events before a window gets them so that objects
in the window will snap to an imaginary grid as they are dragged or
resized by the user.
19-6

Mouse Events and Mouse Handlers
See Also: For more information about a mouse handler that implements grid
snapping, refer to the ...samples/pwr/drag sample; this sample
program demonstrates how a mouse handler like this is used in a
DSC++ application.

19.2.1.2. Registering a Mouse Handler

Each XVT-Power++ window may have zero or more mouse handler
objects that deal with the mouse events received by that window.
Mouse handlers are registered with a window through the use of
CWindow’s CMouseManager object. The mouse manager is simply an
object that manages the collection of various mouse handlers. It
determines the order in which the handlers receive events, and it can
be customized to redefine when and how events are received by each
handler.

The following code shows how a mouse handler is registered with a
window:

CWindow * aWindow = ...;
CMouseHandler * aHandler = ...;
aWindow->GetMouseManager()->RegisterMouseHandler(

aHandler);

CMouseHandler is an abstract class, but you can define (or use) derived
classes that provide overridden versions of virtual mouse handling
methods. These methods fulfill several different roles. They can
modify the mouse event by altering the parameters associated with
the event (e.g., mouse location, button pressed, etc.). The methods
can also decide to consume the mouse event. When an event is
consumed, it is not passed on to the window.

19.2.2. Virtual Mouse Event Methods

When an event is not consumed by a window’s mouse handler, it is
passed on to the window though one of the following virtual mouse
methods:

DoMouseDown

DoMouseMove

DoMouseDouble

DoMouseUp
19-7

Guide to XVT Development Solution for C++
The default behavior of these methods is to locate the window’s
view that should receive the event and pass the event on by calling
one of the following virtual mouse methods:

MouseDown

MouseMove

MouseDouble

MouseUp

If a window has a selected view, that view will receive the event.
Otherwise, CWindow uses FindEventTarget() to find the view for the
mouse event. Unless overridden, FindEventTarget() returns the deepest
subview under the mouse location.

See Also: For more information about virtual mouse events, refer to section
19.1.3 on page 19-2.

19.2.2.1. Overriding DoMouse*() Methods

You may occasionally decide to override a window’s DoMouse*()
methods to provide window-specific mouse handling behavior, but
remember that this is less versatile than using mouse handlers. First,
it makes re-use more difficult. Mouse handlers are designed to be
reusable because they define general mouse behavior which can be
reused whenever necessary by simply plugging the handler into a
window instance, no matter its type. On the other hand, to provide
mouse behavior through the overriding of mouse methods, you must
either override the methods for each window class that requires the
behavior, or derive each of these classes from a common base that
defines the desired mouse behavior.
19-8

Mouse Events and Mouse Handlers
19.3. Drag Sources and Drag Sinks
Drag-and-drop is a special behavior which allows a user to depress
the mouse over a specific area or object in a window and drag that
object or some form of data to a new location in the window or to
another window.

19.3.1. CDragSource and CDragSink

XVT-Power++ provides this type of behavior through the
implementation of a special mouse handler class named CDragSource.
Figure 19.2 illustrates the CDragSource class
and its relationship to other classes involved in the definition of a
drag-and-drop operation.

Figure 19.2. Drag-and-drop mouse behavior; relationship of drag
sinks and drag sources to a mouse handler object

As shown in Figure 19.2, CDragSource is derived from CMouseHandler.
CDragSource handles mouse events and converts them into drag-and-
drop events propagated to zero or more CDragSinks. Drag sinks are
objects that represent areas on the screen that are capable of
receiving drag-and-drop events.

CDragSource and CDragSink have a many-to-many association—a
source can service zero or more sinks, and a sink can be registered
with zero or more sources.

CDragSource
CDragSink

CMouseHandler

n

CViewSource

n

CViewSink

IsInSink()
DoDrop()
DoEnter()
DoLeave()
DoDrag()

DoDown()

RegisterSink()
DoDrag()

DoUp()
DoMove()
DoDouble()
19-9

Guide to XVT Development Solution for C++
For example, a drag source could be registered with a window and
triggered to initiate a drag operation whenever the user clicks and
drags over a certain object or area in the window. In addition, a
specific drag sink associated with another window could be
registered with the drag source. This arrangement allows the end
user to drag-and-drop from one window into the other window.

19.3.2. CViewSource and CViewSink

Figure 19.2 also introduces two other classes: CViewSource and
CViewSink. These are specializations of the more generic CDragSource
and CDragSink classes. CViewSource takes a pointer to a specific view
during construction. Thereafter, this drag source will automatically
initiate a drag-and-drop event whenever the mouse is clicked and
dragged over that view. Similarly, CViewSink also takes a pointer to a
specific view during construction. Thereafter, the drag sink will
automatically send DoCommand() messages to that view whenever the
mouse enters, leaves, moves over, or drops over that view.

See Also: For more information about any of the classes mentioned in
section 19.3, refer to their individual descriptions in the online
XVT-Power++ Reference.
For more information how drag-and-drop works and how to add it to
your applications, refer to the ...samples/pwr/drag sample.
19-10

Menus
20
MENUS

20.1. Introduction

XVT-Power++ menus are handled through the following classes:
CMenuBar

CMenu

CMenuItem

CSubmenu

20.2. Menubar, Menu, Menu Item, and Submenu
Menubars can be built from resources or dynamically. Note that only
windows can contain menus; dialogs do not have menubars.

A top-level menubar is made up of submenus such as File, Edit, and
Font. Each submenu is a collection of menu items and separators. In
cascading menus, a submenu can also include other submenus.

When creating a separator, XVT-Power++ provides a convenient
CMenuItem object called MENUSeparator.

Using the CMenuBar::DoUpdate method, XVT-Power++ also provides
a way to delay the physical update of a menubar until all changes to
the menubar have been made.

CNotifier

CMenu

CMenuBar

CSubmenu

CMenuItem
20-1

Guide to XVT Development Solution for C++
A CMenuBar object is the only object that can directly modify the
physical state of a menubar. CMenu, CMenuItem, and CSubmenu are data
structure classes to maintain the internal state of a menubar. XVT-
Power++ handles these structures using reference counting
to limit the allocated memory.

See Also: For information about reference counting, see CStringRW in the XVT-
Power++ Reference.

20.3. Menubar Creation
Each XVT-Power++ window can use a default menubar or create its
own. Dialogs do not have menubars.

Windows create CMenuBar objects, dynamically or from resources.
Windows access their menubar using their GetMenuBar method. They
can also change their menubar after creation using their SetMenuBar
method.

The CMenuBar class provides methods to append, insert, remove,
or replace submenus in the menubar hierarchy, such as:

AppendSubmenu

InsertSubmenu

RemoveSubmenu

ReplaceSubmenu

These methods do not take effect until the CMenuBar::DoUpdate
method is called.

20.3.1. Traversal of the Menubar Hierarchy

A powerful feature of XVT-Power++ menu handling is automatic
traversal of the menubar hierarchy. Automatic menu item traversal
is especially important when using multi-level cascading menus.

A menu item ID is called a tag. Given a tag, CMenuBar can check,
enable, and set the title of any menu item in the menu tree without
having to traverse the tree. To do this, CMenuBar uses these methods:

SetChecked

IsChecked

SetEnabled

IsEnabled

SetTitle

GetTitle

Note that these methods do take effect immediately.
20-2

Menus
You may want to traverse the menu tree yourself. To do this,
CMenuBar offers the GetSubmenus method. GetSubmenus returns
the list of submenus for that menubar. Then, for each submenu,
call CSubMenu::GetMenus method to get a list of submenus and
menu items.

20.3.2. Defining Pop-up Menus

A pop-up menu is a temporary menu displayed at a specified
location over a window (only windows that can receive mouse
events may be specified). Pop-up menus are created by sending a
DoPopup message to a CMenuBar object. Different pop-up menus can
be created from the same section of code, depending on whether a
keyboard modifier, such as Control or Shift, is pressed along with
the mouse button.

Generally, applications should invoke a pop-up menu only in
response to an E_MOUSE_DOWN event (by overriding a window's
DoMouseDown() method). When the user selects an item from the pop-
up menu, a normal DoMenuCommand() is sent to the window specified
in the CMenuBar object.

The CMenuBar::DoPopup method can be called in a way that checks:
1) which button of the mouse was pressed, and 2) whether a
keyboard modifier, such as Control or Shift, is pressed along with
the mouse button. The pop-up menu can be displayed with either one
of two orientations, as shown in Figure XXX.

Figure here shows top/left orientation compared to centered
vertically WRT to a particular menu item.

t To display a pop-up menu inside a window:

1. Define a CWindow with a standard or customized menubar.

2. Edit that window’s CMenuBar, calling the DoPopup method in a
way that forces the pop-up menu to have the desired behavior.
20-3

Guide to XVT Development Solution for C++
Example: The following DoMouseDown method creates pop-up menus for a
window:

void CPopWin::DoMouseDown(
CPoint theLocation,
short theButton,
BOOLEAN isShiftKey,
BOOLEAN isControlKey)

{
CMenuBar aMenu(this, POPUP_MENUS);
if (isShiftKey)

aMenu.DoPopup(theLocation, M_FILE,
XVT_POPUP_LEFT_ALIGN);

else
aMenu.DoPopup(theLocation, M_NUMBERS,

XVT_POPUP_OVER_ITEM);
}

The first statement creates a temporary menubar with a pointer to
the window and the ID of a menubar defined using XVT-Architect.
The code then calls DoPopup using different submenus of the
POPUP_MENUS menubar; the XVT_POPUP_OVER_ITEM and
XVT_POPUP_LEFT_ALIGN alignment parameters control the actual
location of the pop-up menu (when it is drawn) with regards to the
location of the pointer. When the user selects an item from one of the
pop-up menus, the window's DoMenuCommand() is called to process
the event.

See Also: Refer to a sample application in ...samples/arch/popup and its
associated XVT-Architect project file for more information about
using pop-up menus in your DSC++ application.
For more information about menubars, see CMenuBar in the on-line
XVT-Power++ Reference.
For more information about the XVT_POPUP_ALIGNMENT parameter,
refer to the Data Types section of the on-line XVT Portability Toolkit
Reference.

20.3.3. Menubar Deletion

The CMenubar object associated with a CWindow is automatically
deleted in the CWindow destructor

See Also: For more information, see CWindow in the XVT-Power++ Reference.
20-4

Menus
20.4. Menubar Handling
When you want the menubars to be consistent for an entire
document, the CDocument object should be in charge of setting up the
menubars for all the windows associated with it. When you want the
menubars of all windows in an application to be consistent, the
CApplication object should be in charge of setting up the menubars.

20.4.1. SetUpMenus and UpdateMenus

CApplication has the SetUpMenus method. CApplication, CDocument, and
CWindow all have the UpdateMenus method. It is important to
distinguish the difference between setting up a menu and updating
the menu.

Setting up the menu is a task that is done once. For the task
window, CTaskWin, this is accomplished with the
CApplication::SetUpMenus method, which is called when the
task window is created. For a window, a CWindow-derived class,
you set up the menus in the constructor of that window.

On the other hand, UpdateMenus is called every time a window comes
to the front of the window stack. When the window comes
to the front, the menubar can be updated. Usually there is nothing
to do, because the state of a window’s menubar is saved. Sometimes,
however, the menubar will need an update because changes have
occurred while the window was in the background.

If you decide to have the document maintain menubars for all its
windows, you should be aware that window may contain its own
menubar or may share the task window’s menubar. In these cases,
you must iterate through each window owned by the document and
determine the appropriate action. This is typically a simple process
of applying the same menu attributes to each menubar.

20.4.2. Menu Events Handling (DoMenuCommand)

XVT-Power++ menu events are generated when a menu item is
selected from a menubar.

CBoss provides a “wide interface” for menu selection handling
through its DoMenuCommand method. DoMenuCommand messages
can be propagated and delegated from one object to another, from a
window up to its document, or on up to the application.
20-5

Guide to XVT Development Solution for C++
In CBoss, the DoMenuCommand method does not do anything, but
any object that inherits from it can choose to respond to a menu
selection. The XVT-Power++ default behavior is as follows:

1. CSwitchBoard finds which window had the focus at the time
the menu selection occurred, and calls that window’s
DoMenuCommand.

2. The window can handle any menu selection which affects it,
and it can pass the message up to its document.

3. The document’s DoMenuCommand method calls its appropriate
method in response to one of the following menu items on the
File menu:

Close Calls its DoClose method
Save Calls its DoSave method
Save As Calls its DoSaveAs method
Page Set Up Calls its DoPageSetUp method
Print Calls its DoPrint method

Any object derived from CDocument can override DoMenuCommand
to modify the standard behavior already provided.

DoMenuCommand arguments are a menu tag (ranging from 1 to
MAX_MENU_TAG’s limit of 32,000) and two BOOLEANs indicating
whether the Shift key and/or the Control key were depressed at
the time the menu selection was made.

20.4.3. Handling Menu Commands

As discussed earlier (section 20.4.2), the DoMenuCommand is first
called for the window from which the menu item is selected. The
DoMenuCommand method has parameters for specifying which menu
item was selected and whether the Shift or Control key was pressed
as well, as shown here:

virtual void DoMenuCommand(MENU_TAG theMenuItem,
BOOLEAN isShiftKey,
BOOLEAN isControlKey);

theMenuItem is the menu item number of the command, starting at one.

Setting up menus is another task that can be done at different levels
in the XVT-Power++ application framework. Obviously, you can
set the menus of a particular window.
20-6

Menus
See Also: For a detailed discussion of what it means to have a menubar on a
window, see Chapter 8, Object Factory.
For a discussion of menubar creation, see section 20.3.
20-7

Guide to XVT Development Solution for C++
20-8

Wire Frames and Sketchpads
21
WIRE FRAMES AND SKETCHPADS

One of the features of XVT-Power++’s view classes is that you can
easily make them movable and/or sizable. When you click on a view
to select it, a rubberband frame surrounds the view, enabling you
to drag the mouse to change the view’s size or move it to another
screen location. Moving and sizing are handled automatically,
and the mechanisms that make these operations possible are all
embedded into one class: CWireFrame.

Related to CWireFrame is CSketchPad, which uses the wire frame to
sketch shapes within a drawing area on the screen. When a user
drags the mouse across a sketchpad’s drawing area, a rectangular
wire frame appears and stretches with the mouse. When the user
releases the mouse button after creating, sizing, or moving a drawing
on the sketchpad, the wire frame disappears. The wire frame can also
act as a selection box, allowing you to drag out a rubberband frame
that selects every object inside it. This chapter discusses useful
features of the CWireFrame and CSketchPad classes.

CView

CSubview

CNativeTextEdit

CText

CNativeView

CSketchPad

CWireFrame
CHorizontalWireFrame

CVerticalWireFrame
21-1

Guide to XVT Development Solution for C++
21.1. Wire Frames
The CWireFrame class acts as a friend class. When a view is set to be
sizeable or draggable, it instantiates a helping CWireFrame object to
enable the appropriate behavior. If an object is movable or sizeable
and thus has a helper wire frame, this object is in effect disabled. The
object will no longer receive any mouse events. Instead, the mouse
events are sent to the wire frame that it owns. For example, a button
that normally invokes a dialog box when it is pressed will not do so
if it is made moveable. Instead, its wire frame receives the event so
that the button can be moved to another location on its enclosing
window.

XVT-Power++ takes care of most of the functionality of CWireFrame
internally, and you will rarely have to deal with
this class directly. However, when developing your application,
you may decide to change the behavior or the appearance of a wire
frame by deriving a new class from CWireFrame. After instantiating
the new class, you would use CView::SetWireFrame method to set a
given view’s wire frame to the new one instead of the default one.

XVT-Power++ offers more than one wire frame class.
CWireFrame has two child classes, CHorizontalWireFrame and
CVerticalWireFrame, that allow the user to drag the mouse only
in a horizontal or a vertical direction and which serve as examples of
how you can override CWireFrame.

See Also: For more information on these classes, see their respective sections
in the online XVT-Power++ Reference.

21.1.1. Selection and Multiple Selection

XVT-Power++ allows you to select several views and move them
around on the screen simultaneously. Clicking on a view to select
it causes any previously selected view(s) to become deselected.
However, if you press and hold down the Shift key while clicking
on a view that own a wire frame, you can select multiple views
simultaneously. A group of nested views moves together inside
the top-level enclosure, regardless of which of them you may have
selected.
21-2

Wire Frames and Sketchpads
21.1.2. DoCommands

A CWireFrame object generates internal XVT-Power++ commands
through the DoCommand mechanism in response to certain events.
For example, when a view is selected, a CWireFrame Select command
is generated, and when the view is de-selected, a CWireFrame Deselect
command is generated. When a view is
sized a CWireFrame Size event is generated. Along with the command,
the DoCommand takes a pointer to the object that was moved, selected,
sized, or so on.

21.1.3. Drawing

Two kinds of drawing occur for a wire frame. Thus, if you want to
change the look-and-feel of the wire frame, you must override two
CWireFrame drawing methods. First is the drawing of the wire frame
itself, which occurs inside DrawWireFrame. Second, CWireFrame draws
the wire frame’s handles inside DrawFrameGrabbers. These are the
handles that appear on the wire frame when it is selected. Dragging
these handles with the mouse, you can resize the wire frame’s
owner.
21-3

Guide to XVT Development Solution for C++
21.2. Sketchpads
XVT-Power++’s CSketchPad class works in conjunction with
CWireFrame to provide the drawing functionality that users typically
expect from a graphical user interface. You can use it to draw objects
on the fly and to select objects that have been drawn. On the drawing
area, you can drag out either a rectangular wire frame or a line wire
frame between the MouseDown point and the MouseUp point. The line
sketching is done through a class derived from CWireFrame that draws
lines rather than rectangles.

Figure 21.1. Window with a sketchpad embedded inside a scroller

When you release the mouse button and the wire frame disappears,
a Docommand is generated. Your application should react to the
command by calling one of CSketchPad’s sketch event methods,
which are described in detail in the online XVT-Power++ Reference.
For example, you can call GetSketchedRegion to find out the
coordinates of the region that was sketched and then use this
information as appropriate for your application.

You can also use SetSketchEverywhere to specify whether the sketchpad
itself will receive the events or whether the objects
drawn in it will receive the events. This is an important point
because it determines the basic behavior of the sketchpad. If the
sketchpad receives the events, the user can draw overlapping objects
and even sketch one object directly on top of another. However, if

Rectangle Oval

iconText

File Edit Help

XVT-Power++
XVT-Power++

XVT-Power++

XVT-Power++

XVT-Power++ objects, with COval selected. Each time the user clicks

can be selected by a mouse click. Once selected, objects can be dragged
and sized. Objects are deselected when the user either clicks on the

on one of the buttons, a new object appears inside the scroller. The objects

background area or selects another object.
21-4

Wire Frames and Sketchpads
the objects themselves are receiving the events, drawing can occur
only over the empty space within the sketchpad.
21-5

Guide to XVT Development Solution for C++
21-6

Grids
22
GRIDS

As a type of CSubview, XVT-Power++’s grid classes act as enclosures
that divide a portion of the screen into rows and columns. The widths
and heights of these rows and columns can be set in different ways,
depending on whether the grid is fixed or variable. Each intersecting
row and column of a grid forms a certain grid cell.

Grids are frequently used in graphical user interfaces: in list boxes,
color charts, and panels where it is important that a number of
textual or graphical items be precisely placed and aligned. You
frequently encounter them in spreadsheets and drawing programs.
As you design and develop your application, you will often find that
grids are useful and even necessary, whether the end user can see
them or not.

Thus, XVT-Power++’s application framework provides three
classes that offer a full range of grid functionality. The base class,
CGrid, contains a fairly extensive set of methods for manipulating
grids and the objects they contain. Two variant classes allow you to
create either a grid in which the cells are all the same size or a grid
with variable-sized cells.

See Also: For details on each of these classes, consult their respective
descriptions in the on-line XVT-Power++ Reference.

CBoss

CApplication

CDocument

CView

CSubview CGrid

CFixedGrid

CVariableGrid
22-1

Guide to XVT Development Solution for C++
22.1. Basic Grid Functionality
XVT-Power++’s abstract grid class, CGrid, provides methods
for manipulating a grid: inserting and removing objects and placing
them in different ways inside their cells, sizing the grid, getting
an object from the grid either by specifying a grid location or by
specifying an object, and so on. You can turn the lines and
columns of a grid on or off to make the grid visible or invisible.

All operations that take cell numbers or row and column numbers
have a numbering system starting with zero (0) at the top-left and
moving towards the bottom-right in increasing order.

22.1.1. Inserting and Removing Objects

You can insert as many views as you want into a grid cell by calling
the Insert method. When you instantiate an object that you want to
place within a grid, you must give it the grid object as its enclosure
and then call the grid’s Insert method, specifying the row and column
that will contain the object. If you do not specify a row and column,
Insert calculates a row and column location based on the coordinates
of the object relative to the grid. You can also insert an object into a
grid cell by calling the Replace method, which removes any object
already present within the cell and replaces it with the new one.

If the objects nested within a grid are movable and sizable, they
exhibit snapping behavior. As you drag an object, it snaps from cell
to cell. You cannot place it between two rows or columns because it
will snap into a row or column.
22-2

Grids
22.1.2. Placing an Inserted Object Within Its Cell

When you insert a view into a grid cell, the view can be clipped to
the cell or the view may just overlay its cell, extending beyond the
cell’s borders if it is too big to fit inside it. You can define how the
view is placed within the cell boundaries: top-left, bottom-right, top-
right, bottom-left, or justified. You can even give it an offset from
each of the sides.

Figure 22.1. A Clipped object and an overlayed object

22.1.3. Sizing a Grid

You can get the size of any grid cell, and you can change the size of
a grid in one of two ways:

• Increase or decrease the number of grid cells

• Increase or decrease the size of a cell or cells while the
number or rows and columns remains constant

To determine which of these ways you will size a grid, you must set
its sizing policy through CGrid::SetSizingPolicy, which takes a value of
either ADJUSTCellSize or ADJUSTCellNumber, as shown here:

virtual void SetSizingPolicy(POLICY thePolicy);

Through CGrid::AdjustCells, you can either maximize or minimize the
size of a grid by finding the largest or the smallest object contained
in the grid and making all grid cells that size.
22-3

Guide to XVT Development Solution for C++
22.2. Fixed and Variable Grids
Within a CFixedGrid object, all of the rows are the same size and all
the columns are the same size. Thus, the cells of a fixed grid all have
the same dimensions. When you change the dimensions of one cell
in a fixed grid, then the size of all other cells in the grid also changes
to match the new size. Fixed grids are useful when you want all the
items shown in a grid to have equal weight, as in a panel of icons or
in a list box. For an example of a fixed grid, see Figure 22.2.

Figure 22.2. Use of a fixed grid, an icon panel

Application Window

Editor Tools Draw Paint

Help Complaints Keywords Comments
22-4

Grids
On the other hand, within a CVariableGrid object, the rows and
columns have variable widths and heights, as in spreadsheets.
Thus, you can set the size of a row or column individually. There
is a default width and height for all of the rows and columns, and
unless you set the size of a specific row or column, it takes the
default size. When you resize an entire variable grid, the default size
changes, but any fixed sizes that have been set for specific rows and
columns do not change. Figure 22.3 shows an example of a variable
grid.

Figure 22.3. Use of a variable grid, an order form

Order No. Item Name Quantity Distribution
Medium

Price Total
22-5

Guide to XVT Development Solution for C++
22-6

Attachments and Palettes
23
ATTACHMENTS AND PALETTES

23.1. Attachment Classes
XVT-Power++ applications can provide support for attachments
and palettes through the use of three flexible framework classes:
CAttachment, CAttachmentFrame, and CAttachmentWindow:
CAttachment

A special class that manages a view object for attachment
purposes. CAttachmentFrame works together with CAttachment
serving as a special enclosure for views as they are attached to
the different sides of a window or enclosure. When you
construct an attachment frame, you specify the sides to which
views can be attached. Since CAttachmentFrame is a type of
CDragSink and CAttachment is a type of CDragSource, the classes
automatically support drag-and-drop as a means of attaching
views to different locations.

CAttachmentFrame
A special type of subview that can have views attached to it.
Normally you use attachment frames around a window and
allow the user to attach or detach tools such as palettes and
toolbars. The user can customize the look-and-feel of the
application by dragging and attaching these tools to the location
of choice.

CSubview

CAttachmentWindow

CAttachment

CAttachmentFrame
23-1

Guide to XVT Development Solution for C++
CAttachmentWindow
A helper class for CAttachment. It provides the functionality
needed for an attachment to appear inside a popup or floating
palette window. You should not need to use this class directly
since it is created and manipulated automatically by CAttachment.
However, you can create derived versions of CAttachmentWindow
to customize or extend its behavior.

Figure 23.1 illustrates these three classes and their relationships.

Figure 23.1. Managing attachments to XVT-Power++ views

23.2. Managing Specialized Attachments —
Toolbars and Status Bars

One of the responsibilities of CAttachment is to provide a list of
possible “fit” sizes for the view it manages. These sizes help the
attachment classes figure out how to size and place views as they are
dragged and attached to different sides of the frame. While it is not
always required, you may opt to derive specialized classes from
CAttachment that calculate fit sizes appropriate for different kinds of
views. XVT-Power++ provides two such classes: CStatusBarAttachment
and CToolBarAttachment.

Usually, you create floating and attachable palettes by
defining a toolbar object in XVT-Architect and creating a
CToolBarAttachment object to manage it. In addition to this approach,
the framework provides one additional class for your convenience:
CToolPalette

This class serves as a logical object definition that allows you to

CSubview CDragSink

CAttachmentFrame

CDragSource

CAttachment

CAttachmentWindowCView

CWindow

n

23-2

Attachments and Palettes
dynamically build palettes consisting of plain image buttons as
well as the added support for image buttons representing nested
sub-palettes that can be popped up or torn off.

See Also: Refer to a sample application in ...samples/arch/attach and its
associated XVT-Architect project file to learn more about the
behavior of attachments and palettes in a DSC++ application.
For more information about palettes, see CToolPalette in the on-line
XVT-Power++ Reference.
23-3

Guide to XVT Development Solution for C++
23-4

Scrollbars, Splitters, and Virtual Frames
24
SCROLLBARS, SPLITTERS, AND
VIRTUAL FRAMES

When you are programming a graphical user interface, what you
want to display is often too large to fit into the display area on the
screen. The object to be displayed might be a window or just a
portion of view inside a window.

To allow you to bring different parts of a large object into view,
XVT-Power++ provides virtual frames. A virtual frame consists of
a large virtual area into which you can insert various types of view
objects and a smaller display frame through which only a certain
portion of the area is visible at a given time.

Figure 24.1. Sample virtual frame

CSubview

CVirtualFrame CScroller CListBox

CSplitter
CMappedSplitter

CFixedSplitter

0,0

65535,65535

“display
frame”

data, data, data,
data, data, data,
24-1

Guide to XVT Development Solution for C++
24.1. The CVirtualFrame Class
XVT-Power++’s CVirtualFrame class is an abstract class that provides
mechanisms for viewing different areas of a virtual frame. For
example, you can call the ScrollViews method, which scrolls the
virtual area to the right, bottom, top, and so on. However,
CVirtualFrame has no mechanism that allows the user to scroll the
virtual frame directly. This mechanism must be provided by a
derived class such as CScroller, which attaches scrollbars to the
display area of the virtual frame. A user manipulates the underlying
virtual area by means of these scrollbars to bring different parts of
it into view. That is, CScroller automatically calls ScrollViews whenever
necessary.

You can write other classes that offer a different kind of scrolling
mechanism, perhaps a virtual pane that a user can drag to move the
contents of the virtual area. Or you may prefer to create navigation
buttons that a user can press to move around inside the virtual area.

24.1.1. Automatic Sizing Capabilities

When you create a CVirtualFrame, you can set the size of the virtual
area as well as the size of the visible area. If you do not set the size
of the virtual area, then it initially has the same size as the display
area.

As a user inserts objects into the virtual area, it expands, if
necessary, to ensure that all objects nested within it can fit inside
the virtual area even if they do not fit inside the display area.
CVirtualFrame contains methods such as EnlargeToFit and ShrinkToFit that
automatically size the virtual area to fit a certain number of enclosed
views as objects are added or removed.
24-2

Scrollbars, Splitters, and Virtual Frames
24.1.2. The Scroll Range

Tied to the automatic sizing capabilities of the virtual frame is the
idea of both a vertical and a horizontal scroll range. A scroll range
specifies the range that is allowed for scrolling a given virtual frame.
If a virtual frame has a virtual area that is twice the size of its display
area, then its range might start at the top of the display area and end
at the bottom of the virtual area to define the entire range of scrolling
that is possible. Included with this range is a maximum and
minimum position as well as an origin indicating where the display
area is currently located relative to the virtual area.

Figure 24.2. Vertical and horizontal scroll range is defined within the
virtual frame

As the virtual frame sizes itself relative to the display area, the
scrolling range varies. Thus, CVirtualFrame has two pure virtual
methods, called SetHScrollRange and SetVScrollRange, that are called
whenever the range changes. These methods must be overridden by
derived classes. For example, CScroller overrides these two methods
to set a scrollbar’s position or thumb proportion depending on the
range of scrolling that is possible inside the virtual frame.

display frame virtual frame

(0,0) (-10, -10)virtual origin

Scrolled virtual frame after a call to
SetScrollingOrigin(CPoint(-10,-10));
24-3

Guide to XVT Development Solution for C++
24.1.3. The CScroller Class

The CScroller class derives from CVirtualFrame and adds scrollbars to
the display area of a virtual frame; these scrollbars allow the user to
manipulate the virtual area. A CScroller object can have a horizontal
and/or a vertical scrollbar. When users drag or size objects inside a
scroller, the contents scroll automatically as the object is dragged
beyond the visible borders.

24.1.4. The CListbox Class

The CListbox class derives from CScroller, providing a scrollable box
that contains a list of selectable text items. A CListBox object
is a composite of the CScroller and CGrid classes. The scroller contains
a grid into which the text items are inserted. Of course, CListBox has
several utility methods for inserting, removing, selecting, and
deselecting the text items in its grid. If you have a large amount of
text, we recommend that you insert this text when you initialize the
list box, giving it a list of CStringRW objects.

Giving a list box a list of text upon initialization is better than going
through a loop calling InsertLine because every time a new line is
inserted, the thumb positions are adjusted if necessary. Thus, if you
insert a hundred items, the thumb will be adjusted a hundred times,
and you may notice some flashing on the screen.

At any time, you can use GetSelectedLine to find out which line in the
list box, if any, is selected. This method returns either the number of

originals/
graphics/

divider-tree

slides/
discussions/

divider-tree.backup

Go up 1 directory level
24-4

Scrollbars, Splitters, and Virtual Frames
the line that is selected or a minus one (–1) if no line is selected. In
addition to XVT-Power++’s list box, there is a native list box that is
constructed through the native toolkit. The advantage of using
CListBox is that you can modify and extend it, perhaps arranging the
text items into two or three columns or deriving a list box class that
displays picture items instead of CStringRWs.

24.1.5. Use of the Environment

The borders of both CScroller and CListBox are drawn with the pen, and
the interiors are painted with the brush. You can set the color,
pattern, and width of the pen, and also, the brush color. In addition,
keep the following points in mind:

• The text items contained in the list box are drawn in the
background color, but, when selected, are drawn in the
foreground color. In other words, selected text items are
displayed in reverse video.

• The scrollbars inherit the environment of the scroller or
listbox. The environment is applied to the scrollbars in the
same way as it is applied to NScrollBar.

See Also: For more information about how each part of a control is affected by
the different color attributes of CEnvironment, refer to section 15.4.2
on page 15-9.

24.2. Split Windows
The XVT-Power++ framework contains several classes that work
together to provide your application with GUI components that can
be split into sections with the use of objects known as “splitters.”
Splitters are frequently used in the user interface of commercially-
available software applications.

Depending on the type of interface required by the application, a
window with splitters may allow the user to split the window one or
more times, adjust the size of the panes, and even merge together
previously split panes. For example, commercial text editors or
word processors allow you to split a text editing window into two or
more sections. Doing this allows you to browse different sections of
the same document within one window. Other applications that
utilize splitters include file system browsers. Browser windows are
commonly divided into panes, one displaying directories, and the
other displaying the contents of the currently selected directory.
24-5

Guide to XVT Development Solution for C++
24.2.1. Types of Splitters

XVT-Power++ supports two types of splitter interfaces. The first is
referred to as a fixed splitter interface, and is shown in Figure 24.3.
Think of a fixed splitter as a user-driven geometry manager. This
interface is used when you need to allow the user to adjust or
compare adjacent panes of dissimilar information. A classic
example of a fixed splitter is a directory/file browser. Another
example is a class browser with three panes: one pane displays
names of classes, a second pane displays the methods of the selected
class, and a third pane displays the source code of the selected
method. As these examples illustrate, fixed splitters are “fixed”
because the number of panes is fixed by the application, and all
the user may do is change their size.

Figure 24.3. Sample fixed splitter
24-6

Scrollbars, Splitters, and Virtual Frames
The second type of splitter is referred to as a mapped or dynamic
splitter. These splitters are used when a single view uses a large
region to display itself, and you want to give the user the option to
split the view in two or more panes. Each pane always displays the
same view, but may be scrolled to view different portions of that
view. A mapped splitter supports synchronized scrolling of panes
and dynamic creation and deletion of panes. A typical example of a
mapped splitter is in a word processor where each document
window can be split in half. Another example is a spreadsheet
application that allows the user to split a large table in half so that
they can scroll and view different portions of data at the same time.

Figure 24.4. Sample mapped splitters (one with multiple panes)

24.2.2. Split Window Classes

Use one or more of the following classes if you wish to use splitters:
CSplitter

Abstract CSubview derived class that defines the basic interface
for creating splittable interfaces.

CFixedSplitter
A type of CSplitter that supports fixed splitter interfaces.

CHorizontalFixedSplitter
A type of CFixedSplitter adapted to split horizontally.

CVerticalFixedSplitter
A type of CFixedSplitter adapted to split vertically.

CMappedSplitter
A type of CSplitter that supports mapped splitter interfaces.
24-7

Guide to XVT Development Solution for C++
CSplitBar
Delegate class that provides services for managing the splitbars
used to split an interface.

CHorizontalSplitBar
A type of CSplitBar adapted to split horizontally.

CVerticalSplitBar
A type of CSplitBar adapted to split vertically.

CPane
Delegate class that provides the services for enclosing split
interfaces.

CSplitterMouseAgent
A type of CMouseHandler that responds to mouse events received
by splittable interfaces.

CSplitter is derived from CSubview, making it an enclosure capable of
enclosing any other view in the XVT-Power++ framework. Figure
24.5 shows the relationship among the various classes.

Figure 24.5. Hierarchy of classes used to implement split windows

CSplitter uses several delegate classes to provide important services:
CSplitBar

A class that manages those little “bars” that divide a split
interface into panes. CSplitBar does the work of drawing the bar
and managing its movement as it is dragged by the user.

CSplitBar

CVerticalFixedSplitter

CSplitter::CSplitterMouseAgent

CSplitter CSplitter::CPane

CHorizontalFixedSplitter

CFixedSplitter CMappedSplitter

CSubview
24-8

Scrollbars, Splitters, and Virtual Frames
CPane
A nested class that manages the geometry of individual panes in
a split interface.

CSplitterMouseAgent
A type of CMouseHandler that traps mouse events and sends them
to the appropriate split bar, changing cursors as appropriate.

24.2.3. Instantiating a Splitter

When creating a splittable interface, you must first decide if you
need a fixed or a mapped splitter. If you need a fixed splitter
interface, you instantiate classes derived from CFixedSplitter such as
CHorizontalFixedSplitter or CVerticalFixedSplitter. Fixed splitters can be
nested inside each other. For example, you can create an interface
split vertically into two panes. This is done using a single
CVerticalFixedSplitter with two panes. You can then split the top pane
horizontally into two panes. You do this by nesting a
CHorizontalFixedPane into the top pane.

See Also: For more information about how to nest panes, refer to the
...samples/pwr/fixsplit sample; this sample program demonstrates
how this is done and shows a sample interface where multiple
splitting of the interface makes sense.

On the other hand, if what you need is a mapped splitter, then
instantiate the CMappedSplitter class. The mapped splitter manages
decorations added to the window including: 1) scrollbars that are
shared by different panes, and 2) split boxes, which are small areas
where the user can click to drag-and-split an interface.

It is up to you (the programmer) to provide the actual
implementation for managing the view which is split into
separate panes. The mapped splitter provides the application
with information about the size of each pane, and initiates events
when new panes are created or old ones are deleted.
24-9

Guide to XVT Development Solution for C++
24.2.3.1. Using Fixed Splitters

In a static layout, you can only use a fixed splitter. That is, to use a
fixed splitter, you must know ahead of time how many panes you
need as well as their layout (arrangement) relative to each other. The
fixed layouts are created by nesting splitters inside other splitters.
After creating a top level splitter, you initialize the contents of each
pane by calling IFixedSplitter() for each pane. This initialization
happens in ascending order (left to right, top to bottom).

Each pane must be initialized with a single view. Of course, the view
can be a CSubview object with multiple nested views. Furthermore,
the view associated with a pane can be another splitter, which would
then split the pane further.

Example: This example shows how to use fixed splitters. The example
contains a browser interface with four panes—the window is split
vertically once into top and bottom panes, and the top pane is then
split horizontally into a left, a middle, and a right pane.

First, create the top-level vertical splitter; this splitter contains two
panes:

CFixedSplitter* aBrowser = new
CVerticalFixedSplitter(this,

GetFrame().GetInflatedRect(-2.0F), 2,
SPLITTER_GRAB_H,
SPLITTER_DRAG_H);

aBrowser->SetGlue(ALLSTICKY);
aBrowser->IFixedSplitter();

Next, create a horizontal splitter; this splitter contains three panes:

CFixedSplitter* aTopRow = new
CHorizontalFixedSplitter(aBrowser,

aBrowser->GetPaneCreationSize(0), 3,
SPLITTER_GRAB_V,
SPLITTER_DRAG_V);

aTopRow->SetGlue(ALLSTICKY);
aTopRow->IFixedSplitter();

// ... Population of horiz splitter omitted ...

Now, the top pane of the browser is initialized by nesting into it the
horizontal splitter with three panes:

aBrowser->IFixedPane(kMethodImpPane, aTopRow);
24-10

Scrollbars, Splitters, and Virtual Frames
In a similar way, a scrollable text object is created and nested inside
the bottom pane of the browser:

NScrollText* aEdit = new NScrollText(aBrowser,
aBrowser->GetPaneCreationSize(1));
aEdit->SetAttribute(TX_BORDER, FALSE);

// turn off border

aEdit->Append(kMethodImplementation);
aBrowser->IFixedPane(kMethodImpPane, aEdit);

The resultant interface is shown in Figure 24.3 on page 24-6.

See Also: For more details, see the ...samples/pwr/fixsplit sample program.

24.2.3.2. Using Mapped Splitters

Setting up mapped splitters is simpler than setting up fixed splitters
since usually you must only create a single splitter and then let the
user dynamically subdivide it into multiple vertical and horizontal
panes. Note, however, that the CMappedSplitter class does allow you to
restrict the number and orientation of panes that are created
dynamically. (Good user interface sense dictates that you limit the
number of panes, since splitting an interface too much leads to
confusion for end users.)

While the setup is simpler, managing the panes in a mapped splitter
is much more involved. Unlike the fixed splitter where each pane
contains a separate view, mapped splitters must create the illusion
that all panes are displaying an image of the same view.

The CMappedSplitter object delegates to you (the programmer) all
management of the view being split. This management involves the
tracking of a certain model, or data, which is being displayed by the
splittable view. As the view is split into panes, you must create new
instances of the view for the new panes. These views must all be
synchronized to display and modify the same common model that
they all share. Basically, you must set up a subject-observer
relationship between the views (observer) and their model (subject).

Example: This example shows how to use mapped splitters. The sample
contains a splittable scroller that encloses a movable and sizable
oval.

The user can split the scroller horizontally or vertically an unlimited
number of times. As this is done, the application creates new
scrollers and ovals for each pane, and it ensures the state of all ovals
is synchronized. This means that as one oval is sized or moved, all
other ovals must follow suit. The same types of steps shown here for
24-11

Guide to XVT Development Solution for C++
splitting an oval can be translated to the splitting of more complex
objects such as a table or a text editing object.

First, a mapped splitter is created inside the window:

itsMappedSplitter = new CMappedSplitter(this,
GetFrame().GetInflatedRect(-2.0F),

//CMappedSplitter::MB_HORIZONTAL_NONE,
//CMappedSplitter::MB_HORIZONTAL_ONE,

CMappedSplitter::MB_HORIZONTAL_MANY,
//CMappedSplitter::MB_VERTICAL_NONE,
//CMappedSplitter::MB_VERTICAL_ONE,

CMappedSplitter::MB_VERTICAL_MANY,
SPLITTER_GRAB_H,
SPLITTER_DRAG_H,
SPLITTER_GRAB_V,
SPLITTER_DRAG_V,
SPLITTER_GRAB_HV,
SPLITTER_DRAG_HV,
TRUE, // horiz scrollbar
TRUE); // vert scrollbar

itsMappedSplitter->SetGlue(ALLSTICKY);
itsMappedSplitter->IMappedSplitter();
Invalidate();

Next, trap the event generated each time a new pane is created.
When the event is received, the application responds by creating a
new scroller and placing it inside the frame. Furthermore, a new oval
is created inside the scroller, and the oval is added to the list of
observers so that it can be updated if the instance of another pane is
modified:

CSurrogateScroller* aPane = new CSurrogateScroller(
itsMappedSplitter, thePane->GetFrame());

aPane->IScroller(thePane->GetHorScrollBar(),
thePane->GetVerScrollBar());

aPane->SetGlue(ALLSTICKY);
aPane->Invalidate();
COval* anOval = new COval(aPane, itsSubject);
itsObservers.append(anOval);
itsMappedSplitter->IMappedPane(thePane, 1L, aPane);

Similarly, the application must trap the event generated each time a
pane is deleted:

itsObservers.remove(
thePane->GetView()->GetSubviews()->at(0));
24-12

Scrollbars, Splitters, and Virtual Frames
Finally, the application must trap events generated when the user
modifies an oval in any one of the panes. When this happens, all
other ovals must be updated accordingly since they all mirror the
same data:

CDrawingContext aDC(this);
aDC.SetLocalRegionedQueue(TRUE);
RWOrderedIterator doTo(itsObservers);
while (doTo())
{

CView* anObserver = (CView*) doTo.key();
if (anObserver==theObserver) continue;
CRect anOldFrame = anObserver->GetGlobalFrame();
anObserver->DoSize(itsSubject);
aDC.QueueInvalidate(anOldFrame);
aDC.QueueInvalidate(

anObserver->GetGlobalFrame());
}

aDC.FlushInvalidate();

The resultant interface is shown in Figure 24.4 on page 24-7.

See Also: For more details, see the ...samples/pwr/mapsplit sample program.
24-13

Guide to XVT Development Solution for C++
24-14

Drawing Basic Shapes
25
DRAWING BASIC SHAPES

XVT-Power++ includes a wide range of shape classes that allow you
to draw different shapes on the screen. Since all of the shape classes
derive from CShape, which in turn derives from CSubview, they have
the properties of subviews.

Each shape is an object that can act as an enclosure for other views,
receive events, be moved or sized, have its own clipping area,
contain its own coordinate system, and so on. You can use shapes
not only as decorations for windows but also as buttons or other
types of objects that generate commands and allow the user to
interact with the application.

This chapter surveys the different kinds of shape objects available
 in XVT-Power++, considers the resources for drawing them, and
offers guidelines for when you can most appropriately use them
rather than directly calling the XVT Portability Toolkit’s drawing
functions.

CSubview

CShape

CRectangle

COval

CArc

CPolygon

CSquare

CCircle

CRegularPoly

CArc
25-1

Guide to XVT Development Solution for C++
25.1. Use of CEnvironment for Drawing
The shape classes use CEnvironment for drawing purposes. The border
of a shape is drawn with the pen, and its interior is painted with the
brush. You can set the color and pattern of both the pen
and the brush. Also, you can set the pen width. Several of the various
options are shown in Figure 25.1.

Figure 25.1. Various pen and brush patterns

See Also: For details on the available colors, brush patterns, and pen patterns,
see CEnvironment in the XVT-Power++ Reference.

25.2. Rectangles and Squares
An interesting feature of the CRectangle class is that rectangles can
optionally have rounded corners. Specified values for the width and
height of the corners indicate how high and how deep the rounding
should be. A sample rectangle is shown in Figure 25.2.

Figure 25.2. Example rectangle

The CSquare class, which derives from CRectangle, creates a square
that, like its parent, can have rounded corners. If you size a square
and do not specify an equal height and width, the CSquare class takes
the average to calculate the square’s new size.

the pen pen width
increased

rubberbanding
for sizing

diagonal crisscross
brush pattern

forward diagonal
brush pattern

H 8 H 8

H 8

w 15

H 8

w 15

w 15 w 15
25-2

Drawing Basic Shapes
25.3. Ovals and Circles
When you instantiate an object of the COval class to create an oval
shape, you can construct it in one of the following two ways:

• Give it a center point and a horizontal and vertical radius

• Specify a region (CRect) within its enclosure that is used to
place the oval

Unlike the COval class from which it derives, CCircle requires only
one radius because all points are equidistant from the center.

25.4. Arcs
CArc is analogous to the COval class, except that you specify a starting
and ending angle for drawing the arc. You can also give the arc an
interior fill so that you are drawing a piece of pie rather than an arc.

Like the oval, an arc can be constructed in one of the following two
ways; in fact, the arc is drawn counterclockwise along an implicit
oval from one given angle to another:

• Give it a center point, horizontal and vertical radii, and
starting/ending angles

CPoint

vertical radius

horizontal
radius

CRect
25-3

Guide to XVT Development Solution for C++
• Specify a region (CRect) within its enclosure that is used to
place the arc

25.5. Polygons
CPolygon does not necessarily create a polygon. Basically, you give
this class a set of points, and these points are connected.

Deriving from CPolygon is CRegularPoly, which draws a true polygon,
calculating the positions where the points should be connected in
order to construct a regular polygon—a triangle,
a square, a pentagon, and so on. You provide the number of sides
and a certain radius, and perhaps a rotation angle, and CRegularPoly
draws the shape for you.

5 (HRadius)

10

45

240

theStartAngle
theCenter

theEndAngle

(VRadius)

theRegion

45

240

theEndAngle

theStartAngle
25-4

Drawing Basic Shapes
25.6. Lines
XVT-Power++’s CLine class draws a line inside a view enclosure.
Like the other shape classes, CLine brings with it all the freight of
a CSubview. A line can receive events, generate commands, have
different types of stickiness properties (see CGlue), and so on. Lines
can also have beginning and/or ending arrows.

Figure 25.3. Sample lines drawn with CLine

25.7. Drawing Shapes in XVT-Power++
XVT-Power++ users may be unsure about when to use the different
shape classes to draw objects on the screen versus overriding the
Draw method of a view and using the XVT Portability Toolkit
drawing functions to draw lines, squares, ovals, and so on. As noted
earlier, XVT-Power++’s shape classes enable you to draw shape
objects derived from CSubview with all the properties of CSubview.
Obviously, there is more overhead to using one of the shape classes
than there is if you just draw a shape directly by calling one of XVT
Portability Toolkit’s drawing functions, such as the function for
drawing a line. In short, you need a rule of thumb to determine when
it is appropriate to draw from XVT-Power++ rather than the XVT
Portability Toolkit, and vice versa.

If you are creating a complex view that is derived from CView or
CSubview and that contains several kinds of intricate drawings, many
lines, and so on, you should use the XVT Portability
Toolkit function calls. The drawing process will be much faster
and involve much less overhead. If, on the other hand, you want
your drawings to have certain behaviors, such as moving/sizing
capabilities or the ability to generate commands like a button
or nest other objects, you can readily get access to these behaviors
25-5

Guide to XVT Development Solution for C++
using inherited XVT-Power++ code. These are design decisions that
you must make while developing your XVT-Power++ application.

Another design issue is the apparent awkwardness of some
XVT-Power++ shapes when functioning as enclosures. For
example, you may wonder what could fit inside a line. Actually, the
enclosure region of a line includes an imaginary box around the line
from one end of it to the other. Thus, the region of the line can easily
contain a label or similar object. This is also true of CPolygon objects,
where the smallest imaginary box that could enclose the entire
object acts as the region defined for that enclosure.
25-6

Text and Text Editing
26
TEXT AND TEXT EDITING

XVT-Power++ provides two overall text facilities. One is CText,
XVT-Power++’s static text drawing class. The other is a set of
native text editing classes that harness the text editing capabilities
of the XVT Portability Toolkit. These classes are “native” classes
because the implementation of the actual text editing is done by
the XVT Portability Toolkit.

XVT-Power++ provides some extra features and encapsulates a lot
of the work involved in using the text editing objects, but the native
objects are implemented by the XVT Portability Toolkit rather than
by XVT-Power++.

Both CText and the native text editing facilities allow you to choose
from a variety of font families (Courier, Helvetica, Times, and so
on), styles (italics, bold, and so on) and sizes (in points). CText has a
SetFont method through which you can set the font of a CText object.
The platform on which you are working determines the availability
of different fonts. You can also set a font through the CEnvironment
class, through the XVT Portability Toolkit xvt_dwin_set_font_*
functions, or through a Font menu event.

CView

CSubview

CWireFrame

CNativeView

CText

CNativeTextEdit

NTextEdit

NLineText

NScrollText
26-1

Guide to XVT Development Solution for C++
26.1. CText
CText displays a string of read-only text that is useful for one-line
instructions, button names, titles, and so on. When you instantiate a
CText object, you give it a CStringRW object, which may or may not be
initialized using a string resource ID. When you give a CText object
a string, it automatically sizes itself at a designated point on the
screen indicating the coordinate at which the line of text starts.

This code creates a textual view, as shown in Figure 26.1:

itsMessage = new CText(this, CPoint(100,100),
"Hello World");

CPoint(100,100) is the theTopLeft parameter.It is a coordinate, relative to
the CText’s enclosure, where the text will be displayed.

Figure 26.1. Window displaying a textual view

When you select a CText object by sending it a Select message, it
inverts its colors. For example, XVT-Power++’s CListBox class
provides an object that consists of a set of CText objects displayed as
a list inside a grid. When the user clicks on one of the items, it
receives a Select message and becomes highlighted.

See Also: For detailed information on using CStringRW resources, refer to the
description of CStringRW in the on-line XVT-Power++ Reference.
26-2

Text and Text Editing
26.2. Native Text Editing Classes
All of the native text editing classes derive from an abstract class
called CNativeTextEdit, which has methods for setting/getting,
selecting/deselecting, cutting, copying, and pasting text, and many
other editing operations. As an abstract class, CNativeTextEdit supplies
no means to organize text into lines and paragraphs or to scroll text.
These concepts are embodied in its three child classes, discussed in
the following section.

26.2.1. NLineText, NTextEdit, and NScrollText

NLineText is the simplest of the native text editing classes. It allows
you to create a one-line text editing field. You give it the length of
the line, and the height is calculated in terms of the font’s size.

NTextEdit is organized into paragraphs, lines, and characters in a line.
This class has methods for setting/getting paragraphs or lines, and so
on. When the font of an NLineText object (or a CText object) changes,
the text box changes size to accommodate the new font. However, if
the font size of an NTextEdit object changes, the object does not
change size but the text inside of it changes so that more or less of it
becomes visible.

NScrollText is a class that is derived from NTextEdit and thus includes
all of its paragraph organization features while adding the further
feature of scrollbars. All of the scrolling is done automatically, and
the scrollbars are updated.

26.2.2. Text Validation

Whenever a text box receives a keyboard event, a CNativeTextEdit
Validate method is called, which determines how each character is to
be displayed. Validate can opt to display the character, map the
character to some other character, or not display it and return NULL,
as shown in the following diagram.

See Also: For more information about CPasswordEdit, a view that provides an
easy-to-set-up interface for edit fields that are intended solely for
entering passwords, refer to its description in the on-line
XVT-Power++ Reference.

key X pressed — Validate

— X

— y

— NULL

(the pressed key is displayed)

(X is replaced by Y)

(X is not displayed)
26-3

Guide to XVT Development Solution for C++
For more information about different approaches to validating text
entered into text fields, refer to section 27.6 on page 27-7.
26-4

Utilities and Data Structures
27
UTILITIES AND DATA STRUCTURES

All of the classes in XVT-Power++’s application framework derive
from one common class, CObjectRWC, and they share a number of
features: global data, message passing channels, data propagation,
and so on. XVT-Power++ contains another set of classes that are
independent of the application framework but widely used within
it, the utility classes and data structures. This chapter surveys the
functionality that is available to you through XVT-Power++’s
utilities and data structures.

27.1. Rogue Wave Tools.h Class Library
The utility classes serve as a link between various XVT Portability
Toolkit features and XVT-Power++. XVT-Power++ uses the
Rogue Wave class library to implement many of its utility classes
and data structures. Rogue Wave provides a rich set of collections,
data structures, and utility classes that you can take advantage of
while using XVT-Power++. The features of Rogue Wave that are
available to you through XVT-Power++ include the following:

• Multibyte and wide character strings

Error
Global
Mem

CSwitchBoard

CNotifier

CGlobalClassLib

CGlobalUser

CPrintMgr

CGlue

CDesktop

CEnvironment

CObjectRWC
27-1

Guide to XVT Development Solution for C++
• Localized string collation

• Parse and format times, dates, and currency in multiple
locales

• Support for multiple time zones and daylight savings rules

• Support for localized messages

• Localized I/O streams

• A complete set of collection classes

• Templates

• Persistence (not implemented for all XVT-Power++ classes)

• B-trees

• Multi-thread safe

Caution: Although the XVT PTK libraries link with thread-safe libraries,
XVT needs to “own” the primary thread. Calling XVT functions
from any other thread (besides the primary one) is not allowed.

See Also: For more information on Rogue Wave, see the Tools.h++ manual.

27.1.1. XVT-Power++ and Rogue Wave Collectables

All XVT-Power++ classes, except lightweight classes, now inherit
from RWCollectable. A lightweight class is one to which it is generally
inexpensive to apply copy semantics. However, for the other classes,
the use of XVT-Power++ with Rogue Wave implies certain
functionality that may not necessarily be implemented.

Specifically, XVT-Power++ 4.5 does not implement persistence
as defined by RWCollectable, and yet XVT-Power++ does not preclude
its use within the framework. However, if you attempt to use
RWCollectable persistence without appropriately overriding the
necessary methods, XVT-Power++ asserts and issues an error.

Also, XVT-Power++ provides run-time type identification that can
conflict with the Rogue Wave usage of this feature. In general, it is
better to use one mechanism consistently. XVT-Power++ therefore
provides guidelines for run-time type identification usage within the
framework.
27-2

Utilities and Data Structures
27.1.1.1. Guidelines for Run-Time Type Identification Usage

These are the guidelines for using XVT-Power++ run-time type
identification when only an RWCollectable pointer is available:

• Use both macros like this (note the IDs):
RWDEFINE_COLLECTABLE(CObjectRWC, CObjectRWCID)
PWRRegisterClass0(CObjectRWC, CObjectRWCID,

"CObjectRWC")

• Use an ID greater than PWRClassIDBase; XVT-Power++
reserves the range from PWRClassIDBase to PWRClassIDMax, so
start client programmer classes at PWRClassIDMax + 1

• Use the RTTIRogueWaveToPower macro like this:
RWCollectable *aCol = doTo().find(...);
if (RTTIRogueWaveToPower(CPointRWC, aCol))
{

CPointRWC *aPoint = (CPointRWC*)aCol;
anOutStream << aPoint->RTTIName;
...

}

Note: To use the RTTIRogueWaveToPower macro, the ID must be within
the valid range. If this is not the case, the result is undefined.

27.2. Managing Global Information
Through CObjectRWC, all classes in XVT-Power++’s application
framework have access to global XVT-Power++ information and
to global user information, that is, application-specific information.

Two classes manage this global information: CGlobalClassLib
and CGlobalUser. Each of these classes is instantiated once in an
application. They are accessible through two functions in the
CObjectRWC class: GetG() for CGlobalClassLib and GetGU() for
CGlobalUser.

27.2.1. The Role of CGlobalClassLib and CGlobalUser

CGlobalClassLib provides an object that is automatically instantiated in
XVT-Power++. It cannot be created or instantiated
in any other way. It has pointers to the CApplication object and to the
CTaskWin object. It supplies information to global flags, for example,
about whether the application is terminating. Sometimes it is useful
to know whether a destructor for a window is being called because
the application is in an exit mode or simply because the window is
being closed by a user. CGlobalClassLib also has a flag for text editing
boxes, accessed by IsTextEvent() and a global ID count. A method
called GetID gives you a unique ID number each time it is called and
is used to provide ID numbers for different objects. Basically,
27-3

Guide to XVT Development Solution for C++
CGlobalClassLib exists to supply information to different classes in the
application framework.

Similarly, any global information that you wish to provide for
your particular application is made available through CGlobalUser,
which is initially empty. You must derive from CGlobalUser so that
you can add your own data and methods to it.

See Also: For details on how to set the appropriate pointers and initialize
your global information, see CGlobalClassLib, CGlobalUser,
and CObjectRWC in the online XVT-Power++ Reference.

27.2.2. Managing Window Layout Through the Desktop

Each time a window or a dialog is created in an XVT-Power++
application, the CDesktop object is notified. CDesktop is automatically
instantiated within XVT-Power++ through CGlobalClassLib. Of
course, you can derive your own desktop, create it, and set it by
informing CGlobalClassLib of the user-created desktop. You can also
specify a different default desktop creation using the
CApplicationFactory interface.

Through CDesktop, you can define a window layout and keep track of
the windows in your application. For example, you can find out how
many windows are up or get a list of all open windows. You can also
find out which window is at the front of the window stack or notify
the desktop to put a certain window at the front.

See Also: For details on how the desktop works, see CDesktop in the online
XVT-Power++ Reference.

27.2.3. Global Definitions

XVT-Power++ also defines the global values and objects in the file
Global.h. You should not modify this file, but you may want to refer
to it occasionally to find out how something is defined. For example,
you may need to know what resources XVT-Power++ defines
internally or what the XVT-Power++ ID number base is.

See Also: For more information about this file, see the description of Global in
the online XVT-Power++ Reference.
27-4

Utilities and Data Structures
27.3. Setting Up the Environment
One data structure class that is pervasively used by XVT-Power++’s
view classes is CEnvironment. This class contains different kinds of
information about the environment: colors, types of pens and
brushes, patterns, fonts, drawing modes, and so on. CEnvironment
allows you to work in color or monochrome mode and to specify the
way colors are used in monochrome mode, such as black for the
foreground and white for the background, and so on. At any point,
you can set the drawing environment before you do any drawing by
calling the XVT Portability Toolkit drawing functions.

See Also: For further information on setting the environment, see section
16.2.2 in this manual, or refer to the description of CEnvironment in the
online XVT-Power++ Reference.

27.4. Handling XVT Portability Toolkit Events
A utility class that XVT-Power++ instantiates automatically is
CSwitchBoard, one of the most heavily used classes. It provides an
interface between XVT-Power++ and XVT Portability Toolkit
events.

CSwitchBoard has event handlers for dialogs, task windows, windows,
and so on. It is in charge of channeling events to the appropriate
object. You do not have to initialize the switchboard, and you should
not modify it. If you want to respond to a mouse event without
notifying the switchboard, for example, you would override
methods in CWindow or attach a CMouseHandler object rather than
modify the switchboard.

See Also: For more details about how event messages are propagated through
the XVT-Power++ framework, see section 15.2 on page 15-3.
For more information about XVT Portability Toolkit events, refer to
the Events chapter in the XVT Portability Toolkit Guide.
27-5

Guide to XVT Development Solution for C++
27.5. Transferring Data Using the Clipboard
The CClipboard class and its associated streams can be used to put or
get data from the native clipboard. This class is a wrapper for the
XVT Portability Toolkit’s xvt_cb functions and allows text,
application (binary), and PICTUREs to be put on, or retrieved from the
native clipboard.

27.5.1. Streaming Data into the Clipboard

Any persistent, streamable object (text, XVT PICTURE, or binary
data) can be streamed to and from the clipboard. The classes used to
handle the streams are:

CClipboardAppIStream
CClipboardAppOStream
CClipboardPictIStream
CClipboardPictOStream
CClipboardTextIStream
CClipboardTextOStream

When using the CClipboard you must use the CClipboard*Stream classes
because they are designed specifically for streaming data into the
CClipboardBuf. CClipboardBuf is an internal class whose purpose is to
contain data that is going to the clipboard. CClipboard is managed by
the CClipboardImplementation class, another internal-only class, which
handles all the buffers, creates streams, and does other managerial
tasks.

Data streamed into a CClipboard gets copied into the CClipboardBuf.
When the data is flushed from CClipboardBuf, the data is read (written)
from (to) the clipboard. Data is flushed either when a CClipboard of
type CB_WRITE is deleted, a CClipboard of type CB_READ is created, or
the Flush() method is called.

Note: “Memory” of what application was used to create the data is not
supported by the PTK API and thus is not available in the CClipboard
classes.
27-6

Utilities and Data Structures
27.5.2. Using Multiple Clipboards

You may create more than one CClipboard object but when you do
this, there are a few things to keep in mind. First, the clipboard will
adopt the mode of the first opened CClipboard. Thus, if you create a
CClipboard in CB_WRITE mode, then all CClipboards created after this
must be created with a CB_WRITE mode until all CClipboard objects are
deleted.

Second, if you are streaming data into separate (multiple)
clipboards, remember that text and application data will be
concatenated and PICTURE data will be replaced. It is best to allocate
one CClipboard and get a stream for each data type from it.

See Also: To learn more about the CClipboard refer to the online XVT-Power++
Reference.

27.6. Field Formatting and Validation
XVT-Power++ supports field formatting and validation, hereafter
referred to in this section by the single term, validation, with the
CValidator class. The primary advantages gained by using CValidator
are:

• eliminate character flicker

• provide cut/paste safe formatting

Validation allows your XVT-Power++ applications to be more
secure, since confidential passwords and other sensitive data are not
flashed to the screen, and thus inadvertently revealed. CValidator
provides this additional level of security by trapping and
manipulating keyboard events and placing calls to the validation
expression parser available in the various Portability Toolkits.

XVT-Power++ supports validation on the following view objects:

• CNativeList and its descendants

• CNativeTextEdit and its descendants
• NEditControl

Advanced users can create their own validators and even change the
validators used internally by XVT-Power++. Before attempting
either one of these tasks, familiarize yourself with CValidator,
CValidatorImplementation, CValidatorFactory, as well as the portable key
event hooks (ATTR_KEY_HOOK) used by the PTK.
27-7

Guide to XVT Development Solution for C++
27.6.1. Validation Basics

The most straightforward way to use validation is to: 1) create a
CValidator from a validation expression, and 2) attach a validator to a
CView. You can usually combine both steps into a single line of code,
as shown in the following example:

#include PwrFactoryDef_i
#include CValidatorFactory_i
...

itsNEditControl->SetValidator(VALIDATOR_FACTORY
->ConstructValidator(
"{Sun,Mon,Tue,Wed,Thu,Fri,Sat}"));

In this example, the expression consists of a list of words that can
be entered using this edit field. The macro VALIDATOR_FACTORY
accesses the validator factory associated with the application
(for more details, see section 15.5.1). From this factory, the
example requests a validator built from the expression
“{Sun,Mon,Tue,Wed,Thu,Fri,Sat}” which it passes to the text
object—in this case, an NEditControl.

Auto-completion

SetValidator() has a second argument, AutoComplete, that, if omitted,
defaults to TRUE. With AutoComplete set to TRUE, if the user types a
partial word, such as ‘S’, the field automatically completes the entry
to the first word in the list that matches, ‘Sun’. If the user then types
an ‘a’, the match would change to ‘Sat’. You can disable auto-
completion by setting the argument to FALSE:

itsNEditControl->SetValidator(VALIDATOR_FACTORY
->ConstructValidator(
"{Sun,Mon,Tue,Wed,Thu,Fri,Sat}", FALSE));

When auto-completion is disabled, the end user must type the
complete string before a match is made.

See Also: For more information on the syntax that you can use in validation
expressions, refer to the description for the function xvt_format_create
in the online XVT Portability Toolkit Reference.
27-8

Utilities and Data Structures
27.6.2. Writing Your Own Validators

CValidator is a proxy class that contains a pointer to another class,
CValidatorImplementation, that does the actual validation “work.” The
TestMatch() method takes a string and returns TRUE only if the string
is acceptable to your validation mechanism. The FormatString()
method takes a string and a selection range and is called each time
the user modifies the entry field.

27.6.2.1. Customizing a Validator

To implement your own validation routines, subclass
CValidatorImplementation and override the TestMatch() and FormatString()
methods. For example, your overridden version could modify the
input string and return the modified string (instead of returning
TRUE), or change the selection range.

To use your customized validator, you must create the validator
implementation, add a validator (CValidator), and pass the validator to
an edit field, as shown in the following example:

#include PwrFactoryDef_i
#include CValidatorFactory_i

itsNEditControl->SetValidator(CValidator(
new MyValidatorImplementation(
*VALIDATOR_FACTORY)));

Note: Note that your validator operates independently from the validator
factory; the factory reference shown in the code above is simply a
placeholder.

27.6.2.2. Substituting Your Own Validators

The validator factory enables you to easily replace the factory that
XVT-Power++ uses to create validators. Though validation is not
currently supported directly by XVT-Architect, the factory approach
could be useful in the future if you are using a form of automatic
code generation, e.g., from XVT-Architect, that uses the validator
factory to issue validators.

If you wish to use your own validator in these situations, subclass
CValidatorFactory, override the ConstructValidator() method, subclass
CApplication, and install your factory in the InstallFactories() method of
the application.

See Also: The file ...include/CValidatorFactory.h contains more details.
27-9

Guide to XVT Development Solution for C++
27.6.3. Other Approaches to Validation

Two other approaches allow you to supplement (or circumvent)
your use of CValidator for validation:

NEditControl

If your view is a native view, such as NEditControl,
you can set a validator at the PTK level by calling the function
xvt_vobj_set_formatter. The first argument (in the call to
xvt_vobj_set_formatter) is an XVT control whose window ID you get
from the native view by calling GetXVTWindow() on that view.

NEditControl includes a subclass, CPasswordEdit, which is a view that
provides an easy-to-set-up interface for edit fields that are intended
solely for entering passwords.

NLineText

NLineText accepts the validation expression directly as an argument
to the method SetValidation(). However, NLineText does not provide
native look-and-feel, and when using complex validation syntax,
you may see flashing on very slow equipment. This method only
works with NLineText, which is not a native view type.

See Also: For more details about formatters for native views, see the
description of the function xvt_vobj_set_formatter in the XVT Portability
Toolkit Reference.
For more details about entering passwords, see the description of
CPasswordEdit in the online XVT-Power++ Reference.
27-10

Utilities and Data Structures
27.7. Data Structures

XVT-Power++ uses the Rogue Wave class library, which provides
a rich set of collections, data structures and utility classes. This
section summarizes some information about Rogue Wave and how
it is used in XVT-Power++.

See Also: For more information on the classes discussed in this section, see the
online XVT-Power++ Reference.
For more information on Rogue Wave classes, see the online
Tools.h++ manual.

27.7.1. Collectables

Rogue Wave assumes that objects referenced in its collections all
inherit from RWCollectable. RWCollectable defines a virtual interface
that the collections and utility classes use to determine identity,
ordering, equality and for persistence. The root of the
XVT-Power++ tree, CObjectRWC, inherits from RWCollectable
and uses the default methods for all attributes except persistence,
which it disallows (persistence will be added in a future
XVT-Power++ release).

See Also: For more information on using Rogue Wave collectables with
XVT-Power++, see section 27.1.1.

27.7.1.1. Temporary Collectables

For some utility classes that are frequently used or that are used as
temporary instances, direct inheritance from RWCollectable is

RWCString

CSparseArray

CSparseArrayIterator

CSparseColIterator

CSparseRowIterator

CPoint

CRect

CStringRWC

CStringCollectionRWC

CPointRWC

CRectRWC

CStringRW

CFloatRWC
CFloat

CNotifier

CPoint

CNotifier

CRect

CNotifier

CStringRW

CNotifier

CFloat

CNotifier

CStringCollection

CStringCollection

RWIterator CRevOrdIteratorRW
27-11

Guide to XVT Development Solution for C++
undesirable because of the construction expense involved in creating
the base classes and initializing the vtable. In the XVT-Power++
hierarchy, CPoint, CRect, and CStringRW are examples of these classes.
To make these classes acceptable for use in Rogue Wave collections,
it is necessary to provide a collectable version.
Rogue Wave does this by creating a composite class via multiple
inheritance from the utility class and RWCollectable. XVT-Power++
uses the utility class and a class derived from CObjectRWC, typically
CNotifier.

The pointer-based implementation of the collections and the
requirement that a contained object must be derived from a
particular class means that you must be careful when creating an
object to add to a collection.

Caution: In particular, automatic data (i.e., objects created on the stack
without a “new” operator) cannot safely be added to collections that
have a lifetime longer than the created object. This means that if a
collection is passed it, anything added to it must be created with the
new operator.

27.7.1.2. Dictionary Collections for Collectables

Dictionary collections allow arbitrary associations between any two
collectable objects. Since it is often desirable to associate a simple
data type, like an integer, with a more complex type, Rogue Wave
provides collectable versions of strings (RWCollectableString) and
integers (RWCollectableInt). XVT-Power++ provides collectable
versions of rectangles (CRectRWC), points (CPointRWC), and floats
(CFloatRWC).

See Also: If you need to add collectable semantics to a simple type, you can
look at the XVT-Power++ implementations for example code.

27.7.2. Collections

RWOrdered is the collection class that XVT-Power++ uses
internally for most purposes, and it is returned and accepted by
the XVT-Power++ API. RWOrdered was selected because it is the
fastest implementation for traversal (i.e., examining or operating
upon each contained object in sequence), which is the most common
operation performed by XVT-Power++. It also offers reasonable
performance for insertion and ordering semantics—objects are
accessed in the same order they are added.

RWOrdered collections start with a default capacity. Addition of
objects beyond this capacity cause a relatively expensive memory
27-12

Utilities and Data Structures
allocation operation to be performed. To avoid this problem, use
the RWOrdered::RWOrdered(size_t) flavor of constructor to
give an approximate size when this is known.

27.7.2.1. Converting RWOrdered into a Sorted Collection

If you have a RWOrdered, or any other collection type, and need
a sorted collection, you can generate a RWBinaryTree collection by
using the RWCollection::asSortedCollection method. Since
only shallow copies are performed, this is relatively inexpensive.
However, you should only do this on collections whose contents
have meaningful sequencing (e.g., CStringRWC does, CSubview does
not). In general, objects that inherit from CObjectRWC do not have
meaningful sequence semantics.

27.7.2.2. Iterators

Iterators are helper classes that automate the traversal of collections.
Some complex collections require iterators while others can be
traversed without them.

Caution: It is dangerous to modify a collection while iterating on that
collection. This comes up in the common task of traversing a
collection and removing objects that meet a particular test. One
solution to this problem is to make a helper collection to which
positive objects can be added. That is, at the end of the iteration, loop
over the helper and remove its objects from the original and then call
ClearAndDelete on the helper collection.

27.7.3. Strings

XVT-Power++'s CStringRW provides string functionality. It
is derived from RWCString, which provides a rich set of string
manipulation operations and is assisted by the RWTokenizer
and RWSubstring helper classes. CStringRW adds the ability to
construct a string object from an XVT Portability Toolkit resource,
and CStringRWC is the collectable variant.

CStringCollectionRWC is derived from CStringCollection, which maintains
a list of CStringRWC objects. CStringCollectionRWC provides
constructors to initialize
an ordered list of CStringRWC objects from a resource ID and
conversion operators to generate an XVT Portability Toolkit SLIST
from such an object.

Rogue Wave strings use “copy on write” semantics, so they can be
copied and assigned very efficiently.
27-13

Guide to XVT Development Solution for C++
See Also: For more information on RWCString and RWOrdered, see the
Tools.h++ Rogue Wave manual.
For more information on CStringCollection and CStringCollectionRWC, see
their descriptions in the online XVT-Power++ Reference.

27.7.4. The Coordinate System:
CPoint, CRect, and CUnits

XVT-Power++’s CPoint class allows you to manage a coordinate
system point in different possible types of units that you choose
through the CUnits class. Similarly, CRect allows you to manage a
rectangular set of coordinates in different possible types of units.

See Also: For a full discussion of these classes, see section 16.2.4.

27.8. Checking For Errors
XVT-Power++’s Error.h file defines a macro called PwrAssert that is
used throughout XVT-Power++. It allows you to assert that certain
things are true or false and to get an XVT Portability Toolkit error if
something is wrong.

See Also: For a description of PwrAssert, see Error in the online XVT-Power++
Reference.
27-14

Resources and URL
28
RESOURCES AND URL

This chapter explains how XVT-Power++ supports XVT Portability
Toolkit’s Universal Resource Language (URL). You can use these
resources to create XVT-Power++ objects and classes. In addition,
XVT-Power++ supplies helper classes for the efficient loading of
monolithic resources.

Note: XVT-Architect, the visual application builder that is part of DSC++,
uses URL resources for only a few things. More frequently,
XVT-Power++ programs use these graphical and textual resources.

28.1. Why Use Resources?
URL resources are specifications for menus, dialogs, windows,
strings, images, and fonts that are kept in a small, read-only database
located outside your application’s runtime address space. Resources
do such things as:

• Set object attributes, such as those that determine the size,
position, and alignment of windows, dialogs, and controls

• Establish an object’s default appearance, such as initializing
its label or title, and also controlling whether it is initially
enabled or disabled

• Configure the menubars and menus for application windows

When your application needs a resource, the application requests the
resource by an ID number. XVT or the native window system brings
the resource into memory so it can be accessed. This saves space at
runtime and makes it possible to access multiple resource files
without recompiling.

For example, externalized strings and graphics allow your
application to be run in more than one locale using localized
resources, if that is a requirement for your organization. XVT
28-1

Guide to XVT Development Solution for C++
provides pre-translated resources for five languages: Japanese,
Italian, French, German, and English.

Most programmers find the Universal Resource Language (URL)
easy to learn. Since the URL code is portable, you only need to
define your resources once. However, teaching you to use URL is
beyond the scope of this chapter.

See Also: For more information on XVT Portability Toolkit resources and
URL, see the “Resources and URL” chapter of the XVT Portability
Toolkit Guide.

28.1.1. Resources in XVT-Power++

XVT-Power++ supports URL resources as defined by the XVT
Portability Toolkit. URL resources are all read-only with respect to
the Toolkit’s API calls. However, writing to an alternate source is
supported by some objects, such as images. XVT-Power++ supports
all of the XVT Portability Toolkit resources, including:

• controls

• dialogs

• fonts

• icons

• images

• menu accelerators

• menus

• strings

• windows

Although XVT-Power++ does not provide abstractions for all of the
XVT Portability Toolkit resource API calls, it does not preclude
their use. For example, you can use window resource data (e.g.,
xvt_res_get_win_data).
28-2

Resources and URL
28.1.2. X Window System Resources

For applications running on X platforms, the resources
must be coded separately in CMyResourceFile.cxx. Use
CMyResourceFile.cxx to indicate what resources your X-based
application will use.

See Also: For step-by-step information on how to build an icon or
cursor resource under X, see the platform-specific book,
XVT Platform-Specific Book for Motif.

28.2. Creating Objects from Resources
XVT-Power++ creates objects from resources using a class
constructor of the following format:

CResourceClass *aResource = new CResourceClass(itsEnc,
RES_ID);

28.2.1. Using XVT-Power++ Classes

The following list contains XVT-Power++ classes that may be used
to construct objects from resources:
CStringRW::CStringRW(RESOURCE_ID);

Creates a resource string.
CStringCollectionRWC::CStringCollectionRWC(RES_START,

RES_END);
Creates a collection of strings from a resource.

CWindow::CWindow(itsDoc, WIN_101, TRUE);
Creates a window and all its native views. Passing FALSE for
the last parameter creates only the window. You can make the
created window modal by a calling CModalWindow::DoModal.

CDialog::CDialog(DLG_101);
Creates a dialog and all its controls. You can make the created
dialog modal by a calling CDialog::DoModal.

CFont::CFont(RES_FONT_1);
Creates a font object from a resource. This constructor is
useful when you want to maintain a set of portable fonts.

CImage::CImage(RES_IMAGE_2);
Creates an image from a resource.

CMenuBar::CMenuBar(itsCWindow, MENU_BAR_RID);
Populates a CMenuBar from resources.
28-3

Guide to XVT Development Solution for C++
Note: CDialog and CModalDialog are supported only for the purpose of
backward compatibility. You should use the CWindow equivalents in
their place. The view hierarchy is not supported by dialogs.

28.3. Creating CNativeView-derived Classes
You can create the following CNativeView-derived classes from
resources:

NButton::NButton(itsEncl, WIN_101,
WIN_101_BUTTON_1);

NIcon::NIcon(itsEncl, WIN_101, WIN_101_ICON_1);

NScrollBar::NScrollBar(itsEncl, WIN_101,
WIN_101_SBAR_1);

NEditControl::NEditControl(itsEncl, WIN_101,
WIN_101_EDIT_1);

NText::NText(itsEncl, WIN_101, WIN_101_TEXT_1);

NListBox::NListBox(itsEncl, WIN_101,
WIN_101_LBOX_1);

NListEdit::NListEdit(itsEncl, WIN_101,
WIN_101_LEDIT_1);

NListButton::NListButton(itsEncl, WIN_101,
WIN_101_LBUTTON_1);

NCheckBox::NCheckBox(itsEncl, WIN_101,
WIN_101_CHECKBOX_1);

NRadioButtton::NRadioButton(itsEncl, WIN_101,
WIN_101_RADIOBUTTON_1);

NScrollText::NScrollText(itsEncl, WIN_101,
WIN_101_SCROLLTEXT_1);

Caution: It is important that you use these classes correctly. For details on the
correct usage of these classes, read the following section on loading
resources.
28-4

Resources and URL
28.4. Optimizing the Loading of Resources
CResource, CResourceMgr, CResourceWindow, and CResourceMenu are
helper classes used by some resources for the efficient loading of
monolithic resources. When reading windows and menubars, the
XVT Portability Toolkit API allows the reading of one large
structure, which must then be parsed for contained objects (e.g.,
menu items and controls). Given that it is expensive to load, parse,
and free these types of resources, XVT-Power++ supplies both the
CResource pure abstract class and the CResourceMgr class to maximize
this process.

28.4.1. Window Resources

CResource supplies an interface for the holding and releasing of
resources. When the resource CWindow constructor is called, this is
done. In this case, CResource creates the resource and holds it. It keeps
the monolithic structure in memory, in whatever form is conducive
to the parsing of those resources. The resource remains held until all
resource items (sub-objects) are parsed. For the CWindow example,
these items are controls. Once all the controls
are created, the resource is released, and the memory freed.

Example: When a contained object is created from resources its container is
held (if it is not already held), and the object's attributes are parsed
and used to initialize the object. When reading many objects from
the same container, it is more efficient to hold the container first,
read all the contained objects, and then release the container, like
this:

// First hold resource:
CResourceWindow *theRes = G->GetResourceMgr()->Find(

theContainerId);
assert(theRes != NULL);
theRes->Hold();

// Create views:
new NButton(theScr, WIN_101, kButton101_1);
new NButton(theScr, WIN_101, kOkButton);
new NListEdit(theScr, WIN_101, kEdit101_1);

// Release held resource:
theRes->Release();
28-5

Guide to XVT Development Solution for C++
28.4.2. Using CResourceItems

XVT-Power++ provides a convenience class, CResourceItems,
to hide the hold/release protocol through object construction and
destruction, like this:

{
CResourceItems theHeldRes(theContainerId);
new NButton(theScr, WIN_101, kButton101_1);
new NButton(theScr, WIN_101, kOkButton);
new NListEdit(theScr, WIN_101, kEdit101_1);
}

28.4.3. Iterating Held Resources

CResource also provides a mechanism to iterate over a held resource.
Note that the iteration supported by CResource does
not allow for multiple clients to iterate or for stacked iterations.

void CreateNButtons(CWindow *theWin, long theContainerId)
{

CResourceItems theRes(theContainerId);

// Iterate through resources
//creating only the push buttons:
long anId = theRes.First(); // First item is window

anId = theRes.Next();
while (anId)
{

// Create resource button:
if (theRes.GetType(anId)==WC_PUSHBUTTON)

new NButton(theWin, theContainerId, anId);

// Iterate to next item:
anId = theRes.Next();

}
}

See Also: For more details on these helper classes, see their individual
descriptions in the online XVT-Power++ Reference.
28-6

Resources and URL
28.5. Resources for Internationalized Applications
When writing an internationalized/localized XVT application,
resources become an integral aspect of the application design and
your software development process. In addition to other attributes,
your localized application must notify the PTK that it is multibyte
aware. The application does this by setting the value of the attribute
ATTR_MULTIBYTE_AWARE to TRUE.

Select the resource file to be used by setting the value of the
attribute ATTR_RESOURCE_FILENAME. The application name
and the task window title are localized by setting the attributes
ATTR_APPL_NAME_RID and ATTR_TASKWIN_TITLE_RID.

The application name and task window title in the XVT_CONFIG
structure passed to xvt_app_create are overridden by localized strings
obtained from resources. ATTR_APPL_NAME_RID and
ATTR_TASKWIN_TITLE_RID set the resources IDs from which to
obtain these strings.

If you have created a locale-specific error file (ERRCODES.TXT),
use the ATTR_ERRMSG_FILENAME attribute (as you would the
ATTR_RESOURCE_FILENAME attribute), to override the default
filename before xvt_app_create is called.

See Also: For more information on binding resource files to your application,
refer to the Resources and URL chapter of the XVT Portability
Toolkit Guide.
28-7

Guide to XVT Development Solution for C++
28-8

Data Propagation
29
DATA PROPAGATION

Automatic Data Propagation (ADP) is a powerful feature of
XVT-Power++. Using the Model-View-Controller approach, ADP
automatically propagates a change of data from objects to other
objects.

ADP lets you build complex models and have the associated views
updated automatically. For example, a spreadsheet and a graph can
display the same information in two different ways. When the
information is modified in one window through the ADP model,
that change will automatically be reflected in the other window.

ADP is very flexible in its design. Models can depend on other
models, and do not have to be GUI models. For example, a string
could depend on other strings.

29.1. How to Use ADP
XVT-Power++ uses these four basic classes to provide Automatic
Data Propagation:

CModel

CControllerMgr (CController manager)

CController

CNotifier

There are two types of notifiers, providers and dependents.
Providers have the ability to request a change to the model data.
Dependents are notified of changes in the model data. All objects
are derived from CNotifier, so any object can be a provider and/or a
dependent.
29-1

Guide to XVT Development Solution for C++
To use ADP, first create a model representing the data. Register that
model with a CController. Then register the CController with the
CControllerMgr. (See Figure 29.1.)

Figure 29.1. Using ADP

When an object is interested in the data associated with a model, it
adds itself as a dependent of the CController where that model is
registered. When the object requests a model change (for instance, if
the end user modifies the representation of the data), it notifies the
CController. If the CController allows the model to change, it notifies all
its dependents of the change. This is the basic principle behind ADP.

Controller Manager

controller

model

data

controller

model

data

controller

model

data

dependent 1 dependent 2 dependent 3

provider 1 provider 2 provider 3
29-2

Data Propagation
29.2. ADP Classes
Let’s review in more detail each class that contributes to the ADP
mechanism.

29.2.1. CModel Class

CModel is an abstract class. When you are using ADP, override this
class and specify your own model. This is a place to specify which
data set will be subject to ADP.

To specify the ways the model can change, you override the pure
virtual Change(command, model) method. A model might change in
several ways. For instance, only part of the model might be altered
by the end user. Each type of model change is specified under a
certain protocol, which is called a command. A command is defined
as a long.

From each command:

• The model knows which part of it has been modified

• The model extrapolates new information from the model
passed to the Change method and updates its data accordingly

• A dependent extracts the model information and modifies its
parts accordingly (upon a DoUpdateModel call)

The command mechanism is a way to allow partial change of the
model without having to update the entire model. For instance, if a
window with edit controls is a dependent of a certain model and only
one edit control changes, the window updates only the edit control
content.

A model can be made of several models. The model passed to the
Change method does not have to be of the same type as the entire
model. The model granularity is under the user’s control and allows
flexibility for partial changes of the model data.
29-3

Guide to XVT Development Solution for C++
29.2.2. CControllerMgr Class

CControllerMgr manages CControllers, and assigns
CController IDs.

CControllerMgr is automatically instantiated in CGlobalClassLib and can
be accessed through the global G pointer (in CObjectRWC)
G->GetControllerMgr(). XVT-Power++ allows only one instance of this
class. Its copy constructor is protected; it does not allow a
CControllerMgr to be assigned or copied.

The CControllerMgr uses its Insert method to automatically register a
new CController in its list of CControllers. The CControllerMgr can also
remove a CController from its list using its Remove method. Its Find
method returns a CController pointer based on a CController ID.

29.2.3. CController Class

CController is responsible for managing a list of dependents and
a list of providers, and provides access to its model. There is one
CController per model. However, that model can be made of several
models.

When an update is passed to CController, the method
CController::DoChange(provider, command, new model)
first checks its list of providers, because not every object has the
ability to change the model. CController then calls the method
CModel::Change(command, new model) to alter the model data. Finally, if
the Change method returns True (which means the model has indeed
changed), CController goes through its list of dependents and calls
their respective DoUpdateModel methods.

29.2.4. CNotifier Class

CNotifier is a base class that provides the “wide interface” to request
model changes and to update dependents of a model change. Every
dependent and every provider is derived from CNotifier.

Its DoChangeModel(CController id, provider, command,
new model) method allows a provider to request a model
change. DoChangeModel first finds the CController using the
CControllerMgr::Find method. Once identified, the CController verifies
that the provider passed as an argument belongs to its list of
providers. If so, it allows the model to change and then updates the
dependents through the “wide interface” call to the dependent’s
DoUpdateModel method.
29-4

Data Propagation
DoUpdateModel method is called by a CController for each of
its dependents when a physical model changes. It is up to each
dependent to override this method and update itself correctly when
a model change occurs.

CNotifier maintains these two RWOrdered pointers:

• isProviderControllers is a list of CControllers of
which the CNotifier is a provider

• isDependentControllers is a list of CControllers of
which the CNotifier is a dependent

When a CNotifier or a CController is removed, XVT-Power++
automatically takes care of updating these lists to reflect the change.

29.3. Example
Let’s look at a simple example of how ADP is used.

While you are reading this example, keep in mind that there are
many ways ADP can be implemented. XVT-Power++ does not
force any specific rules on how to use ADP. The instantiation of
ADP objects can be done at several locations in your code. In our
example we have the document instantiate the CController, but
the CController could also be instantiated at other places in the
framework. The example provided shows how to use ADP to display
the same information in different views, but ADP does not require
views or any specific XVT-Power++ objects.

Suppose we have two windows, a spreadsheet and a graph, which
share the same information. In XVT-Power++, they share the same
document.

Note: The following example is similar to the one provided on the
distribution media (Model example).
29-5

Guide to XVT Development Solution for C++
29.3.1. Setting up the Document for ADP

Following the usual XVT-Power++ paradigm, we first instantiate a
document object. In this example, the document instantiates a model
representing some piece of data. The data is passed to the model
constructor in order to fill the model with the initial information.
To do this, in the document constructor we instantiate an object
derived from CModel. We then provide a protocol through a series
of commands to determine which parts of the model might change.
Each command defines a specific change to the model. For example,
if our model is a spreadsheet, the command mechanism might allow
us to pass just the modified cells instead of the whole spreadsheet.
We now have a working model.

Next we instantiate a CController object. The CController
object passes the model as the first argument to the CController
constructor which registers the model with that CController. Calling
the CController constructor automatically adds that CController to the
CControllerMgr’s list of CControllers.

So far, we have built the data that will be automatically updated
using ADP, and we have created and registered our CController.

29.3.2. Setting up the Views for ADP

Now we need to create the spreadsheet and the graph windows.

29.3.2.1. Setting up a Provider View

We instantiate the spreadsheet window. The window constructor
then builds the spreadsheet. In order to display the model data, the
spreadsheet will need to query the model. The CController queries the
model using its GetModel method. To get to the CController, we use:

G->GetControllerMgr()->Find(CController id)

where G represents the CGlobalClassLib pointer.

Then we call the “wide interface” spreadsheet’s DoUpdateModel
method, which is inherited from CNotifier, and pass it the queried
model. One of the commands passed to DoUpdateModel might specify
that this is the first time we are querying the model; therefore, it
should look at all the information provided in the model parameter.
This way we can use the same method for the initial model query and
subsequent model changes.

Once the spreadsheet queries the model data and sets the
information in its data members, it needs to register itself as a
29-6

Data Propagation
dependent to the model’s CController so that it can be notified
of any changes in the model. We do this by calling the following:

G->GetControllerMgr()->Find(CController id)->
AddDependent(spreadsheet object)

Now we have a spreadsheet that acts as a dependent of the model
data.

For this example, suppose we want the spreadsheet to be able to
request model changes. That is, the spreadsheet will be a provider
of the CController. We do this by calling the following:

G->GetControllerMgr()->Find(CController id)->
AddProvider(spreadsheet object)

29.3.2.2. Setting up a Dependent View

Now let’s create the graph window. The window constructor queries
the model and passes it to the DoUpdateModel(command, model) method,
just like the spreadsheet. The window constructor then draws the
window content based on the queried model. The command passed
to DoUpdateModel would specify that all data
is new, so the entire model is passed.

We then register the graph window as a dependent of the CController,
just like the spreadsheet. In this example, we do
not want the graph to be able to request model change so we do
not register it as a provider to the CController.

In summary, the spreadsheet can request a model change and is
notified of any model data changes. It is both a provider and a
dependent. The graph window does not have the ability to request
a model change, but it is notified of model data changes. It is only a
dependent.
29-7

Guide to XVT Development Solution for C++
29.3.2.3. How ADP Looks to the End User

Now let’s see what happens at runtime.

Figure 29.2. ADP at runtime

If a spreadsheet cell is modified by the end user at runtime, the
spreadsheet requests a model change. It calls its DoChangeModel
method passing a CController ID, a provider (itself), a command
(which specifies the protocol under which the model has been
changed), and the new model (the new data). When the information
in its window changes, the spreadsheet creates a new model (which
does not have to be of the type of the CController model).
DoChangeModel calls the CController::DoChange method, which
in turn checks if the provider is in the list of its providers. If this
succeeds, it calls the model’s Change(command, new model) method,
passing the command and a model that contains information about
the new data. Based on this command, the model extracts
information from the model passed to the Change method and updates
its data accordingly. Finally, the CController iterates through the list of
dependents to update them with the new model data.

In this example, the graph window is on the list of dependents, so the
graph window’s DoUpdateModel method is called. DoUpdateModel will
redraw the graph window contents based on the new model
information.

Spreadsheet window Graph window

data

model

provider link

dependent link

dependent linkprovider link
dependent link

dependent link
29-8

Data Propagation
29.4. Automatic Data Propagation Key Points
Keep in mind the following key points about ADP:

• The model data is completely encapsulated in the CModel
object. Only a CModel-derived object can physically modify
the data set. Providers provide a new model to the model
CController, which invokes the model’s Change method.

• Every object is derived from CNotifier. Therefore, every object
has the ability to be a dependent and/or a provider, including
any CView-derived objects. Consequently, ADP allows data to
be dependent upon other data.

• CController is also derived from CNotifier. This allows
controllers to depend on other controllers, and makes it
possible to derive complex controllers. For example, you
might need to list some information that must be verified
before it can be used. A CController could be derived from
CController to add auxiliary lists. To implement a group
of privileges, you can combine providers in a group and
then designate the group as a provider. The CControllerMgr can
register any object derived from a CController.

• Objects can create several different CControllers. There is no
restriction on the number of CControllers that a single object
can create.

• A CNotifier object can be a dependent of one or more
CControllers. In the spreadsheet example, every cell could be
associated with a separate CController and have a list of
dependents.

• Although each CController controls only one model, ADP
allows for nesting of CModels. This is why CModel is distinct
from CController.
29-9

Guide to XVT Development Solution for C++
29-10

Transparent Data Integration
30
TRANSPARENT DATA INTEGRATION

XVT-Power++ provides an easy-to-use mechanism for creating
associations between objects that share data—transparent data
integration (TDI). The associations, known as TDI connections,
establish a communication channel among objects in which
messages about object state and data are exchanged and processed
automatically.

CTdiTableFactory

CTdiValue

CTdiTableController

CTdiBooleanValue

CTdiDateRow

CTdiFloatField

CTdiIntegerIndex

CTdiConnection
CTdiIndexConnection

CTdiTableConnection

CTdiListRow

CTdiStringField

CTdiTimeIndex
30-1

Guide to XVT Development Solution for C++
Common uses of TDI include:

• Synchronizing the state of different objects within an
application

• Connecting views with (arbitrary) data sources and
back-ends

• Creating well-defined communication links with third-party
objects

Section 30.2 discusses individually each of these uses for TDI.

30.1. Synchronizing Your User Interface with TDI
TDI addresses the needs that most XVT-Power++ developers face.
Consider a typical C++ application that links a user with a database.
The interface of the application contains objects that display
particular pieces of information obtained from the database. While
the information is displayed by the interface objects, it is commonly
managed and stored by a separate group of objects that model the
business aspects of the application and communicate with a
persistent back-end. In addition to displaying information, the views
must also be able to change and update the data as the user interacts
with them.

Developers faced with implementing such an application normally
must themselves create several classes and infrastructures to
accomplish these needs. The developer(s) would have to create
objects that model and manage the data, define communication
channels between the data and views, and derive interface objects
that can receive and display data needed by the application.

Traditionally, XVT-Power++ has provided several mechanisms that
facilitate this, such as: 1) the Application-Document-View model
that cleanly separates application responsibilities, and 2) the ADP
mechanism that automates the definition of data dependencies.
More recently, XVT-Power++ has provided TDI plus set(s) of TDI
adapter classes.
30-2

Transparent Data Integration
30.1.1. Advantages of TDI

TDI helps DSC++ application developers by automating most of the
details described in section 30.1. Using TDI, creating a typical
application is reduced to:

• Creating data models and connections

• Laying out a user interface (using XVT-Architect, for
example)

• Creating TDI connections between each view and the data

30.1.2. Flexibility of TDI

Much of the flexibility of TDI comes from the use of prototypes.
Each dependent managed by a TDI controller can be coupled with a
special CTdiValue object known as a prototype. Prototypes translate
from messages understood by one type of object to messages
understood by another type of object, as discussed in section 30.3.2
on page 30-9.

The second aspect of TDI’s flexibility is provided by adapters.
Sometimes messages sent by a provider need to be translated into a
set of actions or operations before being sent on to the dependent.
The logic for such operations can be coded in a TDI adapter. The
TDI adapter is simply an extra CNotifier object placed in between the
provider and dependent, as discussed in section 30.3.2.2 on page
30-10.

30.1.3. Scope of TDI

The following XVT-Power++ classes participate in the definition
and implementation of TDI:
CNotifier

Any CNotifier-derived object may be a TDI provider or
dependent. In addition, the CNotifier class defines a set of
methods that support TDI connections.

CTdiConnection
Establishing and managing TDI connections is made easy by
this special interface class, because by default, it handles the
most common prototype combinations. The class encapsulates
(hides) most details of the TDI architecture, making TDI
programming much simpler.

CTdiValue
Each TDI message may contain data that is bundled into a
CTdiValue object. (The CTdiValue class derives from CModel.) This
30-3

Guide to XVT Development Solution for C++
class is actually an abstract interface to a number of useful
ready-to-use derived classes.

CView
Most XVT-Power++ CView classes have been made “TDI
aware.” This means that they contain code that automatically
handles common TDI messages that they may receive.

30.2. Common Uses for TDI
TDI addresses a problem that most C++ application developers must
solve. Three common ways to use TDI are shown in Figure 30.1.

Figure 30.1. Typical uses of TDI (adapter classes not needed when
two TDI-aware XVT-Power++ objects communicate
directly with one another)

CTdiDB* classes

ODBC++

TDI adapter(s)

Third-
party

object(s)

XVT-Power++

XVT-Power++
TDI

TDI

TDI
30-4

Transparent Data Integration
30.2.1. Synchronizing the State of Different Objects

TDI can be used to connect XVT-Power++ views together so that
their behavior and state is synchronized. Imagine the interface
for a typical “File Open” dialog—this dialog contains a list box
displaying known filenames that can be selected as well as a text
edit field allowing users to type in a filename. A TDI connection
between these two views synchronizes them so that as the user types
in a name, the file is selected in the list box, and as the user selects
filenames in the list box, the edit field displays that name.

30.2.2. Creating Data Models and Connections

You can use TDI to connect views to back-end objects such as those
supplied with the ODBC++ product. The back-end database objects
will likely contain data returned by SQL queries. If you connect each
view in the user interface to the appropriate database query object
that specifies the fields of data it is interested in, TDI takes over from
there.

As the data changes, the view is notified and it automatically
redraws with the new information. In addition, when the user
changes the data by interacting with the view, the back-end is
automatically notified with information about the change. All this is
done with an average of a single line of code per view.

30.2.3. Communication Links with Third Party Objects

TDI can be used to connect any independently developed (third
party) object with XVT-Power++ framework objects. For example,
XVT-Power++’s CTdiDB* classes provide TDI extensions that
connect XVT-Power++ objects with database objects defined in the
DB* classes of ODBC++, a separate product available from XVT.
This is just one example of how TDI can serve as a bridge between
objects developed independently in separate products/projects.
30-5

Guide to XVT Development Solution for C++
30.3. Structure and Implementation
Connections are always made between CNotifier-derived objects. In
each connection, one CNotifier acts as a provider, while the other acts
as a dependent. Figure 30.2 illustrates the basic structure of TDI
connections (depicted conceptually).

Figure 30.2. Basic structure of TDI communication

Each provider may have zero or more dependents, while each
dependent may have zero or more providers. It is also common to set
up two TDI connections making each CNotifier both a dependent and
a provider for the other.

30.3.1. Communication Between Dependents
and Providers

TDI providers normally send a message to their dependents
via a call to one of several TdiNotify methods defined in CNotifier. In
essence, the TdiNotify function packages the message into a CTdiValue
object, and sends the message to each dependent by calling its
DoUpdateModel method.

Most XVT-Power++ CViews are “TDI aware,” meaning that they
automatically define DoUpdateModel() methods that process different
TDI messages.

CTdiValue is a class designed specifically to carry data during
TDI messages. Because CTdiValue is actually derived from CModel,
and because the TDI message is initiated by a dependent’s
DoUpdateModel, the handling of TDI messages is very similar to the
handling of ADP messages.

CNotifier CNotifier
n

TdiNotify() DoUpdateModel()

CTdiValue

Value Context

MESSAGE

PROVIDER DEPENDENT
n

30-6

Transparent Data Integration
See Also: For a more thorough comparison of ADP and TDI, see section 30.4
on page 30-11.

30.3.1.1. Important Components of TDI Messages

Each TDI message conveys the following information:

• A context describing the nature of the message

• A type for the information sent with the message

• A value or data object sent with the message

• An originator that represents the provider of the TDI
message

Each of these terms is explained in section 30.3.1.2, next.

30.3.1.2. TDI Message Terminology

This section introduces the terminology that is used later in this
chapter and elsewhere in this Guide to describe TDI functionality/

Context
The context is represented by the command sent in a TDI
message call to DoUpdateModel. DoUpdateModel offers a dozen
predefined commands, such as replace, append, clear, select,
next, previous, and so forth, that tells views how to respond to
TDI messages that they receive. The context is also stored
within the CTdiValue object sent with the message.

Type
The type is represented by the run-time type of the CTdiValue
object received in a TDI message. All CTdiValues support run-
time type identification (RTTI), enabling you to verify their
types when receiving a message. In addition, CTdiValue provides
a separate interface for identifying a common set of data types
(integer, floating point, string, and BOOLEAN) without using
RTTI.

Value
The value is stored by the CTdiValue, and varies according to the
implementation of each CTdiValue-derived class.

Originator
The originator is embedded within CTdiValue and represents the
provider that initiated the message. Although recipients of TDI
messages may access the originator, this approach is not
encouraged since it can lead to a tighter coupling between an
application's front and back ends, resulting in less flexible and
extensible code.
30-7

Guide to XVT Development Solution for C++
30.3.1.3. Internal Configuration of a TDI Connection

Each CNotifier provider actually uses a helper CTdiController object to
manage its list of dependents. In turn, each dependent managed by
the controller may be coupled with a special CTdiValue object known
as a prototype. Figure 30.3 shows the actual internal details of a TDI
connection, including the role of the prototype.

Figure 30.3. Specialization with prototypes; detailed internal
structure of TDI communication with a CTdiConnection

CTdiController is an internal class (used by the framework)
that routes TDI messages from providers to dependents.
CTdiConnection, the public class, uses CTdiController to register the
connection. The difference between the two classes is that
CTdiController implements the message passing during the connection,
and CTdiConnection only sets up (or removes) a
TDI connection.

Note: In most TDI situations, you use the CTdiConnection class, and then the
details shown in Figure 30.3 are completely hidden “under the
covers” of encapsulation. However, knowing about these internals
can help you understand how TDI works and how to use it
effectively.

CNotifier CNotifier

Copy() Context

CTdiValue

Value Context

MESSAGE

PROVIDER DEPENDENT

n

CTdiController
CTdiValue

CTdiDependent

PRIMARY CONTROLLER PROTOTYPE
30-8

Transparent Data Integration
30.3.2. Using Prototypes with a TDI Connection

To understand the use of prototypes, you must first understand
how messages are sent when a prototype is not registered with a
dependent. As described in section 30.3.1, in a normal TDI message,
a CNotifier sends a TDI command and a CTdiValue object to a
dependent. In turn, dependent objects interpret the TDI command
and value and act accordingly.

This process works well for many connections between related
objects. However, there are times when a provider may be sending
context commands or CTdiValue objects that are not readily
interpreted by a dependent’s DoUpdateModel() method. After all, TDI
encourages the connection of independently developed components,
providing a common means for communication. It is very likely that
two CNotifiers developed independently may generate and accept
completely different types of TDI messages.

Because of these potential differences, TDI allows specialized
prototype values to be installed in a connection to handle the job of
translating messages sent by a provider to a form understandable by
a dependent. In other words, a prototype is simply a CTdiValue which
a dependent is able to successfully interpret.

When a TDI connection has a prototype installed, the CTdiController
sends this prototype value to the dependent instead of sending the
original CTdiValue created by the provider. If the prototype has its
own context command, that command is used in the message to the
dependent. In addition, the prototype’s Copy() method is invoked to
copy the data stored in the provider’s original CTdiValue.
CTdiValue::Copy() is a pure virtual method declared in CTdiValue. It is
up to the Copy() of each derived CTdiValue class to do the “translation”
from provider data to dependent data.
30-9

Guide to XVT Development Solution for C++
30.3.2.1. Specializing Connections with Prototype Values

Prototypes add a lot of flexibility to TDI. Furthermore, the
CTdiConnection class usually knows automatically when it needs
to use a prototype. In general, you only need to explicitly add a
prototype to a connection in the following cases:

• The type of TDI data sent by the provider is different than the
type of TDI data acceptable to the dependent; it is the job of
the prototype to make the conversions

• The TDI command sent by the provider needs to be changed
into some different command expected by a dependent

• The dependent is only interested in a specific portion of the
provider’s data

Example 1: Consider an interface with an edit field that allows users
to enter dates. The edit field may send the data (a date) as a
CTdiStringValue to its dependents. A back-end dependent may require
the date as a CTdiDateValue, so a prototype value is inserted into the
TDI connection to do the necessary conversions from string to date.

Example 2: Consider TDI connections made between a database
client and user interface objects. The database client may send
CTdiValues comprising entire rows of data to its dependents. A
dependent such as an edit field or list box may only be interested in
one field of the row. The Copy() method of the prototype for such a
connection must be able to pick out the correct field of data.

30.3.2.2. Specializing TDI Connections with Adapters

TDI provides a second way to customize connections. Sometimes
messages sent by a provider need to be translated into a set of actions
or operations on the dependent. The logic for such operations can be
coded in a TDI adapter which is simply an extra CNotifier object
placed in between the provider and dependent, as shown in Figure
30.4.

Figure 30.4. Specializing a TDI connection with an adapter

CNotifier CNotifier

TdiNotify() DoUpdateModel()

CNotifier

DoUpdateModel()

ADAPTER
PROVIDER DEPENDENT
30-10

Transparent Data Integration
The messages sent by the provider are intercepted by the adapter,
which acts as a proxy dependent. The proxy may either propagate
the TDI message to the real dependent, or may simply operate upon
the dependent as necessary.

For example, consider a connection in which the visibility state of a
set of views, such as a radio group, is controlled by the selection
state of a check box. A TDI connection could be set up between
these two objects so that the radio group is notified whenever the
check box is enabled or disabled by the user.

However, the current CRadioGroup class in XVT-Power++ does not
have code which shows or hides itself because of a TDI message
(i.e., it is not TDI-aware). You could easily derive a special radio
group that is TDI-aware. But a more flexible and reusable solution
is to create an adapter class, named something like CVisibilityAdapter,
that calls its dependent’s Show() and Hide() methods as a result of a
TDI message. Now you can easily reuse the CVisibilityAdapter class
whenever a similar visibility relationship needs to be established.

30.4. TDI and ADP Compared
TDI (transparent data integration) is similar in some ways to ADP
(Automatic Data Propagation). Both mechanisms contain objects
that act as dependents and/or providers. Both mechanisms rely on
the use of CModel objects and DoUpdateModel() messages as the means
by which they communicate. Internally, both mechanisms rely on
CController objects to manage the delivery of information.

It is important, however, to recognize how these paradigms differ.
An ADP architecture is built around a central CModel object that
represents the entire state of a system or subsystem. Dependents and
providers of data are then registered with a controller that manages
this central CModel. When the model is modified, each dependent is
notified by a call to DoUpdateModel(). In this paradigm, the providers
and dependents do not communicate directly, and the typical
granularity of data propagation is coarse—it is often defined at the
CDocument and CWindow level.

On the other hand, a TDI architecture contains no central CModel
object. Instead, connections are made directly between providers
and dependents. Each provider sends messages reflecting changes in
its own state. Providers and dependents share a direct channel of
communication, and the granularity of such communication is much
finer—each CView in the interface can be directly connected to
multiple specific data sources.
30-11

Guide to XVT Development Solution for C++
In many ways, TDI provides all the benefits of ADP and adds
benefits of its own. The main benefit is a simpler-to-use interface.
In TDI, the programmer rarely uses CControllers, defines central
CModel classes, or manages connections. Using TDI, these details
can be omitted because of the encapsulation provided by the
CTdiConnection classes. Because TDI makes data management simple,
you, the programmer, write fewer lines of code. Indeed, the amount
of data management code you write may be reduced to one-third of
the amount you would have had using ADP by itself.

Note: It is also logical to view TDI as a specialization of ADP, since ADP
remains the mechanism through which TDI is implemented.
30-12

Logical Units
31
LOGICAL UNITS

The CUnits class and the classes derived from it provide objects
that allow you to code viewable locations or regions using logical
coordinates. These logical coordinates can be of different types:
inches, centimeters, pixels, characters, or user-defined coordinates.
When objects are drawn, these logical coordinates must be
converted to a physical output device. The physical coordinates are
always either dots on a printer or pixels on the screen that will be
turned on or off according to the unit provided.

The most general class of the units classes is CUnits, which
provides a generic unit that can be set to any desired type of logical
to physical mapping. Each of the following class derived from
CUnits provides a specific type of mapping:
CCharacterUnits

Maps logical units to physical units according to a base font
while maintaining a proportion of character width and height
in that font.

CInchUnits
Maps units that represent inches on the screen to numbers
of pixels.

CCentimeterUnits
Maps units that represent centimeters on the screen to numbers
of pixels.

CObjectRWC

CNotifier

CUnits
31-1

Guide to XVT Development Solution for C++
31.1. Setting the Units of Measure
XVT-Power++’s CUnits class enables you to set the size of the units
of measure used in your application, with the options being pixels
(the default), inches, centimeters, characters, or a user-defined unit.

Units of measure are treated in exactly the same way as environment
properties. That is, by default there is a global application CUnits
object that propagates through all levels of the XVT-Power++
application framework to the deepest subview. However, you can set
the units of measure at different levels: for different documents,
windows, and view enclosures. When you change the units of a
view, all objects sharing its CUnits object are affected and must
accommodate the change.

When a CUnits object is created, the constructor requires you to pass
in information about the horizontal and vertical screen mappings as
well as the horizontal and vertical printer mapping:

CUnits(float theHScreenMapping = 1.0,
float theVScreenMapping = 1.0,
float theHPrinterMapping= 1.0,
float theVPrinterMapping= 1.0,
OutputDevice theDevice = SCREEN);

If the horizontal screen mapping is 2, this means that there is a
2-to-1 ratio; that is, each horizontal unit will be translated into
2 pixels. The basic formula for calculating the physical coordinates
is to take the logical coordinate and multiply it by the mapping like
this:

physical = logical x mapping

If there is one logical unit and a mapping of two, then the physical
mapping is:

1 x 2 = 2

In addition to the screen and printer mappings, the CUnits constructor
has a parameter for the output device to which you
are currently translating, either the screen or a printer. At any time,
you can change the output device that is being used for a particular
CUnits object. Methods on the CUnits class allow you to set and
get the output device, as well as the different screen and printer
mappings. In addition, CUnits provides methods for converting
logical units to physical units for both horizontal and vertical
mappings. You can convert a CPoint or a CRect specified in units
to an XVT Portability Toolkit PNT or RCT. Similarly, CUnits contains
methods for converting physical units to logical units.
31-2

Logical Units
Note: These conversions are handled automatically inside XVT-Power++.
Thus, while it is important to understand the logic of how units
work, you will almost never need to call any of the CUnits mapping
functions. All you must do is create a CUnits object and assign it to
an object in the object hierarchy of the application framework.
Everything else takes care of itself.

31.2. Dynamic Mapping
When a program is ported from one platform to another, it may
suffer in appearance because different machines have different
screen widths, heights, and resolutions. CUnits has a dynamic
mapping capability that is designed to take care of this problem.
An application is assumed to be developed on one platform and
then ported to other platforms.

CUnits::SetDevelopmentMetrics is called to specify the development
platform, with the metrics of the platform that was used for
development: the device width, the device height, and the horizontal
and vertical resolution. Once you have defined the development
metrics, you can turn on dynamic mapping via SetDynamicMapping.
When the application executes, it compares the development metrics
to the execution metrics. Thus, at runtime, the application can
compute the resolution, width, and height of the display device it is
using. If the execution metrics are identical to
the development metrics, then the program is running on a machine
that is identical to the development platform, and no further
computations are necessary. However, if the execution metrics
differ from the development metrics, CUnits calculates the change of
proportions in the resolution, width, and height; then it adjusts the
horizontal and vertical mapping so that the application looks right on
the new machine with its new metrics.

To make use of the dynamic mapping capability of CUnits, all you
must do is call SetDevelopmentMetrics with the hard-coded values of the
metrics of the machine you used for development and then turn on
SetDynamicMapping. Everything else is automatic.

31.3. Owners of Units
Each CUnits object has a pointer to a boss object, and the pointer
is the unit’s owner. This owner is always the highest object in the
object hierarchy that has been assigned the particular CUnits object.
For example, when a CUnits object is assigned to a document,
then every window and every view inside that document shares
31-3

Guide to XVT Development Solution for C++
this CUnits object. The boss of the CUnits object is always the
document. Although every window and every view is using the
CUnits object, the document is the object that actually created it
and therefore owns it. Whenever the units change, the CUnits
object notifies its owner, and a message about the change, called
UpdateUnits, trickles down to all objects that are sharing the units so
they can accommodate the change. For example, if the units change
for a window, it may need to resize itself, and every view inside it
will also have to redraw itself according to new logical units. These
updates occur automatically any time the units change. All updates
occur through the UpdateUnits method. Whenever the units change, a
set of UpdateUnits methods is called for all objects sharing the units so
that they can update themselves.

In addition, when units are created (normally, on the heap) and
assigned to an object by calling SetUnits, the ownership of the units
belongs to the object to which you passed the units. The owner is
responsible for deleting its CUnits object when it is itself deleted and
for notifying any object sharing the CUnits object that the units are
deleted. All of this is done internally, and you need not be concerned
about it.

CUnits objects can be shared only in the manner described through
the application framework. In other words, a subview can share the
units of its enclosure, its window, its document, or its application.
However, two different documents cannot share the same CUnits
object as owners. If you want two documents to have the same kind
of units, you must create two separate CUnits objects and set them for
each of the documents. Documents can share the same CUnits object
only through the CApplication object; that is, they can both use the
CUnits owned by the application. In short, sharing can only occur
downwards through the parent or child and cannot occur between
peers.

31.4. Incorporating Units into XVT-Power++
Applications

By themselves, CUnits objects are simply data structures that
do mappings between logical and physical coordinates. Their
usefulness lies in the way that they are tied in to the rest of the
application framework. Any object derived from CBoss can have
its own units. The units hierarchy works in a very similar way to the
environment hierarchy. For example, you can set the application’s
units using a method belonging to all objects derived from CBoss
named SetUnits. You set the units object like this:
31-4

Logical Units
application -> SetUnits units object

Then the application owns those units, and any object in the
application that does not have its own units set uses these units.

Suppose a view is nested three levels down inside a window. Before
this view draws itself, it will check to see whether it has a units
object of its own and whether it must do any units conversions.
Normally, it does have its own units object and uses it. If it does not
have its own units object, it checks to see whether its enclosure has
a units object, and if it does, the view uses the units object of its
enclosure. If the enclosure does not have a units object, then the
view checks to see whether its enclosure’s enclosure has one and
so on all the way up to the window. From the window, the search
continues to the document associated with the window, and finally,
if the document does not own a units object, it checks the application
object. The application may also not have its units set, in which case
the whole application is simply using physical coordinates, and no
units are set.

Here we have described simply the abstraction of how units work. In
reality, units are directly available to any object, and there is no run-
time search up the hierarchy because it would be too time-
consuming. However, the semantics of how it all works are as
described here.
31-5

Guide to XVT Development Solution for C++
31-6

Columnar Data
32
DISPLAYING LIST AND COLUMNAR DATA

XVT-Power++ provides many ways to display columnar (including
list) data, each of which offers an optimized solution to a particular
problem. This chapter will help you choose the best method for your
application.

Figure 32.1. Sample view

CTable CTreeView
32-1

Guide to XVT Development Solution for C++
32.1. Choosing the Method for Displaying Data
Use the summaries given in Table 32.1 on page 32-3 to help you
decide which view to use for your application. Keep in mind that
CTable or CTreeView may be the best solution (rather than CListBox,
NListBox) for displaying some lists and that CTreeView may by
preferable to CTable for displaying small tables because it’s a lighter
weight object.

In general, heavyweight objects have more features than lightweight
objects, however, lightweight objects give better performance than
heavyweight objects. For example, if you have thousands of rows of
data, CTable is the best object to use, even if you have only a single
column (a list), because CTable only fetches the data it needs to
display the current visible cell range. If you were to use a CListBox for
this application, you would need to supply all of the data up front
before the view could draw itself, which would be much slower.

32.1.1. Table Data

If you need to display table data, choose between CTreeView and
CTable based on the size of data set and the amount of control you
need over appearance. For example, can you supply the entire data
set in less than a second? CTable handles very large data sets and
provides cell level control of appearance, but CTreeView is easier to
use and quicker with small data sets. For example, you would
probably use CTable to display a list of 10,000 employees, while you
would use CTreeView for a list of pending mail messages.

32.1.2. Tree-style Data

A tree view is typically used to display hierarchical data; for
example, directories and subdirectories, or rows of financial data (as
in a detailed budget). CTreeView provides everything normally
needed for this type of view, including keyboard navigation,
embedding pictures, and tab-justified fields. You can provide all of
the tree data up front (a static tree), or supply data “on the fly” as
each node is opened by the user (a dynamic tree).
32-2

Columnar Data
Table 32.1. View trade-offs for displaying columnar data

32.1.3. Long Lists of Data

Choosing which view to use for a list is more complicated, but two
factors may make the decision for you. If you must have a native list,
use NListBox. If you must be able to embed arbitrary objects (such as
other lists), use CListBox. If you can relax these two requirements,
choose between CTreeView (one node) and CTable (a single column) as
you would with a table data set.

Notice that using multiple fields in your list, which you can do with
either CTreeView or CTable, is often required by the user interface
design. For example, you can display a small picture next to each
item of the list to indicate the nature of that item. There is little
memory associated with these pictures because both CTable and
CTreeView implement sharing of such resources.

CTable CTreeView NListBox CListBox

Data Needed Only for visible
cells

All data for an
open node up
front (a list
would be one
open node)

All data up front.
May have native
size limitations.

All data up front

Object
Overhead

Heavyweight
view object
(expensive to
create)

Lightweight
object
(fast to create
and manipulate)

Lightweight
object
(fast to create
and manipulate)

Heavyweight
view object
(impractical for
> 50 rows)

Native Look-
and-Feel

No No (Windows 95
on all platforms)

Yes No

Attribute
Control

Cell-level,
including
borders

Row-level, no
cell borders

View-level, no
cell borders

Row-level

Embedded
View Objects

Some allowed:
CPicture,
NCheckBox,
NListButton

Only CPicture No Any other view

Justification Yes, including
multiline text

Yes No Possible

Column
Placement

User-adjustable User-adjustable;
tab-aligned
fields in each
row

No tab-aligned
fields

No tab-aligned
fields

Titles Optional Optional No No
32-3

Guide to XVT Development Solution for C++
32.2. CTable
CTable readily displays textual data, as well as embedded pictures,
check boxes, and button menus. Its flexible event-driven data-
feeding mechanism makes the CTable useful for large lists and tables
that would be time-consuming to completely populate up front. For
small tables, you might want to consider using the lighter weight
CTreeView.

CTable’s features include:

• Row and column labels with user adjustable sizes (optional)

• Vertical and horizontal scrolling

• Cell, row, column, and table level attribute control (colors,
font, justification, data representation, ...)

• Fast coordinate system for flexible row/column sizing while
maintaining performance with large tables

• Fast display and scrolling of textual data

• Optimized for row access

• Sharing of picture data and attributes to minimize memory
footprint

• Keyboard or mouse navigation

• User-configurable general-purpose data cache

• Selection policies (row select, single cell select, ...)

• In-cell editing

• Event notification of selection, focus, row/column resize or
delete, key stroke, and scrolling

• All table events can be trapped and handled in a manner that
you define for your application

32.2.1. How to Use Tables in Your Application

Including a table in your application requires the following steps:

• create a table

• initialize the table

• install a data source

Creating a table can be as simple as creating any other view, but
generally you will want to do some additional initialization such as
setting the cell bounds and column widths.
32-4

Columnar Data
A callback scheme is used to supply data to the table. The table view
only requests the data that it needs to display the currently visible
range of cells (possibly plus some margin of cells to increase
scrolling performance). This dynamic request/supply means that
your data source must be able to supply cell data in a random
fashion. While this may seem complex, writing table code is not
difficult and XVT-Power++ provides a ready-to-go cache to help
you optimize performance.

See Also: For more information about table creation and initialization, see
section 32.2.2, next. In addition, section 32.2.3.1 on page 32-9
shows you how to create table sources and give a couple of simple
examples for both read-only and read-write tables.

32.2.2. Creating Tables

32.2.2.1. Creating a Table View

Like most views, CTable has a single constructor that takes an
enclosure and a rectangular region as the only required arguments.

CTable(
CSubview* theEnclosure,
const CRect& theRegion,
const CFont& theTableFont = STDFont,
UNITS theDefaultRowHeight = kNoHeight,
UNITS theDefaultColumnWidth = kNoWidth,
long theChunkRows = 128,
long theChunkColumns = 32);

Choosing Row Height and Column Width

CTable uses the first three arguments to determine the optimum row
height and column width based on font metrics. The font specified
for theTableFont becomes the table’s default font. If theDefaultRowHeight
is set to kNoHeight, then the table uses the font height to calculate the
default row height. The default height is high enough to allow in-cell
editing. You may wish to use a lower height, such as the font height
plus four, for read-only tables. Likewise, if theDefaultColumnWidth is
set to kNoWidth, then the table uses the font width to calculate the
default column width (12 “0”s plus border pixels).

Note: If you want to use a different default height or width, you must
supply that value to the table’s constructor. You should not change
the defaults after the view has been built.

You would probably want to change the default row height if the
table displays data other than text. For example, if you are
32-5

Guide to XVT Development Solution for C++
embedding 64-by-64 images in the first column of each row, set the
default row height to 64 plus 1 or 2, depending on the border width
you want to use, for the best image quality. Likewise, if you are
using a control, such as an NListButton, you may want to set the
default row height to the native height of the control. To get the
native control height of a list button call:

xvt_vobj_get_attr(NULL_WIN, ATTR_CTL_EDIT_TEXT_HEIGHT)

Internal Chunk Size

CTable organizes its internal data in square chunks of cells that it
allocates when those cells become visible. The final two arguments
of the CTable constructor determine the chunk size that the table uses
internally. This scheme allows the table to work well with both small
and very large data sets and even data sets of unknown size.

If you know that your table will always have a fixed number of
columns or rows, you can optimize the table performances by
providing these values as the chunk dimensions. If these dimensions
exceed about 128 (application dependent), you may want to use the
default values anyway (to avoid erratic performance) as each large
chunk is managed during operations such as scrolling.

32.2.2.2. Setting the Initial Attributes

After creating a table, you should call ITable() to initialize it before
calling any other table methods or allowing the table to be drawn on
the screen.

Example: The following code shows the call to ITable():

BOOLEAN ITable(
SelectionPolicy theSelectionPolicy = MultipleRow,
BOOLEAN hasHorizontalScrollBar = TRUE,
BOOLEAN hasVerticalScrollBar = TRUE,
BOOLEAN hasColumnLabels = TRUE,
BOOLEAN hasRowLabels = TRUE,
BOOLEAN isThumbTracking = FALSE,
BOOLEAN isVisible = TRUE,
GLUETYPE theGlue = NULLSTICKY);

The first argument, theSelectionPolicy, is unique to CTable and
determines the type of cell/row/column selection operations
available to the user. The ITable() method can be called multiple
times after the view is created.
32-6

Columnar Data
Selection Policies

Selection policies are grouped into three categories: row, column,
and cell. A row selection policy allows only the selection of rows
and a column selection policy allows only the selection of columns.
Cell selection policies are more general and can allow row and
column selection in addition to individual cell selection.

Within each of the three groups, there are three selection policy
subcategories: single, mandatory, and multiple.

Single
The single selection policy means that at most one selection can
exist at a time. For example, CTable::SingleCell, means that at most
one cell can be selected at a time.

Mandatory
The mandatory selection policies are slightly different in that,
once the initial selection has been made, they ensure a single
selection always exists.

Multiple
The multiple selection policies allow multiple, including non-
contiguous, selections.

Available Policies

Table 32.2 shows the policies available for CTable.

Table 32.2. Available policies

Policy Comments

CTable::None No selections allowed

CTable::SingleRow Zero or one row

CTable::MandatoryRow After an initial selection, always one row

CTable::MultipleRow Multiple row selections

CTable::SingleColumn Single column selection

CTable::MandatoryColumn After an initial selection, always one column

CTable::MultipleColumn Multiple column selections

CTable::SingleCell Single cell selection

CTable::MandatoryCell After an initial selection, always one cell

CTable::MultipleCell Multiple cell selections
32-7

Guide to XVT Development Solution for C++
Focus Compared to Selection

The concept of selected cells/rows/columns differs from the concept
of focus. There is at most a single cell that has focus at any one time.
In general, it is the cell that receives keystrokes and is indicated by
a dotted border. Selected cells, in contrast, are indicated by a change
in background color.

See Also: For complete information on focus see the description of CView in
the online XVT-Power++ Reference.

32.2.2.3. Setting the Table Size

XVT-Power++ tables can be as big as you want to make them—only
limited by the size of a “long”. CTable manipulates the table structures
as infinitely large sparse arrays. You can dynamically set the bounds
(number of column and rows) of a table by calling SetCellBounds()
which only affects the scrollbars and certain optimizations.

Example: To set a table bounds to 8 columns and 64 rows, call SetCellBounds
using the following parameters:

myTable->SetCellBounds(CBounds(0, 0, 64, 8));
32-8

Columnar Data
32.2.3. Supplying Data to Tables

32.2.3.1. Table Data Sources

Tables get their data using callbacks. When a cell becomes visible
on the screen, CTable requests the data for that cell from its data
source. The data source must then provide a CTdiValue that represents
the contents of this cell.

Creating a Data Source

Create your data source by subclassing CTableSource abstract class
and override its three methods: Prime(), GetTableData(), and
PutTableData().

See Also: An example of overriding CTableSource’s three methods is given in
Read-only Table Sources on page 32-10.

Adding to an Existing Class

If you have an existing object you can mix it in. Mixing in refers to
the multiple inheritance technique of adding additional methods to
an existing class. This approach makes it easy to convert existing
classes into table data sources with little modification.

Example: If you already have a table data structure called CMyTable and you
wish to use it to supply data to the table view, you would create a
new class, as shown in this example.

class CMyTableSource : public CMyTable, public CTableSource
{
...
public

virtual public CTdiValue* GetTableData(const CCell& theCell);
virtual public BOOLEAN PutTableData(

const CCell& theCell,
const CTdiValue* theData);

 virtual public void Prime(const CBounds& theBounds);
...
};
32-9

Guide to XVT Development Solution for C++
Read-only Table Sources

For read-only tables you need only implement the GetTableData
method.

Note: GetTableData() does not pass ownership of the CTdiValue to the table.

Example: This shows how to subclass CTableSource and simply provide the cell
coordinates as its data. Consequently, PutTableData() and Prime() have
empty implementations.

class CMyTableSource : public CTableSource
{

...
public

virtual const CTdiValue* GetTableData(const CCell& theCell)
{

char s[64];

xvt_str_sprintf(s, "(%d, %d)", theCell.V(), theCell.H());
itsTempValue.FromString(CStringRW(s));

return &itsTempValue;
}

virtual BOOLEAN PutTableData(const CCell& theCell,
const CTdiValue* theData)

{
return FALSE;

}

virtual void Prime(const CBounds& theBounds)
{ }

protected :
CTdiStringValue itsTempValue;

};

This case uses a CTdiStringValue to represent the data, but you can
easily use another TDI prototype, such as CTdiDateValue, if that
represents your data better than a simple string.

See Also: For more information on TDI values and TDI prototypes see
Chapter 30, Transparent Data Integration.

Read-write Table Sources

Read-write table sources require that you implement the
PutTableData() method of your table source. Like GetTableSource(), the
table is not passing ownership of the CTdiValue. Remember this
pointer will be invalid upon exiting the PutTableData() method. You
should extract the information from theData and store it or clone the
CTdiValue and store the clone.

To clone a CTdiValue, use the following code:
32-10

Columnar Data
CTdiValue* aClone = (CTdiValue*)theData->newSpecies();
aClone->Copy(*theData);

The table calls the PutTableData() method you have implemented
anytime it suspects the user has changed cell data. With some
control types, the table may not always know if the user has changed
a cell. So the table takes a conservative approach that may produce
PutTableData() calls when, in fact, the cell was not really modified.
However, if the cell was modified you are guaranteed to get a
PutTableData() call.

The table calls your Prime() method as a “heads up” when it is ready
to fetch data for a range of cells, such as when a new page is drawn.
This allows you to bring in a block of cell data into a cache to be
retrieved later with strategically timed calls to GetTableData(). This is
strictly a performance enhancing method and is never required.

Once you have created a table data source, pass the object to the
SetSource() method on table.

Caution: You are responsible for creating and deleting the data source. Do not
delete the data source until after you have destroyed the table.

32.2.3.2. Using CTableTdiSource as a Data Cache

CTableTdiSource is a flexible class that can both provide and consume
table data. In other words, you can easily place it between your table
data source and the table view.

Example: The following code shows how to insert a CTableTdiSource between
the table data source and the table view:

CTableTdiSource aCache(aTable);
CMyRealTableSource aSource;
aCache.SetSource(&aSource);

Using CTableTdiSource as a cache minimizes the calls to your table
data source by:

• caching rows

• avoids PutTableData() calls with a read-write table when the
new data matches the cache data (a condition indicating that
the user really didn’t change the cell data).

You can set the maximum number of rows that you want the
CTableTdiSource to cache by calling the SetCacheSize() method with the
number of rows to cache.

Because of the ownership chain, the order of destruction must be
aTable, then aCache, and finally aSource.
32-11

Guide to XVT Development Solution for C++
See Also: For more information on ownership between views, see section 16.2
on page 16-6.

32.2.3.3. Using TDI to Supply Data to a Table

To make a TDI connection to a table, create a CTableTdiSource and
connect the TDI client to this object rather than the table. CTable does
not accept TDI connections directly, but uses CTableTdiSource as an
adapter.

Example: The following code connects a CTable to an ODBC++ data source:

// Set up a TDI table adapter using CTableTdiSource
itsCTableTdiSource = new CTableTdiSource(

itsData.itsCTableUserView);

// Connect the new table to the CTable in the user view
CTdiTableConnection aRowConnection(

itsTdiTable,
itsCTableTdiSource,
CTdiDBQuery::CURRENT_INDEX,
CTdiDBQuery::CURRENT_INDEX,NULLcmd,
TRUE, // autoConnect
new CTdiDBTableFactory()

);

See Also: For more information, see the example samples/arch/tditable.
32-12

Columnar Data
32.2.4. Controlling Rows and Columns

There are many methods available for controlling various aspects of
the table. Some of these methods take the row or column number as
a parameter. These are numbered sequentially starting with 0.

See Also: For information on labels for rows and columns, see section 32.2.6
on page 32-20.

32.2.4.1. Setting Column Width and Row Height

Call the SetColumn() method of CTable with a numerical argument to
set the width of an individual column and call the SetRow() method
of CTable to set individual row heights. These two methods have the
following signatures:

void SetRow(long theRow, UNITS theHeight);
void SetColumn(long theColumn, UNITS theWidth);

Note: The row and column indices are zero-based.

32.2.4.2. Deleting and Inserting Rows and Columns

CTable has methods to insert and delete rows and columns from a
table view. CTable automatically adjusts any rows and columns
beyond the insertion or deletion.

The delete and insert methods are:

void InsertColumns(long theColumn, long theCount = 1);
void DeleteColumns(long theColumn, long theCount = 1);
void InsertRows(long theRow, long theCount = 1);
void DeleteRows(long theRow, long theCount = 1);

When inserting a row at row index 2, for example, the new row is
now the third row and accessed through a w index of 2 (zero-based).
32-13

Guide to XVT Development Solution for C++
32.2.5. Setting Attributes

You can set attributes at the cell, row, column or table level. Each
cell inherits unset attributes from its row, then its column, and finally
the table.

t To set attributes at the cell, row, column, or table level:

1. Create a CTableAttributes object.

2. Set the attributes you want to change.

3. Apply the attribute set to the table, or to a row, column, or cell.

The list of attributes you can set includes:

• fonts

• foreground and background color

• text justification

• borders (top, left, bottom, right)

• whether the cell is read-only.

The attribute set also includes advanced attributes for setting the
data interpreter (page 32-16) and the validator (page 32-19).

Each attribute has three associated methods in the CTableAttributes
class: GetXXX, SetXXX, and UnsetXXX.

32.2.5.1. Colors, Fonts, and Justification

Colors, fonts, and justification are the simplest attributes to
understand.

The font attribute has these three methods:

// Set methods
void Font(const CFont& theFont);
// Unset methods
void UnFont();
// Get methods
const CFont& Font() const;

Example: The following code sets the colors on a diagonal line of cells:

// Setting some attributes on a diagonal line of cells
for(i = 0; i < 100; i += 1)
{

CTableAttributes anAttribute;
anAttribute.Foreground(COLOR_GREEN);
anAttribute.Background(COLOR_RED);
aTable->SetCell(CCell(i, i), anAttribute);

}

32-14

Columnar Data
Justification Values

CTable supports compass justification of multi-line text within each
cell. The possible values of justification are:

CTableAttributes::JustifyTop
CTableAttributes::JustifyTopRight
CTableAttributes::JustifyRight
CTableAttributes::JustifyBottomRight
CTableAttributes::JustifyBottom
CTableAttributes::JustifyBottomLeft
CTableAttributes::JustifyLeft
CTableAttributes::JustifyTopLeft
CTableAttributes::JustifyCenter

The default justification is JustifyLeft, which means flush left and
centered top to bottom.

Example: The following code sets the justification of the third column to
centered. Note the zero-based column index.

// Column justification
{

CTableAttributes anAttribute;
anAttribute.Justification(CTableAttributes::JustifyCenter);
aTable->SetColumn(2, anAttribute);

}

32.2.5.2. Borders

Cell borders lie within the bounds of each cell and are specified
independently for the four cell sides.

Border Styles

The possible border styles include:

CTableAttributes::BorderNone
CTableAttributes::BorderSingle
CTableAttributes::BorderDouble
CTableAttributes::BorderDashed
CTableAttributes::BorderSunken
CTableAttributes::BorderRaised

By default, the table uses BorderSingle for the top and left sides, and
BorderNone for the right and bottom sides. This configuration gives a
single line border between all cells. BorderSunken and BorderRaised have
special behavior in that setting one of these on any cell side implies
that the entire cell has a sunken or raised 3D appearance on all sides.

You can also set the color of each cell border, as shown in the
following example.
32-15

Guide to XVT Development Solution for C++
Example: This example takes a block of cells, specified by theBounds, sets a red
border around the entire block and dashed blue borders within.

void SetBorders(CTable* theTable, const CBounds& theBounds);
{

CTableAttributes::Border anInteriorBorder;
CTableAttributes::Border anExteriorBorder;

// Set up border types
anInteriorBorder.itsColor = COLOR_BLUE;
anInteriorBorder.itsStyle = CTableAttributes::BorderDashed;
anExteriorBorder.itsColor = COLOR_RED;
anExteriorBorder.itsStyle = CTableAttributes::BorderSingle;

for(int h = theBounds.Left(); h < theBounds.Right(); h++)
for(int v = theBounds.Top(); v < theBounds.Bottom(); v++)
{

CTableAttributes anAttributeSet;

// Top
anAttributeSet.TopBorder((v == theBounds.Top()) ?

anExteriorBorder : anInteriorBorder
);

// Bottom
anAttributeSet.BottomBorder((v == theBounds.Bottom() - 1) ?

anExteriorBorder : anInteriorBorder
);

// Left
anAttributeSet.LeftBorder((h == theBounds.Left()) ?

anExteriorBorder : anInteriorBorder
);

// Right
anAttributeSet.RightBorder((h == theBounds.Right() - 1) ?

anExteriorBorder : anInteriorBorder
);

theTable->SetCell(CCell(h, v), anAttributeSet);
}

}

See Also: More features of CTableAttributes are described in the online
XVT-Power++ Reference.

32.2.5.3. Data Interpreters for Other Types of Data

CTable provides an extensible framework for representing data other
than text, such as pictures. Currently, CTable supports (in addition to
text) native check boxes, list buttons, and pictures.

Objects that handle data display and user interaction are called table
interpreters and inherit from CTableInterpreter. The interpreter is an
attribute, just like color, and can be set at the cell, row, column, or
table level.
32-16

Columnar Data
By default, the table-level interpreter is CTableTextInterpreter, which
handles data displayed as text. Usually each column of a table
displays data in the same way so you will generally set the
interpreter attribute put on columns, not rows.

Example: The following code fragment sets the interpreter on column 0 (the
first column) to display pictures:

CTableAttributes anAttribute;
CTableInterpreter* anInterpreter = new CTablePictureInterpreter(aTable);
...
anAttribute. Interpreter(anInterpreter);
aTable->SetColumn(0, anAttribute);

The table is responsible for deleting all interpreters for you
automatically.

Displaying Pictures

If a cell’s data equals a key string, the picture interpreter displays the
image associated with that key in the cell. When the interpreter
cannot find a key string matching the cell data, it displays the default
image, if defined. The key string comparisons are case sensitive.

You are responsible for creating and deleting images that you pass
to the picture interpreter; however, you can delete the images
immediately as the interpreter only uses the images temporarily
(long enough to create pictures).

Example: To associate each image that the interpreter displays with a key
string, we can add to the example in the previous section. The
following code sets up the picture interpreter for the first column of
a table:

CTableAttributes anAttribute;
CTablePictureInterpreter* anInterpreter = new CTablePictureInterpreter(aTable);
CImage* anUserPicture = new CImage("user.bmp");
CImage* anAdminPicture = new CImage("admin.bmp");
CImage* aVisitorPicture = new CImage("visitor.bmp");
CImage* anUnknownPicture = new CImage("unknown.bmp");

anInterpreter->AddImage(*anUserPicture, "user");
anInterpreter->AddImage(*anAdminPicture, "admin");
anInterpreter->AddImage(*aVisitorPicture, "visitor");
anInterpreter->AddDefaultImage(*anUnknownPicture);

delete anUserPicture;
delete anAdminPicture;
delete aVisitorPicture;
delete anUnknownPicture;

anAttribute. Interpreter(anInterpreter);
aTable->SetColumn(0, anAttribute);
32-17

Guide to XVT Development Solution for C++
Displaying Check Boxes

The check box interpreter draws a native check box in the cell. You
associate a string with each check box state—on or off. If the cell
data matches the on string, the check box appears checked. If it
matches the off string, it appears unchecked. If the data matches
neither, the state of the check box is unchanged. Likewise, if the user
clicks on the check box (changing its state) the data associated with
the cell is either the on string or the off string depending on the
current state of the check box.

Example: The following code sets up the check box interpreter for the first
column of a table:

CTableAttributes anAttribute;
CTableCheckBoxInterpreter* anInterpreter = new CTableCheckBoxInterpreter(

aTable,
"Is Registered"
);

anInterpreter->OnString("Yes");
anInterpreter->OffString("No");

anAttribute.Interpreter(anInterpreter);
aTable->SetColumn(0, anAttribute);

Note: You need a separate interpreter for each column. For example, if you
want to use a series of check boxes with the title Is Registered in
column 1 and another series of check boxes with the title C++ Literate
in column 2, you need to create two interpreters—one to handle each
case.

Displaying List Buttons

To use list buttons in your table cells, create a
CTableListButtonInterpreter and use the AddString() method to populate
the list. The cell data corresponds to the selected item in the list, or
is an empty string if no item is selected. You must supply the height
of the list box to the CTableListButtonInterpreter. This is the total height
of the control when the list is popped up (just like creating a
NListButton, see page 32-5). This height is not the height of the cell
containing the list button.
32-18

Columnar Data
Example: The following code sets up the list button interpreter for the first
column of a table:

CTableAttributes anAttribute;
int aFontHeight =

aTable->GetEnvironment()->GetFont().GetHeight();
CTableListButtonInterpreter* anInterpreter = new CTableListButtonInterpreter(

aTable,
(UNITS)(4 * aFontHeight + 12)

);

anInterpreter->AddString("red");
anInterpreter->AddString("green");
anInterpreter->AddString("blue");

anAttribute.Interpreter(anInterpreter);
aTable->SetColumn(0, anAttribute);

Note: For example, if you want to use a list in column 1 containing a list
of colors and another list in column 2 containing shapes, you need to
create two interpreters—one to handle each list.

32.2.5.4. Field Validation

You can add a validator to cells using text edit field or list button
interpreters. Adding validators to other types of cells does not cause
an error—they simply are not used. The code that attaches a
validator to a cell looks similar to the code that adds an interpreter
as an attribute except that validators are passed by value so there is
no need to new or delete them.

Example: The following code demonstrates field validation:

CTableAttributes anAttribute;
anAttribute. Validator(

VALIDATOR_FACTORY->ConstructValidator(
"{Sun,Mon,Tue,Wed,Thur,Fri,Sat}"

)
);
aTable->SetColumn(0, anAttribute);

See Also: For complete information on validators see the description of
CValidator in the online XVT-Power++ Reference.
32-19

Guide to XVT Development Solution for C++
32.2.6. Adding Row and Column Labels

Row and column labels are specialized tables that are clients to the
main interior table. Consequently, you can set attributes such as font,
color, and border style on labels much as you would with regular
table cells.

Two overloaded methods, SetRow() and SetColumn(), take special
constant parameters for the row or column number and manipulate
the column label row or the row label column. These constants are
TITLE_ROW for SetRow() and TITLE_COLUMN for SetColumn(). If you
do not want your table to use labels, pass FALSE for hasColumnLabels
or hasRowLabels in CTable::ITable().

32.2.6.1. Setting Label Text

The most likely thing you will change with labels is their text. You
can easily change the text of labels by calling the following table
methods:

SetRow(theRowNumber, "A Label")
SetColumn(aColumnNumber, "A Label")

Note: Row and column numbers are zero-based.

32.2.6.2. Setting Label Width and Height

You can also use the TITLE_ROW and TITLE_COLUMN constants with
the SetRow() and SetColumn() table methods to change label height and
width.

Example: The following code sets the height of the column labels to 40 units
with the table method:

SetRow(TITLE_COLUMN, (UNITS)40)

Example: The following code sets the width of the row labels for the string
"Hello" (plus a few pixels on either side):

CFont aFont = aTable->GetEnvironment()->GetFont();
if(!aFont.IsMapped())

aFont.Map(aWindow)
int aWidth = aFont.GetTextWidth("Hello");
aTable->SetColumn(TITLE_ROW, (UNITS)(aWidth + 6));

To change the width of a column label, change the width of the
column using:

aTable->SetColumn(aColumnIndex, aWidth)

Likewise, to change the height of a row label, you should change the
height of the row.
32-20

Columnar Data
32.2.6.3. Setting Label Attributes

Any of the attributes that you can set on a regular cell can also be
applied to a label.

Setting attributes on labels is similar to setting the width and height.
Use the constant TITLE_ROW in SetRow() to indicate the row
containing the column labels. Use the constant TITLE_COLUMN in
SetColumn() to indicate the column containing the row labels.

Example: The following code sets the column label to red:

CTableAttributes anAttribute;
anAttribute.Foreground(COLOR_RED);
aTable->SetRow(TITLE_ROW, anAttribute);

32.2.7. Tracking Selection Areas in the Table

CTable maintains a complex region, CRegion, that represents each
selected cell, row, or column. You can get a reference to this region
using the GetSelectedRegion() method of CTable. All of the CRegion
iterators work with this region, thus allowing you to visit selected
cells, rows, or columns as your application requires.

CTable also provides a number of convenience methods for
manipulating the selected region without extracting the CRegion
object. These methods include IsRowSelected(), IsColumnSelected(), and
IsCellSelected() for querying the selection, along with SelectRow(),
SelectColumn(), SelectCell(), SelectCells(), and DeselectAll() to change the
selection.

Tip: If your application needs to make complex changes to the CRegion
object, you can set it as the current selection region by calling the
SetSelectedRegion() method on your table object.

See Also: For complete information on how complex regions are maintained
see the description of CRegion in the online XVT-Power++
Reference.
32-21

Guide to XVT Development Solution for C++
32.2.8. Processing Events in Tables

CTable uses two classes of events: permission and notification.

Permission
Permission events ask your application if it’s “OK” to do
something.

Notification
Notification events simply tell you that something happened.

In both cases, CTable delivers the events to your chain of command,
which you may intercept in the DoCommand() method of your
window, document, or application as you find appropriate for your
application.

For example, if the user resizes a column, the table sends a
permission event stating that the user has requested a resize
operation. If your application denies this event (by calling Deny()
method of the event object), the table will not perform the resize.

In the previous situation, if your application did not deny the resize
request, the table would resize the column and then send another
event up the chain of command indicating that the resize operation
had occurred. You can set the table event style to
CTable::EventPermission, CTable::EventNotify, or CTable::EventBoth using
the SetEventStyle() method of CTable. The default event style is CTable::
EventNotify.
32-22

Columnar Data
Example: This example demonstrates the recommended way of handling and
responding to table events. The example shows how to trap the
FocusOut permission event to handle some sort of validation. (The
table must have had its event style set to CTable::EventPermission or
CTable::EventBoth for this to work).

void CMyDocument::DoTableEvent(CTableEvent * theEvent)
{

switch (theEvent->GetType())
{

case CTableEvent::FocusOut: // The user changed keyboard focus
// Only handle permission events, not notification, here
if(theEvent->IsPermissionEvent()) // Validate this cell's data
{

CCell theCellToValidate = *theEvent->CellEvent.theCell;
BOOLEAN isGood = FALSE:

// Do some stuff here to see if the cell contents are valid
// and set isGood accordingly

if(!isGood)
theEvent->Deny();// Don't let focus out unless data is good

}
break;

case CTableEvent::Select:// The user changed the region of selected cells
// Do some stuff
break;

}
}

void CMyDocument::DoCommand(long theCommand, void* theData)
{

switch (theCommand)
{

case TableEventCmd:
{

CTableEvent* anEvent = PtrCast(CTableEvent, theData);
PwrAssert(anEvent != NULL, "Yikes!");
DoTableEvent(anEvent);
}
break;

default:
CDocument::DoCommand(theCommand, theData);

}
}

IsPermissionEvent() is used to determine whether the event is requesting
permission and notifying your handler of some change:

You detect a table event in your DoCommand() when theCommand is
equal to TableEventCmd. After a simple validation, DoCommand() calls
DoTableEvent(), a method you have added to your document (or
window, or application) class to handle table events
specifically. DoTableEvent() has its own switch group to handle the
various table events.
32-23

Guide to XVT Development Solution for C++
32.2.8.1. Table Events

Delete and Insert Events

CTableEvent::DeleteRow // Row delete
CTableEvent::DeleteColumn // Column delete
CTableEvent::InsertRow // Insert row
CTableEvent::InsertColumn // Insert column

t To access the parameters of a delete/insert event:

theEvent->DeleteInsertEvent.itsFirst
// First row or column

theEvent->DeleteInsertEvent.itsCount
// Number of rows or columns

Size Events

CTableEvent::SizeRow // Change row height
CTableEvent::SizeColumn // Change column width

t To access the parameters of a size event:

theEvent->SizeEvent.itsRowColumn
// Row or column changed

theEvent-> SizeEvent.itsSize
// New or proposed size

Focus Events

CTableEvent::FocusIn // Cell focus in
CTableEvent::FocusOut // Cell focus out

t To access the parameters of a focus event:

theEvent->CellEvent.itsCell
// Pointer (CCell*) to
// affected cell

Select Events

CTableEvent::Select // Selection (the region of
// selected cells) changed

t To access the parameters of a select event:

theEvent->SelectEvent.itsProposedRegion
// CRegion representing the
// selection change

theEvent->SelectEvent.itsSelect
// TRUE if itsProposedRegion
// will be added to the current
// selected region, FALSE
// if it will be removed from
// the current selected region
32-24

Columnar Data
Key Events

CTableEvent::Key // Key event to focused cell

t To access the parameters of a key event:

theEvent->KeyEvent.itsCell
// Pointer (CCell*) to target of
// the key event

theEvent->KeyEvent.itsKey
// Pointer (CKey*) to the
// keystroke data

Origin Events

CTableEvent::Origin // Origin changed (table scrolled)

t To access the parameters of a focus event:

theEvent->CellEvent.itsCell
// Pointer (CCell*) to new origin
32-25

Guide to XVT Development Solution for C++
32.3. CTreeView
CTreeView displays tree type data with tab-justified text and pictures.
The flexible tabbing scheme and lightweight construction of the tree
view makes it useful for displaying lists and small tables that do not
require cell level attributes or in-cell editing.

The main features of CTreeView are:

• Title bar with user adjustable tab stops (optional)

• Vertical and horizontal scrolling

• Line level attribute control (colors, font, tab stops, pictures)

• Embedded pictures at the beginning of a line or at any tab
stop

• Sharing of picture data and attributes to minimize memory
footprint

• Keyboard or mouse navigation

• Static or dynamic “feeding” of tree data

• Event notification of selection, node expansion or collapse,
and mouse clicks

Building a static tree starts with populating the root node. Dynamic
trees work on a callback basis.

See Also: For information on building a static tree, see section 32.3.1 on page
32-27. For information on building a dynamic tree, see section
32.3.3 on page 32-33.

A CTreeView consists of many instances of CTreeItem, each item
representing a line in the view. Some of the tree items are nodes (like
the symbol that represents a folder) that the user can expand and
collapse and other items are terminal (like the symbol that represents
a file).

Associated with each item is a set of attributes, a string to display,
and a picture (optional) that the view displays to the left of the string.
Unless you specify a unique set of attributes for a tree item, each
item inherits the attributes of its parent node.

One of the most important attributes of CTreeView is CTabSet, a utility
class that defines the position of the tab stops and whether each tab
stop represents a picture or text.

See Also: For information on setting CTreeView attributes, see section 32.3.4 on
page 32-35.
32-26

Columnar Data
32.3.1. Creating Static Trees

32.3.1.1. Creating a CTreeView

Like XVT-Power++’s simplest views, CTreeView has a single
constructor that takes an enclosure and a rectangular region as
arguments. All other attributes are set in the initialization method
ITreeView().

The arguments in ITreeView default to reasonable values, so calling
ITreeView() with no arguments usually suffices; however, you must
call ITreeView() before calling any other methods of CTreeView and
before CTreeView displays itself.

32.3.1.2. Initializing the Root Node

When you create a tree view, the root node is automatically created
for you. After calling ITreeView(), you need to set the attributes of the
root node. Subsequent population of the tree, either statically or
dynamically, adds additional tree items that inherit the
characteristics of the root node.

Most applications explicitly set the images associated with
expanded nodes, collapsed node, and terminal nodes. These images
are created and destroyed by your own code, not by the CTreeView.
Be sure your application destroys these images after it has destroyed
the tree view.

Example: The following code shows a typical initialization sequence:

itsOpenDirectoryImage = new CImage("open.bmp");
itsClosedDirectoryImage = new CImage("closed.bmp");
itsFileImage = new CImage("file.bmp");
itsCheckImage = new CImage("check.bmp");
// Set title string
itsTree->SetTitleString(

"Name" + CTabSet::TabString() + "Size" + CTabSet::TabString() + "checked"
);
itsTree->ITreeView();
itsTree->GetRoot()->SetString(".."); // .. seems fairly portable for 'go up one'
itsTree->GetRoot()->SetImage(itsFileImage);
itsTree->GetRoot()->SetCollapsedImage(itsClosedDirectoryImage);
itsTree->GetRoot()->SetExpandedImage(itsOpenDirectoryImage);
itsTree->GetRoot()->SetHeight(CTreeItem::kBestHeight);

Note: When you pass CTreeItem::kBestHeight to the SetHeight() method, the
tree view sets the height of the items to the best height based on the
size of the images and the font size. When the application changed
the images, it called SetHeight() to recalculate the optimum height
based on the new information.
32-27

Guide to XVT Development Solution for C++
32.3.1.3. Populating the Tree

Building a static tree starts with populating the root node, which is
automatically created for every tree. To populate a static tree view
you must recursively add children to each node of your tree.

The most general method to add a child is:

AddChild(
const CTreeItemInfo& the Info,
const CStringRW& theString = NULLString

(;

You must first completely fill out a CTreeItemInfo structure (see the
example, page 32-28). This object has variables representing all of
the parameters for building the new tree item including color, font,
height, indentation, string, and images. (You can call Info() on the
parent node to get a copy of the parent’s info structure.) Then call
AddChild() on the parent node to create and add a new child based on
the supplied CTreeItemInfo structure and the optional item string.

XVT-Power++ supplies two shortcut methods for added children:
1) AddNodeChild(), and 2) AddTerminalChild(). In both cases, the new
child inherits all of its attributes from its parent, with the exception
of the item string supplied as the only argument to the methods:

virtual void AddChild(CTreeItem* the Item);
virtual CTreeItem* AddChild(

const CTreeItemInfo& the Info,
const CStringRW& theString = NULLString
);

virtual CTreeItem* AddNodeChild(
const CStringRW& theString = NULLString
);

virtual CTreeItem* AddTerminalChild(
const CStringRW& theString = NULLString
);

Example: This example shows how to propagate attributes from parent to
child. BuildTreeFromString() builds a static tree (itsTree) by parsing a
string. To simplify the tokenizing, this code requires that braces and
semi-colons be delimited by spaces or tabs. The call might look like:

BuildTreeFromString(
"colors { red ; blue ; green ; } fonts { serif

{ Times ; Century ; } sans serif
{ Helvetica ; }}"

);
32-28

Columnar Data
which would build a tree like the one shown below:
colors

red
blue
green

fonts
serif

times
century

sans serif
Helvetica

void CTreeWin::AddItem(CTreeNodeItem* aNode,
const CStringRW& theString)

{
aNode->AddTerminalChild(theString);

}

CTreeNodeItem* CTreeWin::AddNode(CTreeNodeItem* aNode,
const CStringRW& theString)

{
return aNode->AddNodeChild(theString);

}

void CTreeWin::BuildTreeFromString(
const CStringRW& theString)

{
RWCTokenizer aTokenizer(theString);
CStringRW aString;
CStringRW anItem;
CTreeNodeItem* aNode = itsTree->GetRoot();

while(!(aString = aTokenizer(" \n")).isNull())
{

aString.strip(RWCString::both);

// Add item as a node
if(aString == "{")
{

aNode = AddNode(aNode, anItem);
anItem = NULLString;

}

32-29

Guide to XVT Development Solution for C++
// Done with this node, go back to parent
else if(aString == "}")
{

if(!anItem.strip(RWCString::both).isNull())
AddItem(aNode, anItem);

anItem = NULLString;
aNode = aNode->GetParent();

}

// Finished an item
else if(aString == ";")
{

AddItem(aNode, anItem);
anItem = NULLString;

}

// Continue with item
else

anItem += " " + aString;
}

}

32-30

Columnar Data
32.3.1.4. Traversing a Tree Programmatically

You can visit all of the items of a tree by starting at the root item and
recursively getting the child item of each node. The GetRoot() method
of CTreeView returns a CTreeNodeItem representing the root node.
Calling the GetNChildren() method of a node item gives the number of
children belonging to this node, which you can then retrieve with the
GetChild() method.

Example: The following code performs an unspecified action to each terminal
(leaf) item of the tree:

void DoSomething(CTreeItem& theItem)
{

// Do whatever to the item here
}

void DoSomethingToNode(CTreeNodeItem& theNode)
{

for(int i = theNode.GetNChildren() - 1; i >= 0; i--)
{

CTreeItem* anItem = theNode.GetChild(i);
if(anItem.IsTerminal())

DoSomething(*anItem);
else

DoSomethingToNode(*(CTreeNodeItem)anItem);
}

}

void DoSomethingToTree(CTreeView& theTreeView)
{

DoSomethingToNode(theTreeView.GetRoot());
}

32-31

Guide to XVT Development Solution for C++
32.3.2. Attaching User Data to Tree Items

CTreeView supports user data attached to each tree item. The user data
must be a pointer to a subclass of RWCollectable. To attach user data
to a tree item, call myItem->SetUserData(myData). CTreeItem::GetUserData
will retrieve the stored data.

You can either manage the destruction of the user data yourself, the
default, or let the tree view delete the user data when deleting the
associated tree item. To change this behavior, call
CTreeView::SetDeleteUserData(theDelete) on your tree view. Pass TRUE to
let the tree view manage the user data or FALSE if you wish to
manage the data yourself. You can also call
CTreeView::GetDeleteUserData to query the current behavior of the tree
view.

void SetDeleteUserData(BOOLEAN);

BOOLEAN GetDeleteUserData() const;

const RWCollectable* GetUserData() const;

RWCollectable* GetUserData();

void SetUserData(RWCollectable);
32-32

Columnar Data
32.3.3. Creating Dynamic Trees

Dynamic trees work on a callback basis. When a node is expanded,
by the user or programmatically, the tree view requests the data for
that node from its data source. The data source provides descriptions
of all the tree items, including additional nodes.

To create a data source, “mix in” the CTreeSource abstract class and
override its only method GetTreeData(). Mixing in refers to the
multiple inheritance technique of adding additional methods to an
existing class. This approach makes it easy to convert existing
classes into tree data sources with little modification.

Example: If you already have a tree data structure called CMyTree and you wish
to use it to supply data to the tree view, you would create a new class
as shown in this example.

class CMyTreeSource : public CMyTree, public CTreeSource
{
...
public
virtual public RWGVector(CTreeItemInfo)* GetTreeData(

CTreeItem* theParent) const;
...
};

Once you have created a tree data source, pass the object to the
SetSource() method on the root node.

Caution: You are responsible for creating and deleting the data source. Do not
delete the data source until after you have destroyed the tree view.

Now you only need to write the GetTreeData() method to supply the
tree data. Earlier, with a static tree, we populated the tree by taking
the parent node information, modifying it to suit each child item, and
adding the child to the parent. In GetTreeData() you do much the same,
except the tree view takes care of actually adding the children. You
only need to supply a vector of information objects describing each
child.

Example: The following code shows an implementation of GetTreeData() to
provide file directory information to a tree view:

RWGVector(CTreeItemInfo)* CTreeFileSource::GetTreeData(CTreeItem* theParent) const
{

CTreeItem *anItem;
CStringRW aPath;
size_t fileCount = 0;
RWGVector(CTreeItemInfo)* anInfoList = new RWGVector(CTreeItemInfo);
32-33

Guide to XVT Development Solution for C++
// Build path name from this parent up to the root node
anItem = theParent;
do
{

// Note that xvt_fsys_build_pathname cannot be done in place
char new_path[MAXPATHLEN + 1];
xvt_fsys_build_pathname(

new_path, NULL, CTabSet::GetField(anItem->GetString(), 0), aPath,
NULL, NULL

);
aPath = new_path;

} while((anItem = anItem->GetParent()) != NULL);

// Open as directory
DIRECTORY aDirectory;

// This call is not const correct, so we need to cast around
if(xvt_fsys_convert_str_to_dir((char*)(const char*)aPath, &aDirectory))
{

// Get a list of files and directories for this path
xvt_fsys_save_dir();
xvt_fsys_set_dir(&aDirectory);
RWOrdered aFileList(

CStringCollection(xvt_fsys_list_files("", NULL,
TRUE)).asOrderedCollection()

);
RWOrderedIterator aFile(aFileList);
CStringRWC* aFileName;

// For each file in the list, add an info object to the return vector
while((aFileName = (CStringRWC*)aFile()) != NULL)
{

if(*aFileName != "." && *aFileName != "..")
{

FILE_SPEC aFileSpec;

// Extend the info vector in chucks of 32
while((*anInfoList).length() <= fileCount)
(*anInfoList).reshape((*anInfoList).length() + 32);

// Get information about this file
aFileSpec.dir = aDirectory;
xvt_str_copy(aFileSpec.name, (const char*)*aFileName);
xvt_str_copy(aFileSpec.type, "");
xvt_str_copy(aFileSpec.creator, "");
BOOLEAN isTerminal = !xvt_fsys_get_file_attr(

&aFileSpec, XVT_FILE_ATTR_DIRECTORY
);

// Copy the info object from parent and add child specifics
(*anInfoList)[fileCount] = theParent->Info();
(*anInfoList)[fileCount].itsString = *aFileName ";
(*anInfoList)[fileCount].itsHeight = CTreeItem::kBestHeight;
(*anInfoList)[fileCount].itsIsTerminal = isTerminal;
fileCount++;

}
}
// Reshape list to final size
(*anInfoList).reshape(fileCount);
xvt_fsys_restore_dir();

}
return anInfoList;

}

32-34

Columnar Data
32.3.4. Changing Attributes of Items in a Tree View

CTreeView provides you with many choices in setting individual
attributes on each line item of the view. You can do this when
populating the tree by modifying the information objects, as in the
previous examples, or you can change the attributes after creating
the view by calling a method, such as SetFont(), on the appropriate
CTreeItem object.

Note: The inheritance of attributes applies when creating tree items, but
not when attributes are changed after creation. If you were to change
the color of the root node, it would not change the color of the root
node’s children that have already been created.

32.3.4.1. Instance Variables

The data members of the information object that you can set while
populating the tree are:

itsColor The foreground color of the item
itsFont The font used for text
itsHeight Item height. Generally you should use

CTreeItem::kBestHeight
itsIndent The amount children of the node should

be indented to the right
itsString The string that appears in this item
itsIsTerminal FALSE if this is a node item, TRUE if

this is a terminal item
itsImage The image displayed if this node is a

terminal item
itsCollapsedImage The image displayed if this is a

collapsed (closed) node item
itsExpandedImage The image displayed if this is an

expanded (open) node item
itsTabSet A tab set used for tab justification

Given a CTreeItem object, you can change its attributes post creation.
For each attribute listed above, there are corresponding “Set” and
“Get” methods on CTreeItem: SetFont(), SetTabSet(), GetFont(), etc. If
possible, you should set the correct attributes using the information
objects at creation to avoid view flashing.

See Also: You may wish to refer to the section on tree traversal, section
32.3.1.4 on page 32-31, for an example of finding specific tree items
within the tree.
32-35

Guide to XVT Development Solution for C++
32.3.4.2. Setting Tab Stops

A CTabSet object contains an ordered list of justified tab stops
represented by CTextTab objects.

To use tabs, build a CTabSet by adding CTextTabs and then associate it
with a CTreeItem. The easiest approach is to build the tab set and
associate it with the root node before populating the tree; this
ensures that all items share the same tabs. However, you can also set
the tab set of an item individually by setting the itsTabSet data
member of the information object when you populate the tree or by
calling the SetTabSet() method of CTreeItem.

To create a new CTextTab, pass the tab type (e.g., centered, left, right,
and decimal) and the position to the constructor. The types are
enumerations within CTextTab. Add each tab to the tab set with the
AddTab() method of CTabSet.

Note: The position is relative to the left of the tree, not the left of the item,
so that all fields line up regardless of the depth of an item within the
tree.

Example: The following code builds a tab set for a tree view:

// Set up tabs
itsTabSet = new CTabSet;
itsTabSet->AddTab(CTextTab(CTextTab::Left, (UNITS)180));
itsTabSet->AddTab(CTextTab(CTextTab::Decimal, (UNITS)250));

Note: Like images and data sources, your application is responsible for
creating and deleting tab sets and should not delete a tab set until
after deleting the tree view that uses the tabs. Valid values for text
justification types are CTextTab::Left, CTextTab::Right, CTextTab::Center,
and CTextTab::Decimal.

32.3.4.3. Embedding Images

Image tab types in a CTextTab object tell the tab set to use the text in
the field as a key string to find an image to display rather than draw
the text. Thus, an image tab set maintains a list of images and the key
string associated with each image.

To add an image to the tab set, use the AddImage() method of CTabSet.
This method takes an image pointer and a key string as arguments.
32-36

Columnar Data
Example: The following code builds on the previous example and adds an
image tab:

itsCheckImage = new CImage("check.bmp");

// Set up tabs
itsTabSet = new CTabSet;
itsTabSet->AddTab(CTextTab(CTextTab::Left, (UNITS)180));
itsTabSet->AddTab(CTextTab(CTextTab::Decimal, (UNITS)250));
itsTabSet->AddTab(CTextTab(CTextTab::LeftImage, (UNITS)325));
itsTabSet->AddImage(itsCheckImage, "check");

You can create toggle fields by adding two images associated with
the keys on and off, for example, and then toggling that field of a tree
item in response to mouse clicks.

See Also: For more information about the event handling for toggle fields see
section 32.3.5 on page 32-39.

32.3.4.4. Manipulating Fields of a String

The previous sections described how to set both text and image tabs
of a tree view. This section shows how to divide a string into tab
fields, analogous to embedded tab characters in the text.

CTabSet provides a number of utility functions for getting and setting
tab fields of a string so that you do not have to manually parse the
string yourself. When you provide a string for a tree item, you can
build up a complex string of multiple tab fields by appending each
field separated by a tab object, CTabSet::TabString().
32-37

Guide to XVT Development Solution for C++
Example: This example builds on the file directory example introduced in
section 32.3.3 . It appends: 1) a field displaying the file size, and
2) an image field containing a check mark. If the item is a directory,
the file size field contains the string “...”.

char fileSize[32];
if(isTerminal)

xvt_str_sprintf(fileSize, "%ld",
xvt_fsys_get_file_attr(&aFileSpec,
XVT_FILE_ATTR_SIZE));

 (*anInfoList)[fileCount] = theParent->Info();
if(isTerminal)

(*anInfoList)[fileCount].itsString =
*aFileName + CTabSet::TabString() +
fileSize + CTabSet::TabString() +
"check";

else
(*anInfoList)[fileCount].itsString =

*aFileName + CTabSet::TabString() +
"...";

Field Manipulation Methods of CTabSet

The field manipulation methods of CTabSet include:

CStringRW CTabSet::ToggleField(
const CStringRW& theString,
size_t theTab, // one based
const CStringRW& theState1, // also default
const CStringRW& theState2

);

CStringRW CTabSet::GetField(
const CStringRW& theString,
size_t theTab // one based

);

CStringRW CTabSet::SetField(
const CStringRW& theString,
size_t theTab, // one based
const CStringRW& theValue

);

Notice that the tab field indices are one-based, i.e., they use 1 for the
first field. These methods are static class methods so you do not need
a tab set object to call them.
32-38

Columnar Data
32.3.5. Processing Events in a Tree View

Tree events (CTreeEvent objects) are received by the tree view
whenever the user performs any of the following operations:

• Focus changes (clicking on an item)
• Selections changes (changing the set of selected items)
• Node expansion
• Node collapse
• Mouse click in a field
• Mouse click in the title bar

The events are received through the DoCommand() methods; they
have a command ID of TreeEventCmd and a data pointer that points to
a CTreeEvent object.

Example: The following code shows how to trap tree events in your view,
window, document, or application DoCommand() method:

void CTreeWin::DoCommand(long theCommand, void* theData)
{

if(theCommand == TreeEventCmd)
{

CTreeEvent* anEvent = (CTreeEvent*)theData;
CTreeItem* anItem = anEvent->GetTreeItem();

if(anItem != NULL)
switch(anEvent->GetType())
{

case CTreeEvent::MouseClick:
...
break;

case CTreeEvent::FocusIn:
...
break;

}
} else CWindow::DoCommand(theCommand,theData);

}

Example: The following code shows how to process events in a tree view:

case CTreeEvent::MouseClick:

// If a second tab is detected, toggle the check mark
if(anEvent->GetTabHit() == kCheckTab)
{

anItem->SetString(
CTabSet::ToggleField(

anItem->GetString(), kCheckTab, "check", "")
);
anEvent->GetTree()->InvalidateItem(anItem);

}
break;
32-39

Guide to XVT Development Solution for C++
CTreeEvent provides several methods for querying the nature of the
event. One important method is GetType(), which returns the specific
type of tree event. Two other important methods, GetTree() and
GetTreeItem(), return the IDs of the tree view sending the event and the
tree item that the event describes, respectively.

Mouse-clicks in the title bar of a tree view generate events with the
tree item set to NULL, so be sure that your application checks for a
NULL tree item as shown in the previous code example.

Mouse-click events carry additional information such as the state of
the modifier keys and the tab field hit by the mouse click, if any.

CTreeEvent Methods for Mouse Clicks

The following methods of CTreeEvent only apply to MouseClick and
TitleMouseClick events.

CPoint GetPoint() const;
short GetButton() const;
BOOLEAN GetIsShift() const;
BOOLEAN GetIsControl() const;
size_t GetTabHit() const;

The first four return the position of the mouse and key states as
passed to the mouse handler. The last one, GetTabHit(), returns the tab
field hit by the mouse click or zero if the mouse was clicked outside
of any tab field. You can use this method to determine which part of
a tree item the user clicked and possibly take some action such as
toggling a picture associated with that field.

See Also: For more information on manipulating fields of a string, see the code
example in section 32.3.4.4 on page 32-37.

32.3.6. Expansion Policies

Tree view expansion policies determine what the tree view does
when: 1) the user expands a node, or 2) when you expand a node
programmatically.
ExpandOne

CTreeView::ExpandOne is the default behavior, which means only
expand the node and none of its children.

ExpandAll
CTreeView::ExpandAll says to expand the node and all of its
children.

ExpandRestore
CTreeView::ExpandRestore says to expand the node and the children
that were expanded before this node was collapsed.
32-40

Columnar Data
You can change the expansion policy of a tree view (after it has been
created) by calling its SetExpansionPolicy() method.

32.3.7. Tree Styles

The tree view style controls how the tree view draws the tree
“skeleton.”
StyleOrthogonal

CTreeView::StyleOrthogonal is the default, which displays the
skeleton as vertical lines joining children with horizontal stubs.

StyleSlant
CTreeView::StyleSlant substitutes angled stubs for the horizontal
stubs.

StyleNone
CTreeView::StyleNone suppresses skeleton drawing.

DrawRoot
A related attribute of the tree view, DrawRoot, controls whether
to draw the root node. You can change this with a call to the
method SetDrawRoot() of CTreeView and passing TRUE or FALSE.

Example: The following code shows how to use tree view as a list:

// Don't draw connecting lines
itsTree->SetStyle(CTreeView::StyleNone);
// and don't draw the root item
itsTree->SetDrawRoot(FALSE);
32-41

Guide to XVT Development Solution for C++
32.3.8. Selection Policies

Tree view selection policies determine what the tree view does when
the user clicks on a tree item. (Clicking is equivalent to “navigation”
by keyboard.)
SelectMany

CTreeView::SelectMany is the default, which means the user can
select an item by clicking on it and select additional items using
shift-click.

SelectOne
CTreeView::SelectOne allows the user to select only one item at a
time.

SelectNone
CTreeView::SelectNone prevents any user selection. This policy
does not, however, prevent the user from setting focus to an
item.

Focus differs from selection and only indicates the last item that the
user clicked on. The tree view indicates selected items with a dark
solid background and the focus item (there can be only one) by a
dotted rectangle around the item.

You can get and set the current focus item with the SetFocusItem() and
GetFocusItem() methods of CTreeView.

32.3.9. Sorting and Re-sorting Tree Items

Addition of sorting options can enhance certain applications. The
tree view normally displays items in the order that you have
provided them from the data source. However, you can sort tree
items within a node and recursively from a node by calling the
CTreeItem method SortChildren().

To sort an entire tree, call SortChildren() on the root and pass TRUE for
the last parameter, which indicates that you want to sort recursively
down the tree. SortChildren() takes two arguments, a CTreeSorter object
and a Boolean flag to indicate a single level (FALSE) or recursive
(TRUE) sort.

The Compare() method takes two tree items as arguments and returns
a value indicating how the two items compare. The return values are
CTreeSorter::GreaterThan, CTreeSorter::LessThan, and CTreeSorter::EqualTo.

Note: Like other objects passed to the tree view, your code is responsible
for creating and destroying the sort object and you must not destroy
the sort object until you have destroyed the tree view.
32-42

Columnar Data
XVT-Power++ provides a simple tree sort object, CTreeStringSorter,
that sorts items alphabetically based on the contents of any single
field.

Example: The following code sorts the entire tree based on the contents of the
second field:

CTreeSorter* mySorter = new CTreeStringSorter(2);
itsTree->GetRoot()->SortChildren(mySorter, TRUE);

For more complex sorting, subclass CTreeSorter and override the
Compare() method.

Example: This code snippet is taken from the CTreeStringSorter class, and
demonstrates how to override the CTreeSorter::Compare() method.

CTreeSorter::Comparison CTreeStringSorter::Compare(
const CTreeItem* theFirstItem,
const CTreeItem* theSecondItem

) const
{

int result;

if(itsSortTab > 0)
result =

CTabSet::GetField(theFirstItem->GetString(), itsSortTab).compareTo(
CTabSet::GetField(theSecondItem->GetString(), itsSortTab)

);
else

result =
theFirstItem->GetString().compareTo(

theSecondItem->GetString()
);

if(result < 0)
return LessThan;

else if(result == 0)
return EqualTo;

else
return GreaterThan;

}

32.3.10. Changing Mouse Behavior

If you are an experienced XVT-Power++ programmer you can
change the mouse behavior of a tree view by installing your own
mouse handler. To install a mouse handler, subclass
CTreeMouseHandler and override the methods, such as DoDown(), that
you want to change by using the source code of CTreeMouseHandler as
a guide. After you create the new mouse handler, subclass CTreeView
and override the CreateMouseHandler() method to create your own
mouse handler rather than using the default CTreeMouseHandler. You
will, of course, need to provide constructors for your new class.
32-43

Guide to XVT Development Solution for C++
Example: The following code shows how to install a customized mouse
handler:

class MyTreeMouseHandler : public CTreeMouseHandler
{

...
};

class MyTreeView : public CTreeView

{
public:

MyTreeView(CSubview *theEnclosure, const CRect& theRegion) :
CTreeView(theEnclosure, theRegion) { }

virtual CTreeMouseHandler* CreateMouseHandler()
{

return new MyTreeMouseHandler;
}

};

See Also: For more information about changing mouse behavior with mouse
handlers, see section 19.2.1 on page 19-6.
32-44

Internationalization and Localization
33
INTERNATIONALIZATION AND LOCALIZATION

This chapter provides an overview of concepts you need to
understand to write a DSC++ application that is easily
internationalized and localized. Cross-references point to other
sections of this Guide (or other XVT documentation) where you can
obtain specific information about particular subjects related to
internationalization (I18N).

This chapter also describes an overall methodology for writing XVT
applications that support locales and international languages,
including specific steps you can follow to implement the
methodology. The chapter also lists compile constants you can use
to take advantage of XVT’s pre-translated resources.

See Also: For the most detailed information on internationalization and
localization of XVT applications, refer to the “Multibyte Character
Sets and Localization” chapter of the XVT Portability Toolkit Guide.

33.1. Multibyte Character Set and
Localization Support

XVT-Power++ (along with its underlying PTK libraries) has
recently added support for application development for multiple
locales and international languages. All XVT classes, methods, and
functions, including text edit object functions, now handle multibyte
strings. New string processing API functions portably process
multibyte strings. XVT-Architect has a new user interface for
defining locales and the corresponding codesets used by that locale.
However, existing XVT applications that do not need to be
internationalized are unaffected.

Your XVT application can receive and process keyboard input that
contains international (multibyte) characters. Input Method Editors
33-1

Guide to XVT Development Solution for C++
(IMEs), provided by the native window systems or operating
systems, can be used to enter composed characters.

Three multibyte codesets are explicitly supported: ASCII, Shift-JIS,
and EUC. Character sets that can be supported must, at least, provide
the invariant character set as a subset.

Note: XVT does not directly support the Unicode character set. An
application can always use this character set by converting to the
proper multibyte codeset when calling the XVT API.

33.1.1. Externalized Resource Files

XVT applications can allow the user to select the language/locale of
the user interface at application startup time. The user selects the
resource file used by the application before invoking the application.

All resources are separated from the executable code and can be
selected at application startup time. This mainly affects the PC and
Macintosh platforms, since the Motif platform has always provided
separate resource files. Of course, running any localized application
requires that the appropriate operating system, window system, and
fonts are installed and set up correctly for the selected language and
locale.

XVT has already localized its resources in English, Japanese,
French, German, and Italian. For these languages, XVT provides
localized files containing all of the standard resources used by the
Portability Toolkits. Localized versions of the XVT standard help
topics for each platform are also provided in these languages.

XVT’s URL compiler, curl, handles quoted strings containing
multibyte characters, including strings used for the following:

• menu and menu item titles

• window, dialog, and control titles

• edit control and text edit object initial text

• font family names

• font mapper native descriptors

• string resources

• user data

See Also: XVT can support any left-to-right language. To see a complete list
of supported languages, refer to Appendix A, Appendix A:
Languages and Codesets.
For more details about how to generate XVT-Architect applications
33-2

Internationalization and Localization
that use a particular layer at runtime, see section 9.4 on page 9-5.
To see a list of predefined filenames recognized in the XVT
Portability Toolkits, refer to section 33.5 on page 33-10.

33.1.2. How to Adapt an Application

Remember to debug your application prior to undertaking the
localization effort. Resolving localization issues is much easier if
your application is working well to begin with. Although this seems
to add extra steps to your development process, it actually reduces
the total amount of effort by cleanly separating coding problems. As
you gain experience in adapting applications, you may begin to find
it easier to write localized XVT applications from scratch.

See Also: Applications can be localized to some languages without using wide
(multibyte) characters. However, localizing to other languages, such
as Japanese, will require “special characters.” For more information,
refer to the “Multibyte Character Sets and Localization” chapter of
the XVT Portability Toolkit Guide.

33.1.3. More Support for Internationalized Applications

The help compiler, helpc, handles help text containing multibyte
characters. The help viewer, helpview, displays help text containing
multibyte characters.

Furthermore, file and pathnames may contain multibyte characters.
All PTK functions and data types that accept file or pathname strings
are multibyte capable.

The error processor, errscan, produces the error message file
ERRCODES.TXT—you can localize this file for any language.
Furthermore, attributes are provided that allow you to explicitly set
the path to ERRCODES.TXT.

The utility compiler, maptabc, reads a text file that defines a
mapping of a codeset into the Unicode codeset and creates a binary
file for that codeset mapping. The binary file is in turn used by the
XVT function xvt_str_create_codeset_map.
33-3

Guide to XVT Development Solution for C++
33.2. Internationalization
Internationalization requires disassociating any locale-sensitive
information from your application and encapsulating it in external
files such as resource files. Any locale-sensitive processing
operations also must be encapsulated and handled in a general
manner.

33.2.1. Considerations for Internationalization

Some of the factors you must consider when internationalizing
include the following:

• String literals

• Special strings and data that require locale-specific
formatting or parsing (i.e., sprintf, textual representation of
numbers, date/time formats, proper word- and line-wrap)

• Dialog and window layout

• Graphics (icons, bitmaps)

• Colors

• Font references

• Keyboard modifiers, mnemonics, and accelerators

• Help source files

If you are using character codesets that use wide character or
multibyte encoding schemes, your application code for
manipulation of strings must be modified to handle these character
codesets. The following string operations are candidates for
modification or replacement:

• Collation

• Parsing

• Incrementing or decrementing character pointers

• Character or string comparison

• Handling upper and lower case (some languages are
indifferent)

• Conversion between character codesets

Appropriate text and graphic object positions and dimension data
should also be removed from the application and be placed instead
in external resource files.
33-4

Internationalization and Localization
33.2.2. Specific Instructions for XVT-Architect Users

If you are using XVT-Architect, the basic steps for
internationalizing a DSC++ application are as follows:

1. Create the basic application.

2. Define the global locales (and their corresponding codesets)
that XVT-Architect needs to support.

3. Create a layer for each locale that must be supported by the
application.

4. Localize the objects of each layer (translate strings, change
colors, replace icons, etc.).

5. Generate XVT-Architect factories with the needed layers.

6. Add code to the application to select the default layer based on
the locale.

Runtime Considerations

In an application generated by XVT-Architect, you can ensure that
the application uses a particular layer at runtime by setting the
default factory creation in your application class constructor like
this:

factory.SetDefaultLayer(CFooFactory::FRENCH);

Note: For this to work, your project must have a layer named “FRENCH”
defined (obviously, for a French-speaking locale).

See Also: For more details about localizing menus, see section 7.1.2.3 on page
7-9.
For more details about localizing resources, see section 28.5 on page
28-7.
For more details about localizing icons, see section 17.2.7 on page
17-9.
33-5

Guide to XVT Development Solution for C++
33.3. Localization
Localization is quite straightforward once your application has been
internationalized. The biggest part of localization is placing string
literals in an external file that can be modified as required by specific
locales. If you are using XVT-Architect, this is done for you
automatically by separating the strings into different layers.

33.3.1. Considerations for Localization

Your application must be localized for each unique environment in
which it will operate. In addition to the steps involved when using
XVT-Architect, you should be aware of other steps which vary
slightly depending on the application and the selected locales.
Generally speaking, plan on the following steps:

1. Decide which character codeset to use for translation depending
on: 1) which languages you need to support, and 2) which
operating systems your application must work with. Different
codesets used on the various platforms that XVT supports are
listed in section A.2 in Appendix A

2. Translate string literals to the target language.

3. Set up special strings such as dates and times for formatting.

4. Select the appropriate keyboard modifiers, mnemonics, and
accelerators.

5. Select fonts appropriate to the character codeset.

6. Provide locale-specific icons and colors.

7. Adjust text and graphic object sizes and positions.

8. Compile locale-specific resource and help files.

9. Establish the proper operating/window system locale-specific
environment (set up environment variables, code pages, etc.).

10. Set the application locale environment information (locale
information can be bound at application build time or
application startup time.

See Also: To see hundreds of examples of international symbols used in
various fields of endeavor, refer to Symbol Sourcebook: An
Authoritative Guide to International Graphic Symbols, by Henry
Dreyfuss, published by Van Nostrand Reinhold, New York, N.Y.,
1984.
33-6

Internationalization and Localization
33.3.2. Compile-time Considerations

In addition to localizing the resources and code of your application,
you will need to make sure that the application is compiled to take
advantage of localization support available from within XVT’s
libraries and resources.

Building the locale-specific executable requires the setting of one or
more specific #defines. XVT source code files are “localized” when
XVT_LOCALIZABLE is defined, and switch to a specific language
based upon other #defines, as well. To build the locale-specific
executable, follow these additional steps:

1. Modify your makefile or makefile templates to build localized
versions of your resources. If you wish to build, for example, a
German version, you would also define LANG_GER_W52. The
various compile constants you can use are listed in Table 33.2
on page 33-11.

Refer to the example at the end of this section for an example of
how to modify a UNIX makefile. Different programmers or
organizations have their own personal preferences and different
platforms will require slightly different syntax.

On some platforms, you may need to run curl manually from the
command line, as shown in the following XVT/Win16 curl
compile statement:

 curl -r rcwin -i..\..\ include -dLANG_GER_W52
-dLIBDIR=.\..\..\lib app.url

Although the command line shown above is printed on two
lines, you should enter a command line as a single line.

You now have a resource file—if you view it, you will see, in
this case, that all strings are now in German.

2. If your makefile did not completely finish the build, you should
now complete any unfinished steps in your build process.
33-7

Guide to XVT Development Solution for C++
Example: This example shows a UNIX makefile that builds a German version
of an XVT application:

Define localized options.
Start a German build.

LOCALIZE_OPTS = -dLANG_GER_W52
CC_OPTS = -c $(INC_PATH)
CURL = $(XVT_DSP_DIR)/bin/curl
...
#
Include the defines in all source code compilations
.c.o

$(CC) $(CC_OPTS) $(LOCALIZE_OPTS) $<
Also pass them to curl
app.uil: app.url

$(CURL) $(CURL_OPTS) $ (LOCALIZE_OPTS) app.url
...

See Also: For more information about specifying resources with URL, see the
“Resources and URL” chapter in the XVT Portability Toolkit Guide.
For more information about using curl, including a list of curl
options, see the online XVT Portability Toolkit Reference.
33-8

Internationalization and Localization
33.4. Localized PTK Resources
For your convenience, XVT provides compatible localizations of
standard PTK and XVT-Power++ resources and help text; the
various codesets used to provide these resources are listed in Table
33.1.

Table 33.1. Localized versions of standard PTK resources and help
text predefined for five languages

See Also: Filenames and filenaming conventions for the files listed in Table
33.1 are discussed in section 33.5.

Note: You are not limited to these localizations, but you may want to use
these as a basis for localizing your own applications.

The XVT PTK data is externalized in one of three file types for
localization by your application:

• Standard XVT resource strings (URL)

• Standard XVT help strings

• Standard XVT error messages

For convenience, a set of XVT constants is provided to allow the
standard XVT resource strings and help text files to be easily
included in your applications; these constants are listed in Table 33.2
on page 33-11.

Language: XVT/Win16,
XVT/Win32:

XVT/PM: XVT/Mac: XVT/XM:

US English ANSI
(Windows 1252)

ASCII
(Code page 850)

Mac-Roman ASCII
(ISO 646)

French
German
Italian

ANSI
(Windows 1252)

ISO Latin-1
(Code page 850)

Mac-Roman ISO-Latin-1
(ISO 8859-1)

Japanese Shift-JIS
(Codeset 932)

Shift-JIS
(Code page 932)

Shift-JIS
(Mac-Japanese)

Shift-JIS, AJEC
(Japanese EUC)
33-9

Guide to XVT Development Solution for C++
33.5. PTK Filenaming Conventions
XVT’s PTK uses a set of conventions for defining relevant constants
and filenames using three character abbreviations for language and
three or four character abbreviations for character codeset (see
Appendix A for a complete list of these abbreviations):

• Language constant

LANG_<3 character language>_<3-4 character codeset>

Default: U.S. English ASCII does not require a
language constant

• PTK-level URL standard resource strings file

u<3 character language><3-4 character codeset>.h

Default: uengasc.h (U.S. English ASCII)

• XVT-Power++ URL standard resource strings file

p<3 character language><3-4 character codeset>.h

Default: pengasc.h (U.S. English ASCII)

• XVT standard help text file (included by xvt_help.csh to
provide help topic text on reserved help topic symbols)

h<3 character language><3-4 character codeset>.csh

Default: hengasc.csh (U.S. English ASCII)

• XVT error code strings file:

e<3 character language><3-4 character codeset>.txt

Default: ERRCODES.TXT (US. English ASCII,
the default filename does not adhere to this convention)
33-10

Internationalization and Localization
Table 33.2 lists the language and character codeset constants and
filenames recognized in the XVT Portability Toolkit. XVT resource
and help compilers recognize these constants for automatic
inclusion of appropriate filenames:

Language: Compile PTK URL XVT-Power++ Help
Constant: Strings URL Strings Text

Filename: Filename: Filename:
XVT/XM:

U.S. English (Default) uengasc.h Ð pengasc.h Ð hengasc.csh Ð
French LANG_FRE_IS1 ufreis1.h Ð pfreis1.h Ð hfreis1.csh Ð
German LANG_GER_IS1 ugeris1.h Ð pgeris1.h Ð hgeris1.csh Ð
Italian LANG_ITA_IS1 uitais1.h Ð pitais1.h Ð hitais1.csh Ð
Japanese (SJIS) LANG_JPN_SJIS ujpnsjis.h Ð pjpnsjis.h Ð hjpnsjis.csh Ð
Japanese (EUC) LANG_JPN_UJA ujpnuja.h Ð pjpnuja.h Ð hjpnuja.csh Ð
Norwegian LANG_NOR_IS1 unoris1.h pnoris1.h hnoris1.csh
Russian LANG_RUS_IS1 urusis1.h prusis1.h hrusis1.csh
Spanish LANG_SPA_IS1 uspais1.h pspais1.h hspais1.csh
Swedish LANG_SWE_IS1 usweis1.h psweis1.h hsweis1.csh

XVT/Win16, XVT/Win32:

U.S. English (Default) uengasc.h Ð pengasc.h Ð hengasc.csh Ð
French LANG_FRE_W52 ufrew52.h Ð pfrew52.h Ð hfrew52.csh Ð
German LANG_GER_W52 ugerw52.h Ð pgerw52.h Ð hgerw52.csh Ð
Italian LANG_ITA_W52 uitaw52.h Ð pitaw52.h Ð hitaw52.csh Ð
Japanese LANG_JPN_SJIS ujpnsjis.h Ð pjpnsjis.h Ð hjpnsjis.csh Ð
Norwegian LANG_NOR_W52 unorw52.h pnorw52.h hnorw52.csh
Russian LANG_RUS_W51 urusw51.h prusw51.h hrusw51.csh
Spanish LANG_SPA_W52 uspaw52.h pspaw52.h hspaw52.csh
Swedish LANG_SWE_W52 uswew52.h pswew52.h hswew52.csh

Note: XVT provides only those localized files denoted by Ð.

Table 33.2. Language and character codeset constants and
filenames recognized in XVT-Power++ and the
XVT Portability Toolkit (part 1 of 2)
33-11

Guide to XVT Development Solution for C++
Language: Compile URL XVT-Power++ Help
Constant: Strings URL Strings Text

Filename: Filename: Filename:
XVT/PM:

U.S. English (Default) uengasc.h Ð pengasc.h Ð hengasc.csh Ð
French LANG_FRE_D850 ufred850.h Ð pfred850.h Ð hfred850.csh Ð
German LANG_GER_D850 ugerd850.h Ð pgerd850.h Ð hgerd850.csh Ð
Italian LANG_ITA_D850 uitad850.h Ð pitad850.h Ð hitad850.csh Ð
Japanese LANG_JPN_SJIS ujpnsjis.h Ð pjpnsjis.h Ð hjpnsjis.csh Ð
Norwegian LANG_NOR_D865 unord865.h pnord865.h hnord865.csh
Russian LANG_RUS_D866 urusd866.h prusd866.h hrusd866.csh
Spanish LANG_SPA_D850 uspad850.h pspad850.h hspad850.csh
Swedish LANG_SWE_D850 uswed850.h pswed850.h hswed850.csh

XVT/Mac:

U.S. English (Default) uengasc.h Ð pengasc.h Ð hengasc.csh Ð
French LANG_FRE_MRMN ufremrmn.h Ð pfremrmn.h Ð hfremrmn.csh Ð
German LANG_GER_MRMN ugermrmn.h Ð pgermrmn.h Ð hgermrmn.csh Ð
Italian LANG_ITA_MRMN uitamrmn.h Ð pitamrmn.h Ð hitamrmn.csh Ð
Japanese LANG_JPN_SJIS ujpnsjis.h Ð pjpnsjis.h Ð hjpnsjis.csh Ð
Norwegian LANG_NOR_MRMN unormrmn.h pnormrmn.h hnormrmn.csh
Russian LANG_RUS_MCYR urusmcyr.h prusmcyr.h hrusmcyr.csh
Spanish LANG_SPA_MRMN uspamrmn.h pspamrmn.h hspamrmn.csh
Swedish LANG_SWE_MRMN uswemrmn.h pswemrmn.h hswemrmn.csh

Note: XVT provides only those localized files denoted by Ð.

Table 33.2. Language and character codeset constants and
filenames recognized in XVT-Power++ and the
XVT Portability Toolkit (part 2 of 2)
33-12

Internationalization and Localization
The file url.h has a conditional compile statement for the compile
constants defined in the preceding table (such as LANG_JPN_SJIS) that
will include the appropriate resource strings file (for example,
ujpnsjis.h). This constant can be defined on the curl compile line or
in your URL file. The file xvt_help.csh has a conditional compile
statement which will include the appropriate help strings file (like
hjpnsjis.csh). The constant can be defined on the helpc compile line
or in the help file. The file xvt_help.csh should be included in your
application help source (.csh) file if you intend to use the XVT
default help topics.

XVT supplies only the localized resources and help text noted on the
previous pages (U.S. English, French, German, Italian and
Japanese). Use these localizations as a basis for adapting your own
application locales. You may also want to add your own language
constants.

See Also: For more information on using localized resources with your XVT
applications, refer to the XVT Platform-Specific Book for your
particular platform.
For a complete list of XVT language and character codeset
abbreviations, refer to Appendix A.
33-13

Guide to XVT Development Solution for C++
33-14

Appendix A
A
APPENDIX A:
LANGUAGES AND CODESETS

This appendix lists XVT abbreviations for languages and character
codesets. However, XVT does not directly support all these
languages and character codesets. The five languages that are fully
supported at this time are:

• Japanese

• Italian

• French

• German

• English

Because XVT string resources are now stored in a separate file,
your application can be programmed in any language, but the five
languages listed above are the only languages for which pre-
translated resources are shipped with the XVT Portability Toolkits.
If you need to support any other language, you must translate many
standard resources yourself, such as the strings that are displayed in
XVT’s predefined dialogs.

Remember that bi-directional languages are not supported.
However, for your convenience, all recognizable language
abbreviations are listed below—both bi-directional and left-to-right.
You need to know the language abbreviation, because you
must use it as part of the filename for the file that contains your
internationalized resources. (For more information on filenaming
conventions in internationalized applications, see section 33.5 on
page 33-10.)

All listed languages are uni-directional, left-to-right unless specified
otherwise.
A-1

Guide to XVT Development Solution for C++
A.1. Language Abbreviations
XVT <3 character language code> abbreviations are as follows:

Abbrev: Lanquage: Direction:

afr Afrikaans
alb Albanian
amh Amharic
ara Arabic bidirect
arm Armenian
asm Assamese
aze Azerbaijani bidirect
bah Bahasa Indonesia
bal Baluchi
bel Belorussian
ben Bengal
bih Bihari
bul Bulgarian
bur Burmese
cat Catalon
che Chewa
chi Chinese
chu Chuang
cop Coptic
cro Croatian
cyr Cyrillic
cze Czech
dan Danish
dar Dari Persian bidirect
dut Dutch
dzo Dzongkha
eng English
est Estonian
ewe Ewe
fae Faeoese
far Farsi bidirect
fij Fijian
fin Finnish
fle Flemish
fre French
ful Fulani
A-2

Appendix A
Abbrev: Lanquage: Direction:

gal Galla
geo Georgian
ger German
gre Greek
grl Greenlandic
guj Gujarati
hau Hausa
hbr Hebrew bidirect
hin Hindi
ibo Ibo
ice Icelandic
iri Irish Gaelic
ita Italian
jpn Japanese (also top/bot)
jav Javanese
kan Kanarese
kas Kashmiri
kaz Kazakh
khm Khmer
kir Kirghiz
kor Korean (also top/bot)
kur Kurdish bidirect
kuy Kuy
lad Ladino
lao Laotian
lap Lappish
lat Latin
ltv Latvian
lav Lavana
lit Lithuanian
lux Luxembourgian
mac Macedonian
mad Madurese
mag Magyar
mlg Malagasy
mag Malay bidirect
mlm Malayalam
mld Maldivian
mlt Maltese
mao Maori
mar Marathi
A-3

Guide to XVT Development Solution for C++
Abbrev: Lanquage: Direction:

mol Moldavian
mon Mongasque
mng Mongolian top/bot
nau Nauruan
nep Nepali
nor Norwegian
ori Oriyan
pal Pali
pas Pashto bidirect
pid Pidgin
pol Polish
por Portuguese
pun Punjabi
rom Romanian
rmh Romansch
rua Ruandan
run Rundi
rus Russian
sam Sami
smn Samoan
san Sango
snk Sanskrit
ser Serbian
ses Sesotho
set Setswana
sho Shona
sin Sindhi bidirect
snh Sinhalese
slo Slovak
sln Slovenian
som Somali
spa Spanish
sud Sudanese
swa Swahili
swz Swazi
swe Swedish
tad Tadzhik
tag Tagalog
tak Taki-Taki
tam Tamil
A-4

Appendix A
Abbrev: Lanquage: Direction:

tel Telugu
tha Thai
tib Tibetan
tig Tigre
tgr Tigrinya
ton Tongan
tsw Tswana
tur Turkish
trk Turkmen
tuv Tuvaluan
ukr Ukrainian
urd Urdu bidirect
uzb Uzbek
ven Venda
vie Vietnamese
xho Xhosa
yid Yiddish bidirect
yor Yoruba
zul Zulu

A.2. Character Codeset Abbreviations
The XVT <3-4 character codeset> abbreviations are one of the following:

Abbrev: Codeset: Languages:

General use:

inv Invariant ASCII
 Codeset (ASCII Subset)

asc ASCII Codeset
 (7-bit)

jis JIS Japanese
sjis Shift-JIS Japanese

XVT/XM:

is1 ISO 8859-1 Western European
 (ISO Latin-1)(Danish, Dutch, English,

Faeroese, Finnish, French,
German, Icelandic, Italian,
A-5

Guide to XVT Development Solution for C++
Norwegian, Portuguese,
Spanish, Swedish)

is2 ISO 8859-2 Eastern European
 (ISO Latin-2)(Albanian,

Czechoslovakian, English,
German, Hungarian, Polish,
Romanian, Serbo-Croatian,
Slovak, Slovene)

is3 ISO 8859-3 Southeastern Europe
 (ISO Latin-3)(Afrikaans, Catalan, Dutch,

English, Esperanto,
German, Italian, Maltese,
Spanish, Turkish)

is4 ISO 8859-4 Northern European
 (ISO Latin-4)(Danish, Estonian, English,

Finnish, German,
Greenlandic, Lappish,
Latvian, Lithuanian,
Norwegian, Swedish)

Abbrev: Codeset: Languages:

is5 ISO 8859-5 Bulgarian, Belorussian,
 (ISO Cyrillic)English, Macedonian,

Russian, Serbo-Croatian,
Ukrainian

is6 ISO 8859-6 Arabic, English
 (ISO Arabic)

is7 ISO 8859-7 English, Greek
 (ISO Greek)

is8 ISO 8859-8 English, Hebrew
 (ISO Hebrew)

is9 ISO 8859-9 Western European
 (ISO Latin-5)(Danish, Dutch, English,

Faeroese, Finnish, French,
German, Italian,
Norwegian, Portuguese,
Spanish, Swedish, Turkish)

is10 ISO 8859-10 Danish, English, Estonian,
 (ISO Latin-6)Faeroese, Finnish, German,

Greenlandic, Icelandic,
Lappish, Latvian,
Lithuanian, Norwegian,
Swedish
A-6

Appendix A
uja EUC-JA Japanese, English
uctw EUC-CH_tw Traditional Chinese, English
uccn EUC-CH_cn Simplified Chinese, English
uko EUC-KO Korean, English

XVT/PM:

d437 DOS code page 437US
d850 DOS code page 850Multilingual
d852 DOS code page 852Slavic
d855 DOS code page 855Cyrillic
d857 DOS code page 857Turkish
d860 DOS code page 860Portuguese
d861 DOS code page 861Icelandic
d863 DOS code page 863Canadian-French
d865 DOS code page 865Norwegian
d866 DOS code page 866Russian
d874 DOS code page 874Thai

Abbrev: Codeset: Languages:

XVT/Win16, XVT/Win32:

big5 Big-5 Traditional Chinese
gbc GB-Code Simplified Chinese
cns CNS Simplified Chinese
kcs KCS Korean
w50 Windows 1250WINEE
w51 Windows 1251WINCYR
w52 Windows 1252ANSI
w53 Windows 1253WINGREEK
w54 Windows 1254WINTURK
w55 Windows 1255WINHEB
w56 Windows 1256WINARAB
w57 Windows 1257WINBALT
d874 DOS code page 874WINTHAI

XVT/Mac:

mrmn Mac-Roman Roman-based languages
mce Mac-CE Central and Eastern Europe
mcro Mac-CroatianCroatian
mheb Mac-Hebrew Hebrew, Ladino, Yiddish
mcyr Mac-Cyrillic Belorussian, Bulgarian,
A-7

Guide to XVT Development Solution for C++
Kazakh, Kirghiz,
Macedonian, Moldavian,
Russian, Serbian, Tadzhik,
Turkmen, Ukrainian,
Uzbek, Azerbaijani,
Mongolian

mtha Mac-Thai Thai, Kuy, Lavna, Sanskrit,
Pali

mara Mac-Arabic Arabic, Baluchi,
Dari Persian, Farsi, Kurdish,
Pashto, Sindhi, Urdu,
Azerbaijani, Kashmiri,
Malay

mice Mac-IcelandicIcelandic
mgre Mac-Greek Greek, Coptic
mtu Mac-Turkish Turkish
big5 Big-5 Traditional Chinese
kcs KCS Korean
A-8

Appendix B
B
APPENDIX B:
TDI EVENTS IN XVT-POWER++

This appendix lists the XVT-Power++ classes that are TDI-aware. A
TDI-aware class is capable of responding to one or more TDI events
and may even generate TDI events of its own.

B.1. TDI Events Received
Table B.1 lists the TDI events recognized by XVT-Power++ views.
This implies that the classes listed provide an overridden
DoUpdateModel() method that implements the event handling.

The “TDI value” column describes the type preferred by a class
when handling a command. In most cases, this means that the TDI
value is convertible to the desired type (see the description for
CTdiValue::IsConvertible()). When different value
types are accepted for the same command, you can use a call to
CTdiValue::GetType() to determine if an exact type match
can be made before trying to implement type conversions.

In the table, entries where a TDI value is followed by a “*” indicate
that the value is traversed using the CTdiValue iteration interface to
handle the case where a list of values was actually sent.
-1

Guide to XVT Development Solution for C++
Table B.1. TDI events received by XVT-Power++ classes

Class TDI Event TDI Value Comments

CButton TDISelectCommand CTdiValue::BOOLEAN_TYPE Toggles selection

CListBox TDIReplaceCommand CTdiValue::INTEGER_TYPE Selects line

TDIClearCmd none Clears selections

TDIReplaceCmd CTdiValue::STRING_TYPE Selects line

TDIOptionClearCmd none Clears contents

TDIOptionReplaceCmd CTdiValue::STRING_TYPE * Replaces contents

TDIOptionAppendCmd CTdiValue::STRING_TYPE * Appends lines

TDIFirstCmd none Selects first item

TDILastCmd none Selects last item

TDINextCmd none Selects next item

TDIPreviousCmd none Selects previous item

CNativeList TDIOptionClearCmd none Clears contents

TDIOptionReplaceCmd CTdiValue::STRING_TYPE * Replaces contents

TDIOptionAppendCmd CTdiValue::STRING_TYPE * Appends lines

CNativeSelectList TDIReplaceCmd CTdiValue::INTEGER_TYPE * Selects line

TDIAppendCmd CTdiValue::INTEGER_TYPE * Multi-selects line

TDIClearCmd none Clears selections

TDIReplaceCmd CTdiValue::STRING_TYPE * Selects line

TDIAppendCmd CTdiValue::STRING_TYPE * Multi-selects lines

CNativeTextEdit TDIClearCmd none Clears text

TDIAppendCmd CTdiValue::STRING_TYPE Appends text

TDIReplaceCmd CTdiValue::STRING_TYPE Replaces contents

CRadioGroup TDISelectCmd CTdiValue::STRING_TYPE Selects button

CView TDIClearCmd none Clears itsTitle

TDIAppendCmd CTdiValue::STRING_TYPE Appends to itsTitle

TDIReplaceCmd CTdiValue::STRING_TYPE Replaces itsTitle

NCheckBox TDISelectCmd CTdiValue::BOOLEAN_TYPE Toggles selection

NScrollBar TDIReplaceCmd CTdiValue::FLOAT_TYPE Changes thumb
position
-2

Appendix B
B.2. TDI Events Sent
Table B.2 lists the TDI events generated by XVT-Power++ views.
In the table, entries where a TDI value is followed by a “*” indicate
the actual values are bundled in a CTdiListValue object which your
application should traverse using the CTdiValue iteration interface.

Table B.2. TDI events sent by XVT-Power++ classes

Class TDI Event TDI Value Comments

CBoss User defined none Sent with each DoCommand

CButton TDISelectCmd CTdiBooleanValue Indicates selection

CListBox TDIOptionReplaceCmd CTdiStringValue* Contents

TDIReplaceCmd CTdiStringValue Selection text

TDIIndexCmd CTdiIntegerValue Selection index

TDIOptionClearCmd none No selection

CNativeList TDIOptionClearCmd none No contents

TDIOptionReplaceCmd CTdiStringValue* Contents

TDIOptionAppendCmd CTdiStringValue* Newly appended contents

CNativeSelectList TDIClearCmd none No selections

TDIReplaceCmd CTdiStringValue* Selection text

TDIIndexCmd CTdiIntegerValue* Selection index

CNativeText TDIAppendCmd CTdiStringValue Newly appended text

TDIClearCmd none No contents

TDIReplaceCmd CTdiStringValue Contents

CRadioGroup TDIReplaceCmd CTdiStringValue Selected button

CView TDIReplaceCmd CTdiStringValue itsTitle

NCheckBox TDIReplaceCmd CTdiBooleanValue Selection

NScrollBar TDIReplaceCmd CTdiFloatValue Thumb position
-3

Guide to XVT Development Solution for C++
-4

Appendix C
C
APPENDIX C:
FIELD FORMATTING LANGUAGE REFERENCE

xvt_pattern_create
Creates an XVT_PATTERN From a Pattern String [New 4.5 Function]

Summary

XVT_PATTERN xvt_pattern_create (const char *patstr)

const char *patstr

String describing a Regular Expression pattern.

Description

This function takes a pattern string which defines a Regular
Expression pattern, compiles it into a pattern parse tree and returns
an XVT_PATTERN.

Patterns can be composed of any literal character (single or
multibyte), plus the following special symbols.

Character Meaning
? Match any single character
Match any digit character
X Match only an alphabetic character
A Match and auto-uppercase alphabetic characters
C-1

Guide to XVT Development Solution for C++
The pattern language grammar shows how the symbols in the above
table can be combined. The vertical bar ‘|’ signifies “or” and ‘...’
signifies multiple entries. The language grammar follows:

Caveats and Limitations

• () expressions may only contain single character elements
such as literals and single-character match elements such as A
and #.

• {} expressions contain enumerations of strings, separated by
commas.

a Match and auto-lowercase alphabetic characters
* Match 0 or more instances of the previous

expression
+ Match 1 or more instances of the previous

expression
[...] Match an optional expression
(...) Match one of any single character contained in the

set
{...} Match one of the contained, comma-separated

strings with auto-casing and optional auto-
completion

<...> Complex expression - treat the contained
expression as a single element

\ Literal escape of one character (allows the above
characters to be treated as literals)

<all
others>

Literal formatting characters to be inserted
automatically in the output

CHAR Any non-NULL character (international or ASCII)
STRING Any series of characters except ‘,’ or ‘}’
LITERAL CHAR | \CHAR
MATCH ? | # | X | A | a
COMPLEX <EXPRESSION>
OPTIONAL [EXPRESSION]
PICKONE (CHAR...CHAR)
COMPLETE {STRING,...STRING}
ZEROPLUS EXPRESSION*
ONEPLUS EXPRESSION+
EXPRESSION LITERAL | MATCH | COMPLEX | OPTIONAL

|PICKONE |
COMPLETE | ZEROPLUS |ONEPLUS [EXPRESSION]

Character Meaning
C-2

Appendix C
• All complex expressions like (), [], <>, and {} must be ended
with the appropriate matching character.

• All complex expressions must contain at least one element.

• Expressions may be of arbitrary length and complexity, but
the strings they filter and match against are limited to a
maximum of 256 characters.

• Care must be taken in building expressions. For example, the
expression “?*A” will never match anything to the “A”
element because the “?*” expression will ‘consume’ all of the
characters in the input string by itself.

Examples

Some representative patterns used to accomplish certain described
tasks are listed below:

Match any string of arbitrary length:
?*

These strings will match: “”, “a”, “any string”

Match any non-null string:

?+

These strings will match: “a”, “any string”
This string will not match: “”

Match a minimum of 3 characters and a maximum of 8
characters:

???[?][?][?][?][?]

These strings will match: “abc”, “abcd”, ..., “abcdefgh”
These strings will not match: “”, “a”, “ab”, “abcdefghi”

Match an optionally signed integer (notice that the + sign has to
be escaped so it’s not treated as an operator):

[(\+-)]#+

These strings will match: “12”, “-1”, “+1”, “-1234”
These strings will not match: “”, “a”, “+a”, “0xFF”

Match negative numbers only:

-#+

These strings will match: “-1”, “-1234”
These strings will not match: “”, “a”, “+a”, “0xFF”, “+1”,
“1234”
C-3

Guide to XVT Development Solution for C++
Match any number of instances of automatically upper-cased
letters, each followed by a digit:

<A#>*

These strings will match: “”, “a1”, “b2”, “C3”, “D4”
Note that “a1” will resolve to “A1”
These strings will not match: “a”, “abcde”

Match a 10-digit telephone number with automatically added
literals:

“\(###\) ###-####”

These strings will match: “(303) 443-4223”, “3034434223”,
“(303)4434223”
Note that “3034434223” will resolve to “(303) 443-4223”

Match a US postal code with optional “Plus four” digits:
#####[-####]

These strings will match: “80301”, “80301-8750”,
“803018750”
Note that “803018750” will resolve to “80301-8750”

Match British postal codes with automatically upper-cased
letters:

“A[A]#[#] #AA”

Match an optionally signed float with optional 1-3 digit
exponent:

[(\+-)]#+[.#+][(\+-)(eE)#[#][#]]

These strings will match: “12”, “-12.03”, “12.03-e10”,
“+12.03+E10”

Match a full proper name with an optional middle name and
automatically upper-cased where appropriate:

“AX+ A(<X*>.) AX+”

These strings will match: “john t. doe”, “john thomas doe”,
“Jane t. Doe”
Note that “john t doe” will resolve to “John T. Doe”

Match the day-of-the-week abbreviations with automatic
completion and casing:

“{Sun,Mon,Tue,Wed,Thu,Fri,Sat}”

These strings will match: “Su”, “M”, “Wed”
Note that “Su” will resolve (auto-complete) to “Sun” and “M”
will resolve to “Mon”
C-4

Appendix C
Match a day of the week, with automatic completion and casing
(do NOT add unnecessary spaces after commas):

“{Sunday,Monday,Tuesday,Wednesday,Thursday,Friday,
Saturday}”

These strings will match: “Su”, “M”, “Wed”, “Thursday”
Note that “Su” will resolve (auto-complete) to “Sunday”, “M”
will resolve to “Monday”, and “Wed” will resolve to
“Wednesday”

Match the time of day:
“{1,2,3,4,5,6,7,8,9,10,11,12}:(012345)# {AM,PM}”

These strings will match: “2:29 AM”, “12:08 PM”

Match dates:
“{Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec} [(123)]#,
####”

These strings will match: “Feb 29, 1996”, “Jan 1, 2000”
Note that the date pattern does not assure that the date is correct,
only that the date matches the specified format.
For example, “Feb 31, 1996” would match this pattern.

Match dates in American short format:
“{1,2,3,4,5,6,7,8,9,10,11,12}/(0123)#/##”

These strings will match: “1/23/96”, “11/30/00”
C-5

Guide to XVT Development Solution for C++
C-6

Index

INDEX
A
About window, 12-2
abstract classes

CGrid, 12-9
CNativeTextEdit, 12-10, 26-3
CNativeView, 12-8, 17-2
CView, 12-7, 14-11
CVirtualFrame, 12-11, 24-2

abstract factories, 15-11
accessing

and managing data, 12-5
event handler objects, 14-3
global objects and data, 12-3
menubars, 20-2

activating a view, 14-15
adapters

proxy dependents, 30-11
TDI, 30-3, 30-10

AddButton, 17-4
AddChild, 32-28
adding and removing documents from the

application, 14-4
AddNodeChild, 32-28
AddTab, 32-36
AddTerminalChild, 32-28
ADP

at runtime, 29-8
command, 29-3
compared to TDI, 30-11
concept introduced, 29-1
example, 29-5
implementing, 29-5

setting up documents, 29-6
setting up views, 29-6

advantages of object hierarchies, 1-7
.aeo file, 11-2
AJEC, 33-9
Alignment palette, 4-8, 5-4
.ame file, 11-2
.amf file, 8-4, 11-4
ANSI (MS-Windows codeset), 33-9
appending character strings, 1-13
appending data, 30-7
application

startup, 1-6, 12-2, 14-2, 33-2, 33-5
application framework, 1-1, 1-6, 14-11

accessing and managing data, 15-2
changing fonts, 15-5
displaying data, 15-2
factories, 15-13
flow of control, 15-2
levels of, 15-1
propagating messages, 15-1, 15-3
purpose of, 15-1
reuse of, 15-1
three levels of, 1-9

application programming
advantages of TDI, 30-3
application framework, 15-1
cleanup, 12-2
coordinate systems, 16-9
data management, 30-12
design decisions, 1-6
framework, 1-3
I-7

Index
generating factory files at command prompt,
8-4

implementing keyboard navigation, 16-20
improving performance, 16-8
internationalized XVT application, 33-1
linking a user with a database, 30-2, 30-5
look-and-feel, 15-8
narrow interface, 16-18
security, 27-7
setting up menus, 20-5
utility methods, 13-12
wide interface, 16-18

Application-Document-View paradigm, 3-7, 4-2
applications, 3-7, 4-2

CApplication objects, 4-3
creating layers in, 9-1
framework, XVT-Power++’s, 4-2
including tables, 32-4
linking in objects, 4-12
look-and-feel, 15-8
management, 14-1
naming, 4-11
object, creating and managing, 14-1

Arabic, character codeset, A-6
arcs, 25-3

constructing, 25-3
creating, 12-9

arrays
storing, 1-13

ASCII
localization, 33-9

assigning resource ID numbers to radio buttons,
17-4

attachable palettes, 23-2
ATTR_APPL_NAME_RID

localization, 28-7
ATTR_ERRMSG_FILENAME, 28-7
ATTR_KEY_HOOK, 15-6, 27-7
ATTR_MULTIBYTE_AWARE

localization, 28-7
ATTR_RESOURCE_FILENAME

localization, 28-7
ATTR_TASKWIN_TITLE_RID

localization, 28-7
auto-completion, 27-8

automatic data propagation, see ADP

B
background color, defining, 1-10
bi-directional languages, not supported, A-1
bitmap drawings, icons, 12-8
blending colors in controls, 15-10
Blueprint

Alignment palette, 4-8
child windows, 4-8, 4-14
creating out documents, 4-10
creating out windows, 4-10
interface, 4-6
linking documents to applications, 4-12
linking objects, 4-12
linking windows to documents, 4-13
menubar, 4-6
navigating between modules, 4-13
overview, 2-3
status bar, 4-9
toolbar, 4-8
Tools palette, 4-7
undo and redo, 4-9

border rectangles, 18-2
borders

in tables, 32-15, 32-16
BuildWindow, 14-8, 14-9, 14-11

calling, 12-6
CDocument, 12-6

buttons
instantiating, 17-2
laying out radio, 5-10
native views, 12-8
NButton, 17-2

C
C functions, 1-2
C++, 1-1

application frameworks, 1-3
classes stored in files, 13-1
compilers, 13-11
compilers and linkers, 13-6
function parameters, 13-9
style guidelines, 13-7
type safety of constants, 13-7
I-8

Index
canceling an operation, 14-4
CApplication, 3-3, 12-2, 14-4, 14-10, 15-2, 15-9,

20-5
initializer, 12-3
object, 12-2, 12-4

CApplicationFactory, 27-4
CArc, 25-3
CAttachment, 15-13, 23-1
CAttachmentFrame, 23-1
CAttachmentWindow, 15-13, 23-2
CBoss

event and message passing, 12-4
initializer, 12-3
role of, 15-4
TDI events, B-3

CButton
command fields in Strata, 7-13
TDI events, B-3
TDI-aware, B-2

CCentimeterUnits, 31-1
CCharacterUnits, 31-1
CCircle, 25-3
CClipboard, 27-6
CClipboard*Stream classes, 27-6
CControlDelegate, 15-13
CController, 29-4, 29-6

delivers data to dependents and providers,
30-11

finding, 29-4
registering, 29-4
removing, 29-4

CControllerMgr, 15-13, 29-4, 29-6
CCourse, 16-19, 16-21
CDesktop, 12-4, 15-13, 18-7, 27-4
CDocument, 4-7, 12-5, 12-6, 14-4, 15-2, 20-5

constructor, 12-5, 14-8
object, 12-5
protected methods for adding and removing a

window, 18-7
CDragSink, 19-9, 23-1, 23-2
CDragSource, 19-9, 23-1, 23-2
CDrawingContext, 16-8
cells

adding validators in tables, 32-19
borders in tables, 32-15

color in tables, 32-14
focus in tables, 32-8
in table data, 32-6
list buttons in, 32-18
selected in tables, 32-8
selection policies in tables, 32-7
tracking selection in tables, 32-21

CEnvironment, 6-6, 15-8, 16-7, 25-2, 27-5
environment attributes, 1-10
initializing to default runtime color settings,

15-10
CFaceWindow, 17-7
CFixedGrid, 12-9, 15-14
CFixedSplitter, 24-7
CFloatRWC, 27-12
CGlobalClassLib, 12-3, 14-3, 27-3, 27-4
CGlobalClassLib pointers, 14-3
CGlobalUser, 12-3, 27-3
CGlue, 12-13, 15-11, 15-14, 16-6, 25-5
CGrid, 16-6, 22-1, 24-4

features of, 22-2
chaining, of messages, 15-3
ChangeFont, 12-4, 15-5
changing

a wire frame’s look-and-feel, 21-3
data automatically, 29-1
fonts, 15-5
menubars, 20-2
models, 29-3

channeling events, 27-5
character codeset

AJEC, 33-9
Arabic, A-6
Chinese, A-7
Cyrillic, A-7
Danish, A-6
English, A-6
Farsi, A-8
French, A-5
German, A-6
Greek, A-8
Hebrew, A-6
invariant, 9-11
ISO 8859, 33-9
ISO Latin-1, 33-9
I-9

Index
Italian, A-5
Japanese, A-5
Korean, A-7
Latin, A-5
list of abbreviations, A-5
list of supported, A-5
localization, 9-7, 33-9
Norwegian, A-6
Persian, A-8
Polish, A-6
Portuguese, A-6
Russian, A-7
Spanish, A-6
Swedish, A-6
Turkish, A-7
Windows 1252, 33-9
XVT constants and files, 33-11
XVT file conventions, 33-10
Yiddish, A-7

character strings
appending, 1-13
comparing, 1-13
concatenating, 1-13
representing, 1-13

check boxes
definition, 17-3
how to use, 17-3
in tables, 32-18
native views, 12-8
titles, 17-3

checking for errors, 27-14
Chinese

character codeset, A-7
CHorizontalFixedSplitter, 24-7
CHorizontalSplitBar, 24-8
CHorizontalWireFrame, 21-2
CImage, 1-11
CInchUnits, 31-1
circles, 25-3

creating, 12-9
CKey, 15-6, 16-21
class browser

defined, 6-3
class hierarchy, 3-9, 6-3

defined, 4-2

shown in figure, 1-4
class name clashes, 13-6
class, prefixes, 3-6
classes

creating CNativeView-derived classes from
resources, 28-4

internal structure, 13-9
names, 13-2

cleanup, 12-2
clearing data, 30-7
click events, 15-4
client-server, 14-7
CLine, 16-13, 25-5
clipboard

images, 1-11
multiple, using, 27-7
streaming data onto it, 27-6

clipping, 14-13
clipping, in views, 16-3
CListBox, 12-10, 14-13, 17-4, 24-4, 32-3

advantage of, 24-5
TDI events, B-3
TDI-aware, B-2

CloseAll, 14-11
closing all documents, 14-4
CMappedSplitter, 24-7, 24-11
CMenu, 20-2
CMenuBar, 15-13, 20-2
CMenuButton, 7-14
CMenuFactory, 15-13
CMenuFactoryDefault, 15-13
CMenuItem, 15-13, 20-2
CModel, 29-3, 29-6, 29-9

nesting, 29-9
role in ADP vis-a-vis dependents and

providers, 30-11
CMouseHandler, 24-8, 27-5
CMouseManager, 15-14
CNativeList

TDI events, B-3
TDI-aware, B-2
validation, 27-7

CNativeSelectList
TDI events, B-3
TDI-aware, B-2
I-10

Index
CNativeText
TDI events, B-3

CNativeTextEdit
TDI-aware, B-2
validation, 27-7

CNativeView, 12-8, 16-6, 17-2
creating derived classes from resources, 28-4

CNavigator, 15-6, 15-14, 16-18, 16-21, 16-22
CNavigatorManager, 15-7, 16-20
CNotifier, 29-1, 29-4, 29-9, 30-6

TDI provider, 30-3
CObjectRWC, 4-3, 12-3, 14-1, 14-3, 27-1, 27-3,

27-11
CObjectRWCID, 27-3
code, reuse, 1-7
coding conventions, 1-xxix, 13-1
collections

traversing, 27-13
when to use, 27-12

color
secondary, 15-10
XVT_COLOR_* constants, 15-10
XVT_COLOR_COMPONENT array, 15-10

colors, 15-8
borders in tables, 32-16
in controls, defining, 1-10
in icons, defining, 17-9
in tables, 32-21
lines, 1-10
look-up tables, 1-14
palettes, 1-14
setting in tables, 32-14
setting in XVT-Architect, 3-16

columnar data, 32-1
columns

adding labels in a table, 32-20
deleting in tables, 32-13
inserting in tables, 32-13
selection policies in tables, 32-7
setting width in tables, 32-5, 32-13

Command Editor, 7-13, 8-3
command mechanism, 29-3, 29-6
commands

editing, 7-13
IDs, 8-2, 8-3

information, 7-16
naming, 7-16
specifying base values, 7-16
specifying bases, 7-16
specifying values, 7-16

communication
between windows, 14-5
scheme, 15-3

communication, inter-object, 4-5
comparing character strings, 1-13
comparing strings to user input, 27-8
compile constants, 33-11
compilers

resource, See curl
complex controllers, 29-9
composite views, 14-13
concatenating character strings, 1-13
connections

between providers and dependents, 30-11
customizing with adapters, 30-10

const, 13-7
constants, 13-4

compile, 33-11
LANG_*, 7-9, 11-4, 33-10–33-11
methods, 13-8
XVT_COLOR_*, 15-10

constructing
arcs, 25-3
polygons, 25-4

constructors
copy, 13-12
sample shown in tutorial, 3-26
zero-argument, 13-13

consuming an event, 19-7
container classes, 1-12
context of TDI message, 30-7
control characters, 12-10
controllers

complex, 29-9
controlling a program, 12-2
controls

color, setting, 15-9
defining fonts, 1-10
fonts, setting, 15-9
mouse events, 19-3
I-11

Index
native views, 12-8, 17-1
supplying native, 12-8

conventions
for code, 1-xxix, 13-1
general manual, 1-xxviii
naming of XVT-Power++ elements, 13-2,

13-5
XVT internationalized files, 33-10

converting
coordinate systems, 16-11
RWOrdered into a sorted collection, 27-13

coordinates
cells in tables, 32-10
context of the system, 16-11
converting systems, 16-11
device-dependent, 16-13
global and local, 1-12
global, definition of, 16-12
logical, 31-1
logical versus physical, 16-14
pixel, 16-13
screen-relative, 16-12
storing sets of, 1-12
system, 16-4, 27-14
system conversion, 1-12, 16-11
translating, 16-14
view-relative, 16-13
window-relative, 16-12, 19-3, 19-4

coordinates, using, 16-9
copy constructor, 13-12
COval, 25-3
CPane, 24-8, 24-9
CPasswordEdit, 27-10
CPicture, 1-11, 15-14, 32-3
CPlatformFactory, 15-13
CPlatformFactoryDefault, 15-13
CPoint, 1-12, 16-8, 16-9, 16-11, 27-12, 27-14

operations on, 16-11
CPointRWC, 27-12
CPolygon, 25-4, 25-6
CPrintMgr, 1-11, 15-13, 15-15
CRadioButton, 17-3
CRadioGroup, 15-14, 17-3

TDI events, B-3
TDI-aware, B-2

creating
a dynamic tree, 32-33
a static tree, 32-27
and managing documents, 14-1
and managing the application object, 14-1
desktops, 12-4
documents, 12-2, 12-4
grids, 12-9
patterns, C-1
rubberband frames, 12-11
shapes, 12-9
table views, 32-5
windows, 12-6

creation flags, for windows, 12-12, 18-2
CRect, 1-12, 14-13, 16-8, 16-9, 27-12, 27-14

height and width, 1-12
operations on, 16-10
taking a union, 16-9
taking the intersection, 16-10

CRectangle, 25-2
CRectRWC, 27-12
CRegion, 32-21
CRegularPoly, 25-4
CResource* classes, 28-5
CResourceFactory, 15-14
CResourceFactoryDefault, 15-14
CResourceMenu, 15-14
CResourceMgr, 15-13, 28-3
CResourceWindow, 15-14
CScroller, 12-11, 16-4, 17-4, 24-2, 24-3, 24-4
.csh files, 33-13
CShape, 25-1
CSketchPad, 12-11, 21-1, 21-4
CSparseArray, 1-13
CSplitBar, 24-8
CSplitter, 24-7
CSplitterMouseAgent, 24-8, 24-9
CSquare, 25-2
CStatusBarAttachment, 23-2
CStringCollection, 27-13
CStringRW, 1-13, 26-2, 27-12
CSubmenu, 15-13, 20-2
CSubview, 12-8, 16-4, 16-15, 16-17, 17-8, 22-1,

25-1, 25-5
CSwitchBoard
I-12

Index
focus for menu selections, 20-6
handling keyboard events, 15-6
interface between XVT PTK events and

XVT-Power++, 1-11, 27-5
mouse event processing, 19-5

CTable, 32-2, 32-4
connecting to ODBC++ data source, 32-12

CTableAttributes, 32-14
CTableCheckBoxInterpreter, 32-18
CTableListButtonInterpreter, 32-18
CTablePictureInterpreter, 32-17
CTableTdiSource, 32-11
CTableTextInterpreter, 32-17
CTabSet, 32-36
CTabStop, 16-18, 16-21
CTaskDoc, 3-3, 15-13
CTaskWin, 3-3, 15-13, 18-6, 27-3
CTdiConnection, 30-3, 30-8, 30-10
CTdiController, 30-8
CTdiDateValue, 30-10, 32-10
CTdiListValue, B-3
CTdiStringValue, 30-10, 32-10
CTdiValue, 30-6, B-1, B-3

TDI messages contain data, 30-3
CText, 12-10, 15-14, 16-6, 26-1
CText object

giving a string to, 26-2
instantiating, 26-2
selecting, 26-2

CTextTabs, 32-36
CToolBarAttachment, 23-2
CToolPalette, 23-2
CTreeEvent, 32-39
CTreeItem, 32-26
CTreeItemInfo, 32-28
CTreeMouseHandler, 32-43
CTreeNodeItem, 32-31
CTreeSorter, 32-42, 32-43
CTreeSource, 32-33
CTreeStringSorter, 32-43
CTreeView, 1-7, 32-2, 32-26
CUnits, 16-14, 27-14, 31-1

different possible mappings, 16-14
curl, 2-3, 3-23, 33-2, 33-8

definition, 1-16

include resource and help source text, 7-9,
11-4

localization, 33-13
cursors, 1-15
customer support, XVT, 1-xxxi
customizing

attachment window, 23-2
keyboard navigators, 16-22
look-and-feel of application, 23-1
XVT-Power++ classes, 15-11

CValidator, 15-14, 27-7, 27-10
CValidatorFactory, 15-14, 27-9
CValidatorFactoryDefault, 15-14
CValidatorImplementation, 27-9
CVariableGrid, 12-9
CVerticalFixedSplitter, 24-7
CVerticalSplitBar, 24-8
CVerticalWireFrame, 21-2
CView, 6-3, 7-13, 12-7, 12-8, 12-11, 14-4, 15-2,

16-4
attaching a validator, 27-8
dragging and sizing, 12-11
multiple specific data sources, 30-11
native views, 17-1
page in Strata, 6-5
TDI events, B-3
TDI provider or dependent, 30-4
TDI-aware, B-2

CViewFactory, 15-14
CViewFactoryDefault, 15-14
CViewSink, 19-10
CViewSource, 19-10
CVirtualFrame, 12-11, 12-12, 24-2
CWindow, 4-7, 6-3, 12-7, 20-5, 27-5

keyboard navigation sequence, 16-19
CWindowFactory, 15-14, 16-21
CWindowFactoryDefault, 15-14
CWindowNavigator, 16-19
CWireFrame, 12-11, 14-16, 15-11, 15-14, 16-8,

19-4, 21-1
child classes, 21-2

.cxx (source) files, 13-1
Cyrillic, character codeset, A-7
I-13

Index
D
Danish

character codeset, A-6
data

access, 14-7
accessing, 12-5
changing automatically, 29-1
chunk size in tables, 32-6
default mechanisms for management, 14-9
displaying, 12-7
displaying in columns, 32-1
displaying in tables, 32-2
displaying textual and graphical, 14-12, 16-1
displaying tree-style, 32-2
easy ways to manage, 30-12
global, 14-1
linking with applications, 12-5
management, 14-7
managing, 12-5, 14-8
managing global, 14-3
member classes, 6-12, 8-3
members, 13-3
printing, 14-11
read-only, 14-9
sensitive, 27-7
storing, 14-4
streaming to and from the clipboard, 27-6
supplying in tables, 32-33
supplying to a table view, 32-9
updating, saving, and printing, 14-8
upgrading graphical, 14-6

data sources
multiple, 30-11

data structures, 1-1
CObjectRWC, 27-11
collectables, 27-11
collections, 27-12
converting RWOrdered into a sorted

collection, 27-13
dictionary collections, 27-12
iterators, 27-13
Rogue Wave, 1-12, 27-11
RWCollectable, 27-11
strings, 27-13

database

accessing data with TDI, 30-2, 30-5
deactivating a view, 14-15
decorations, window, 18-2
deepest subview, 19-3
default

navigation model, 16-19
default data management mechanisms, 14-9

closing a document, 14-9
creating a new document, 14-9
opening a document, 14-9
printing a document, 14-10
saving a document, 14-10

#define, 13-7
defines, 13-4
delaying physical update of menubars, 20-1
delegation scheme, 15-3
deleting

columns in a table, 32-13
rows in a table, 32-13

dependents, 29-1
managing, 29-4
setting up, 29-7

designing an XVT-Power++ application, 1-6
desktop, 12-3, 12-7, 14-3, 27-4

creating, 12-4
desktop, manages screen, 18-7
device-dependent coordinates, 16-13
diagnostics and debugging, 1-15
dialogs

and menubars, 20-2
predefined, 1-16

disabled view, behavior of, 14-15
disabling a view, 14-15
displaying

columnar data, 32-1
data, 12-7
pictures in tables, 32-17
table views, 32-4
textual and graphical data, 14-12, 16-1
tree views, 32-26

"Do-" methods, 16-17
DoClose, 14-4, 14-11
DoCommand, 12-4, 12-8, 14-7, 15-3, 15-4, 17-2,

17-4, 19-3, 21-3, 21-4
CApplication, 15-4
I-14

Index
chain, 12-4, 14-7
definition of, 15-4

documentation, XVT, 1-xxiv, 1-xxvi
documents, 4-2, 29-5

Application-Document-View paradigm, 4-2
CDocument objects, 4-4
creating, 4-10, 12-4
creating and managing, 14-1
document-centric development, 4-4
linking to applications, 3-7, 4-12
linking windows to, 4-13
linking with views, 12-7
managing, 14-4
naming, 4-11
opening and closing, 14-7
printing, 15-15
saving state of, 14-8
saving the state of, 14-7
setting up for ADP, 29-6

DoDraw, 15-3
DoHit, 17-2, 17-4
DoKey, 16-21
DoMenuCommand, 12-4, 20-6

CApplication, 20-6
messages, 15-5

"Do-" mouse methods, 19-2
DoMouse* mouse methods, 19-2
DoNew, 14-3, 14-7, 14-9
DoOpen, 14-3, 14-8, 14-9

CDocument, 12-6
DoPageSetUp, 14-10
DOS

8.3 filenames, 13-2
source file extension, 13-1

DoSave, 14-3
DoSetEnvironment, 15-3
double-clicking, mouse, 19-1
DoUpdateModel, 30-7
Drafting Board

Alignment palette, 5-4
child windows, 5-12
defined, 5-1
dragging objects, 5-11
interface, 5-1
laying out objects, 5-10

Menu Editor, using, 7-1
menubar, 5-3
navigating between modules, 5-11
navigating between windows, 5-6
overview, 2-3
parent and child windows, 5-6
sizing objects, 5-11
sizing windows, 5-11
status bar, 5-6
undo and redo, 5-3
View palette, 5-4
View palette described, 5-6
View palettes, 3-14
View palettes, using, 5-10

drag-and-drop, 19-9
dragging and sizing, 12-11

setting, 16-8
dragging out shapes on a sketchpad, 21-1
Draw, 14-13, 16-16, 16-17
drawing

a list box, 24-5
a scroller, 24-5
for the printer, 15-15
mode, 1-10
shapes, 12-8, 25-2
views, 14-12
wire frames, 21-3
with the mouse, 12-11

drawing of views, 14-13
DrawRoot, 32-41
DrawWireFrame, 21-3
dynamic trees, 32-33

E
E_MOUSE_DOWN events

pop-up menu, 20-3
editors, 6-12
EJ_* tab jumping parameters, 16-19
E-mail address (for XVT), 1-xxxv
embedding images in a table, 32-36
enabling a view, 14-15
EnalrgeToFit, 24-2
enclosing views, 16-4
enclosures, 16-1, 16-15

and owners, similarities of, 16-2
I-15

Index
enclosures, for windows, 16-1, 16-4
English

character codeset, 9-11, ??–33-11, A-6
enum, 13-7
Environment Attributes dialog

using, 6-7
environments, 14-16

attributes dialog, 3-15
controlling, 15-8
drawing shapes with, 25-2
editing, 6-6
for documents, 15-8
for windows, 15-8
global, 14-3
information, propagating, 1-10
monochrome, 27-5
objects, global, 15-8
objects, use of, 15-9
setting, 3-15, 14-16, 15-8, 16-7
setting background color, 3-16
settings for icons, 17-9
sharing, 16-7
updating, 15-8

ERRCODES.TXT file
file naming conventions, 33-10
initializing, 28-7
internationalization, 33-3

Error, 1-10
error files

locale-specific, 28-7
error handling, 1-15
error reporting, 1-10
Error.h file, 27-14
European characters, A-5
event handler, PTK, 15-6
event targets, 19-4
events

between PTK and XVT-Power++, 1-11
channeling, 27-5
consuming, 19-7
handler objects, 14-3
hooks, 12-4
in tables, 32-22
in tree views, 32-39
messages, 15-3

mouse, 19-1
processing, 19-5
propagating to nested views, 12-8
propagation scheme, 15-3
sending mouse, 19-4
TDI, B-1
trapping in tables, 32-39

ExpandAll, 32-40
ExpandOne, 32-40
ExpandRestore, 32-40
exporting projects, 11-2
externalized projects, 11-1

master file, 11-2

F
face window, 17-5
factories

abstract, 15-11
what they create, 15-13

Factory, 3-20
command IDs, 8-2, 8-3
data member classes, 6-12, 8-3
data, specifying, 6-10
definition, 8-1
files, 2-2
generated commands, 7-15
generated files, 8-2
generating files, 2-8
information, 4-11
instantiating layer from, 9-5
interface, 8-2
Name, changing, 4-11, 6-12
object IDs, 8-2
PAFactory class, 8-2
PAFactory class, using, 8-4
PAFactory public methods, 8-5
setting names, 3-17
settings, 6-10
string and string list IDs, 8-2

factory
validator, 27-8

factory files
generating at command prompt, 8-4

Farsi, character codeset, A-8
field formatting, See validation
I-16

Index
field validation, See validation
File menu, 14-8, 14-10, 15-2
files, 1-15

.amf, 3-19

.aeo, 11-2

.ame, 11-2

.amf, 8-4, 11-4

.csh, 33-13

.cxx (source), 13-1
ERRCODES.TXT, 28-7, 33-3, 33-10
Error.h, 27-14
Factory, 2-2, 3-20
generated by Factory, 8-2
generating, 2-2, 2-8
.h (header), 13-1
help include, 33-11
including for usage, 13-2
representing, 14-12
resource, 33-2
Shell, 2-2, 3-19
structure, 13-1
URL, localized, 33-11
url.h, 33-13
xvt_help.csh, 33-13
XVT-Architect projects, 3-19
XVTPwr.h, 13-2

fill color, in control, 15-10
FindEventTarget, 16-16, 19-3, 19-4

circumventing, 16-16
FindHitView, 19-4
finding

a scrollbar's native height and width, 17-4
CControllers, 29-4
documents that are open, 14-4
event targets, 19-4
views, 16-16
views that share a point, 16-16

FindSubview, 16-16
fixed grids, a definition and example, 22-4
fixed splitter interface, 24-6, 24-10
flags, menu, 7-6
floating and attachable palettes, 23-2
floating windows, 18-2
flow of control, 15-2
focus

determining the "next" view, 16-21
in tables, 32-8

focus, See keyboard focus
FocusOut, 32-23
fonts, 15-8

setting for a text object, 26-1
setting through CEnvironment, 26-1
types, 1-10

foreground color, defining, 1-10
FormatString(), 27-9
frames, virtual/real, 12-12
framework

definition, 1-3
French, character codeset, 33-9, 33-11, A-5
FTP site (for XVT), 1-xxxii
function names, 13-4
function parameters

constant pointers, 13-10
constant references, 13-10
non-constant pointers, 13-10
pass by value, 13-10
valid data to be passed in, 13-9

functions
return values, 13-11

G
generating files, 2-2, 2-8
geometry

of panes in a split interface, 24-9
German, character codeset, 33-9, 33-11, A-6
GetChild, 32-31
GetDeleteUserData, 32-32
GetG method, 12-3, 27-3
GetGU method, 12-3, 27-3
GetNChildren, 32-31
GetSelectedRegion, 32-21
GetSubmenus, 20-3
GetTreeData, 32-33
GetUserData, 32-32
GetXVTWindow, 15-15
ghost menu tags, 7-12
giving a CText object a string, 26-2
global

accessing objects and data, 12-3
and local coordinates, 1-12
I-17

Index
class library, 14-3
coordinates defined, 16-12
data, 12-3
environment, 14-3
environment object, 1-10, 15-8
flags, 27-3
objects, 12-3
objects and data, 14-1, 15-4
objects and data, managing, 14-3
user-supplied information, 27-3
variables, class library, 12-3
XVT-Power++ information, 27-3

globalizing and localizing different points, 16-14
glue

setting properties, 3-16
Go

method, 14-2
the definition, 14-2

Go method, 12-2
Greek, character codeset, A-8
grid snapping, 19-6
grids, 22-1

characteristics of, 12-9
creating, 12-9
definition of, 12-9
fixed and variable compared, 22-4
inserting and removing items, 22-2
maximizing or minimizing the size, 22-3
operations, 22-2
placing inserted objects, 22-3
sizing, 22-3
snapping, 12-9
snapping behavior, 22-2
uses of, 22-1

GUI programming, 1-1
extensible library, 1-2

H
.h (header) files, 13-1
handles of a wire frame, 21-3
handling

keyboard events, 15-6
menubars, 20-5

Hebrew, character codeset, A-6
help compiler, See helpc

help include files, 33-11
helpc

for localized applications, 9-11
including resource and help source text, 7-9,

11-4
portability of files, 9-11

helper and owner views, 16-6
helper classes

CEnvironment, 16-7
CGlue, 16-6
CPoint, 16-8
CRect, 16-8
CWireFrame, 16-8, 21-2

Hide, 14-14
horizontal scroll range, 24-3
hot keys, 16-19
HScroll, 17-5, 18-2
HTML, online documentation format, 1-xxiv
hypertext online help

See online help
hypertext online help, See online help

I
iconizable windows, 18-2
icons, 28-3

colors, 17-9
colors, restrictions on, 17-9
environment settings, 17-9
portability issues, 17-9
resource, definition of, 17-8
resources, platform restrictions, 17-8

ID
number base, 15-4
numbers for objects, 27-3

images
clipboard, 1-11

images, using, 1-11
IME

internationalization, 33-2
importing

detecting errors, 11-5
detecting problems, 11-4
externalized projects, 11-1
projects, 11-4

include file, 13-8
I-18

Index
including files for usage, 13-2
inflation of coordinates, 1-12
inheritance, 1-7

public, 13-12
inherited methods, 13-12
initializers, 13-3
initializing

a list box, 24-4
a table view, 32-6
a tree view, 32-27
an application, 15-2
program defaults, 14-3

inlines, 13-8
Insert, 22-2
inserting

columns in a table, 32-13
objects into grids, 22-2
rows in a table, 32-13
text into a list box, 24-4

InstallFactories(), 27-9
instantiating

buttons, 17-2
CGlobalClassLib, 27-3
CText objects, 26-2
native view classes, 17-2
NWinScrollBar, 17-5
radio buttons, 17-3
wire frames, 21-2

internal structure of classes, 13-9
international applications, writing, 33-1
international customers, support, 1-xxxiv
internationalization

international symbols, 9-9
resource files, 33-2
translating strings, 11-3

intersection of coordinates, 1-12
invariant character codeset

portability, 9-11
is-a relationship, 13-12
ISO 646 standard character codeset, 33-9
ISO 8859 standard character codeset, 33-9
ISO Latin-1, See ISO 8859 standard character

codeset
ITable, 32-6
Italian, character codeset, 33-9, 33-11, A-5

iterating over lists, 1-13
iterators, 27-13
ITreeView, 32-27

J
Japanese characters

filenaming conventions, 33-11
localized PTK resources, 33-9
portability, 9-11–??

Japanese EUC, See AJEC
Japanese, character codeset, A-5
JI_* tab jumping parameters, 16-19
justification

in tables, 32-15
tabs in tree views, 32-36

K
keyboard events, 14-12, 15-6

handling, 15-6, 16-21
keyboard focus

definition of, 14-15
indicating with highlight, 15-10

keyboard mnemonic, 7-5
keyboard navigation, 16-18

in normal window, 15-7
specific classes, 16-20

kNoHeight, 32-5
kNoWidth, 32-5
Korean

character codeset, A-7

L
labels

adding to columns in a table, 32-20
adding to rows in a table, 32-20
setting width and height in tables, 32-20

LANG_* constants, 7-9, 11-4, 33-10–33-11
language support, See internationalization or

localization
languages

list of abbreviations, A-2
supported, 9-11, A-1
See Also individual languages

Latin, character codeset, A-5
layer

has own set of object files, 11-2
I-19

Index
layering objects, 9-1
layers

creating, 9-3
default, 9-1
indicating variations, 9-5
instantiating, 9-5
modifying, 9-4
reverting to parent-defined, 9-4
setting parents, 9-3
viewing, 9-4

Layers Editor, 5-3
left-to-right languages, supported, 33-2, A-1
lightweight class, definition of, 27-2
line

enclosure region, 25-6
lines, 25-5

beginning and ending arrows, 25-5
color, 1-10
properties of, 25-5
width, 1-10

linker, 4-7
linking

applications and views of data, 12-5
editing, 4-12
to documents, 3-7
views and documents, 12-7

list box
getting the selected line, 24-4
internal organization, 1-7
native, 24-4

list button
using in tables, 32-18

lists
iterating over, 1-13
storing items, 1-13
tree view, 32-41

locale
specified at application startup time, 33-2,

33-5
localization

character codeset, 9-7
resource files, 33-2
strings for a layer, 11-3
XVT-provided translations, 33-9

localizing and globalizing different points, 16-14

locations, on screen, 1-12
logical coordinates, 31-1
logical versus physical coordinates, 16-14
look-and-feel

of application when starting, 1-6
look-up tables, color, 1-14

M
Macintosh

development platform, 1-6
source file extension, 13-1
supported platform, 1-xxxiii, 1-1

Mac-Japanese, 33-9
Mac-Roman, 33-9, A-7
macros

for finding files, 13-2
PwrAssert, 27-14

main, 12-2, 14-2
maintaining menubars, 20-5
managing

data, 12-5, 14-4, 14-8
dependents and providers, 29-4
documents, 12-2
global objects and global data, 14-3
memory, 1-10

managing windows, 12-4, 14-11
closing a document’s windows, 14-11
finding a window, 14-11
getting the number of windows associated

with a document, 14-11
mangling, 13-2, 13-6
manual, conventions used in, 1-xxviii
mapped splitter interface, 24-7, 24-11
memory

freed when window destroyed, 18-5
management, 1-10, 16-2
management for resources, 28-5

memory allocation
equal operator, 13-12

Menu Editor, 3-17
using, 7-1

menu item data, 7-5
menubars, 14-3, 20-1

accessing, 20-2
automatic traversal of hierarchy, 20-2
I-20

Index
building, 20-1
changing, 20-2
consistency in a document, 20-5
consistency in an application, 20-5
creating, 20-2
delaying physical update of, 20-1
deletion, 20-4
handling, 20-5
maintaining, 20-5
modifying the physical state of, 20-2
suppressing, 18-3
top-level, 20-1

menubars, See menus
menus, 20-1

cascading, 20-1, 20-2
commands, handling, 12-4
editing, 3-17, 7-1
flags, 7-6
ghost items, 7-12
ghost tags, 7-12
handling events, 20-5
laying out, 7-1
moving items, 7-4
pop-up menu, 7-7, 20-3
responding to a selection, 20-6
selection, 20-5, 20-6
setting accelerators, 7-11
setting data for, 7-5
setting up, 12-4
tags, 20-2

message propagation, 4-5
bidirectional chaining, 15-3
channels of, 15-3
downward chaining, 15-3
upward chaining, 15-3

messages
propagating, 15-3

method
constant, 13-8
overriding, 3-28, 13-12
semantics of a method, 13-12

methods
I methods, 13-3
inherited, 13-12
overloaded, 13-8

static class, 13-4
virtual, 13-3

models
changing, 29-3
granularity, 29-3
querying, 29-6
requesting changes, 29-4

modifying the physical state of a menubar, 20-2
monochrome environment, 27-5
Motif

development platform, 1-6
supported platform, 1-xxxiii, 1-1

mouse
buttons, 19-2
clicks, 14-12
double-click, 19-1
drag-and-drop, 19-9
grid snapping, 19-6

mouse event, 19-1
processing, 19-5
sending, 19-4
sequences, 19-1

mouse events, 19-1
mouse handlers, 24-9

advantages of, 19-6
customizing for tree views, 32-44
registering, 19-7

mouse methods
parameters of, 19-2

Mouse* mouse methods, 19-1
MouseClick, 32-40
movable/sizable views, 19-4
moving and sizing views, 21-1
MS-Windows

development platform, 1-6
8.3 filenames, 13-2
supported platform, 1-xxxiii, 1-1

multiple
clipboards, 27-7

N
naming

classes, 4-11
classes, prefixes, 3-6
objects, 4-11
I-21

Index
naming conventions, 13-2, 13-5
narrow interface, using, 16-18
native

functionality, 1-16
supplying controls, 12-8
text editing classes, 26-1, 26-3
views, 16-6, 17-1
window system, 12-8

native views
built-in capabilities, 17-2
color, setting, 15-9
compared to controls, 17-1
fonts, setting, 15-9
properties of, 17-2
validator, setting, 27-10

NButton, 15-14, 17-2
NCheckBox, 7-14, 15-14, 17-3, 32-3

TDI events, B-3
TDI-aware, B-2

NEditControl, 7-14, 15-14, 27-10
validation, 27-7

nested views, 16-1, 21-2
nesting

behavior, 16-15
behavior of views, 16-15
of CModels, 29-9
views, 12-8

next selection, 30-7
NGroupBox, 15-14
NIcon, 15-14, 17-8
NLineText, 12-10, 26-3, 27-10
NListBox, 15-14, 32-3
NListButton, 15-14, 32-3
NListEdit, 7-14, 15-14
NNotebook, 17-7
non-constant pointer, 13-9
Norwegian

character codeset, A-6
characters, 33-11

notebook control
defined, 6-3
using, 6-4

notebook shell, 17-5
notebook's enclosure, 17-7
Notebooks

CFaceWindow, 17-7
composition of, 17-5
Creating and Destroying, 17-6
face window, 17-5
Face, definition of, 17-6
Interface Objects, 17-7
managing Tabs and Pages, 17-6
Navigation, 17-7
navigation between Pages, 17-6
NNotebook, 17-7
notebook shell, 17-5
notebook’s enclosure, 17-7
Page, definition of, 17-6
removing a tab or a page, 17-6

notifiers, 29-1
NRadioButton, 15-14
NScrollBar, 12-12, 15-14, 17-4

TDI events, B-3
TDI-aware, B-2

NScrollText, 3-14, 12-10, 15-14, 17-4, 26-3
NText, 15-14
NTextEdit, 12-10, 26-3
NWinScrollBar, 12-12, 15-14, 17-5

O
object hierarchy

advantages, 1-7
defined, 4-2

object-oriented programming, advantages, 1-7
objects

application, creating and managing, 14-1
communication, 4-5
creating from resources(URL), 28-3
creating with a factory, 15-13
creation methods, 5-10
CView-derived, 5-6
data member classes, 8-3
dragging, 5-11
dragging out of an enclosure, 5-11
Factory information of, 4-11
global, 14-1
IDs, 8-2
inserting into grids, 22-2
instantiating CText, 26-2
layering, 4-1, 5-3, 9-1
I-22

Index
laying out, 5-6, 5-10
linking, 3-7, 4-12
managing global, 14-3
naming, 4-11
oriented programming, advantages of, 1-7
placing in grids, 22-3
setting environments, 6-6
shapes, 25-1
sizing, 5-11
synchronizing the state of many, 30-5

one-line text area, 12-10
online help

association between CNativeView objects
and specific help topics, 1-15

standard help text file, 33-10
translated topics, 33-2, A-1

opening and closing a document, 14-7
organizing text into lines and paragraphs, 26-3
originator of TDI message, 30-7
origins

importance of, 16-12
view, 16-11

OS/2
supported platform, 1-xxxiii

ovals, constructing, 25-3
overlapping views, behavior of, 16-15
overloaded methods, 13-8
overriding

methods, 3-28
mouse methods, 19-6, 19-8

owner and helper views, 16-6
owner view

example, 16-7
views "own" other views, 16-6

P
PAFactory

CreateDocument, 8-5
CreateView, 8-6
CreateWindow, 8-5
DoCreate* methods, 6-12
DoCreateDocuments, 8-5
DoCreateViews, 8-6
DoCreateWindows, 8-6
public methods, 8-5

using, 8-4
page setup, 14-10
palettes

Alignment, 4-8, 5-4
color, 3-16
tear off, 23-3
Text Edit, 3-14
Tools, 4-7
View, 5-4
view, 3-14
View, described, 5-6
View, using, 5-10

palettes, color, 1-14
panes, window, 24-5
parameter names, 13-4
pass-through functionality, 1-14
passwords, entering, 27-7
patterns

creating from strings, C-1
Persian, character codeset, A-8
PICTUREs

get replaced on clipboard, 27-7
pictures

displaying in tables, 32-17
pixel

coordinates, 16-13
mapping, 1-12

PlaceBottomSubview, 16-15
PlaceTopSubview, 16-15
placing

bottom subviews, 16-15
top subviews, 16-15
views on the screen, 1-12

platform
restrictions on handling icon resources, 17-8

platform-specific
books, from XVT, 1-xxvi

point of origin, a definition, 16-11
pointers

constant, 13-11
life span, 13-11
non-constant, 13-12
static, 12-3

points, globalizing and localizing, 16-14
Polish, character codeset, A-6
I-23

Index
polygons, 25-4
creating, 12-9

pop-up menu, 7-7, 20-3
Portuguese, character codeset, A-6
Power Macintosh

supported platform, 1-xxxiii
See Also Macintosh

predefined dialogs, 1-16
previous selection, 30-7
primary characteristic of views, 14-12
PrintDraw, 15-15
printer mappings, 1-12
printing, 15-15

data, 14-11
facilities, XVT, 15-15
view, 1-11

Program Manager, sizing, 17-5
programming languages

C++, 16-18
projects

creating layers in, 9-1
exporting, 11-2
externalized, 11-1
importing, 11-4
naming, 2-8, 3-19
saving, 2-2, 2-8, 3-19

propagating
"update unit" messages, 15-5
attributes in tables, 32-28
ChangeFont messages, 15-5
DoMenuCommand messages, 15-5
environment information, 1-10
events to nested views, 12-8, 16-16
messages, 16-17
messages from one class to another, 12-4

propagating mouse events, 19-3
properties

of lines, 25-5
of native views, 17-2
of shape objects, 25-1
of views, 14-12

prototypes, 30-3, 30-9
messages are diverted, 30-9

providers, 29-1
managing, 29-4

setting up, 29-6
proxy dependents, 30-11
public inheritance, 13-12
PWR_ prefix, 13-6

Q
querying a model, 29-6
quick selection, 12-10

R
radio buttons, 17-3

assigning resource ID numbers to, 17-4
instantiating, 17-3
native views, 12-8

radio buttons, laying out, 5-10
read-only data, 14-9
real frame/virtual frame, 12-12
rectangle shape, 25-2
rectangles, border, 18-2
redo and undo, 4-9, 5-3
reference counting, 13-11
registering CControllers, 29-4
regular polygons, 25-4
release notes, 1-xxvi
removing CControllers, 29-4
Replace, 22-2
replacing data, 30-7
reporting errors, 1-10
representing

character strings, 1-13
files, 14-12

requesting model changes, 29-4
resizing in tables, 32-22
resizing views, 19-4
resource compiler (XVT), See curl
resource files, 33-9
resources, 1-16, 28-1

compiling with curl, 2-3
defined, 28-1
ID numbers, 28-1
ID numbers of radio buttons, 17-4
manager, 1-10
pre-translated, 28-2, A-1
storing, 1-10
XVT-Power++'s support of, 28-2
I-24

Index
return values
constant pointers, 13-11
non-constant pointers, 13-12
references, 13-11
temporary values, 13-11

reuse, 15-1
code, 1-7

Rogue Wave
advantages of, 27-1
collectables and XVT-Power++, 27-2
conventions for code, 13-4
data structures, 27-11
run-time type identification, 27-2
RWBinaryTree, 27-13
RWCollectable, 27-11
RWCollectableInt, 27-12
RWCollectableString, 27-12
RWCString, 27-13
RWOrdered, 1-13, 27-13

rows
adding labels in a table, 32-20
deleting in tables, 32-13
inserting in tables, 32-13
selection policies in tables, 32-7
setting height in tables, 32-5, 32-13

rubberband frame, 19-4
rubberband frame, creating, 12-11
run-time type identification, 27-2

usage guidelines, 27-3
run-time type identification (RTTI), 30-7
Russian

character codeset, A-7
characters, 33-11

RWCollectable, 32-32

S
save state of a document, 14-8
saving

data, 14-8
documents, state of, 14-7

saving projects, 2-2
screen

managing, 18-4
screen management, 18-7
screen mappings, 1-12

screen-relative coordinates, 16-12
scroll range, 24-3
scrollbar

thumb position, 24-3
scrollbars, 3-15, 24-9

attaching, 12-12
color, 15-10
finding native height and width, 17-4
for virtual frames, 24-2
HScroll and VScroll, 17-5, 18-2
Macintosh, on the, 17-5
MS-Windows, on, 17-5
native views, 12-8
NWinScrollBar, 17-5
Program Manager, on, 17-5
updating, 17-4
window-attached, 17-5

scrolling
mechanisms for virtual frames, 24-2
text area, 12-10

ScrollViews, 24-2
secondary color in controls, 15-10
security, providing in application, 27-7
selected

key focus, 12-8
text items, 24-5
views, 12-8, 16-16

selecting
a CText object, 26-2
and moving multiple views, 21-2

selecting data, 30-7
selection

previous or next, 30-7
SelectionPolicy, 32-6
SelectMany, 32-42
SelectNone, 32-42
SelectOne, 32-42
semantics of a method, 13-12
sending a mouse event to a view, 19-4
separators

creating, 20-1
server process, 14-4
SetCellBounds, 32-8
SetColumn, 32-13, 32-20
SetDeleteUserData, 32-32
I-25

Index
SetKeyFocus, 15-7
SetRow, 32-13, 32-20
SetSelectedRegion, 32-21
SetSelectedView, 16-16
SetSize, 13-10
SetSketchEverywhere, 21-4
SetTabSet, 32-36
setting

a grid’s sizing policy, 22-3
a sketchpad’s sketching mode, 21-4
a table’s attributes, 32-6, 32-14
a table’s size, 32-8
a text object’s font, 26-1
a view’s environment, 14-16, 16-7
a view’s wire frame, 21-2
borders in a table, 32-16
bounds in a table, 32-8
cell borders in a table, 32-15
colors in tables, 32-14, 32-21
font size in tables, 32-27
fonts in tables, 32-14
height of rows in tables, 32-5, 32-13
justification in table columns, 32-15
justification in tables, 32-14
label width and height in tables, 32-20
the environment, 15-8
the font through CEnvironment, 26-1
the key focus, 15-7
the selected view, 16-16
up a page for printing, 14-10
up dependents for ADP, 29-7
up menus, 12-4
up providers for ADP, 29-6
up the environment, 27-5
width of columns in tables, 32-5, 32-13

SetUnits, 1-12
SetUpMenus, 20-5
SetWireFrame, 21-2
shape classes

as enclosures, 25-6
list of all, 25-1
when to use, 25-5

shapes
drawing, 12-8, 25-2
uses of, 25-1

sharing an environment, 16-7
Shell files, 2-2, 2-8, 6-12
Shift-JIS

invariant character codeset, 9-11
Japanese localization, 33-9, A-5

showing and hiding views, 14-14
ShrinkToFit, 24-2
Shutdown method, 12-2
shutting down an application, 12-2, 15-2
sizable view as disabled, 21-2
sizable/movable views, 19-4
sizing

a virtual frame, 24-2
and dragging, 12-11
and dragging, setting, 16-8
grids, 22-3
policy for grids, 22-3
squares, 25-2

sketching
area, creating, 12-11
shapes, 12-11

sketchpads
dragging out shapes on, 21-1
setting sketching mode, 21-4

SLISTs, XVT Portability Toolkit, 27-13
snapping, grids, 12-9, 22-2
SortChildren, 32-42
sorting options for tree views, 32-42
Spanish

character codeset, A-6
characters, 33-11

specifying
screen locations, 1-12
units of measure, 15-5

splash screen, 14-3
split boxes, 24-9
split windows, 24-5
splitter interfaces

fixed, 24-6, 24-10
mapped, 24-7, 24-11

spreadsheet, 12-9
squares, 25-2

sizing, 25-2
stacking order, of views, 16-20
starting an application, 12-2, 14-2, 15-2, 33-2,
I-26

Index
33-5
StartUp source file, 14-2
static class methods, 13-4
static pointers, 12-3
static trees, 32-27
stickiness

definition of, 16-6
properties of views, 16-6

storing
data, 14-4
two-dimensional arrays, 1-13

Strata, 3-9
class browser, defined, 6-3
closing, 6-2
Command Editor, 7-13
defined, 6-1
Environment Attributes dialog, 6-6
Environment Attributes dialog, using, 6-7
Factory Settings Face, 6-10
interface, 6-1
notebook control, defined, 6-3
notebook control, using, 6-4
opening, 6-1
overview, 2-4

streaming data onto a clipboard, 27-6
string

create pattern, C-1
String Editor, 7-17
string IDs, 8-3
string list IDs, 8-3
strings

data structures, 27-13
editing, 7-17
exporting for localization, 11-3
IDs, 8-2
matching, 27-8
translating to the desired language, 11-3

StyleNone, 32-41
StyleOrthogonal, 32-41
StyleSlant, 32-41
submenus, 20-1

appending, 20-2
inserting, 20-2
removing, 20-2
replacing, 20-2

subviews, 14-11
attachment frames, 23-1
automatic redrawing, 13-3
deepest, 19-3
placing the bottom, 16-15
placing the top, 16-15

supervisor relationships, 1-6
support

XVT customer, 1-xxxi
Swedish

character codeset, A-6
characters, 33-11

switchboard
channels events, 1-11

switchboard object, 19-5
symbols

international, 9-9

T
tab stop

in a nested navigator, 16-18
tab stops

defining hot keys, 16-19
setting in a table, 32-36

table data
displaying, 32-2
supplying, 32-9, 32-33

table views
adding column labels, 32-20
adding list buttons, 32-18
adding row labels, 32-20
cell borders, 32-15
cell coordinates, 32-10
check boxes, 32-18
colors, 32-14, 32-21
colors for borders, 32-16
creating, 32-5
data sources, 32-9
field validation, 32-19
inserting columns, 32-13
inserting rows, 32-13
justification, 32-14, 32-15
labels, 32-20
pictures, 32-17
resizing by user, 32-22
I-27

Index
selection policies, 32-7
setting attributes, 32-6, 32-14
setting bounds, 32-8
setting table size, 32-8
supplying data, 32-9, 32-33
tracking selection areas, 32-21

tags, 20-2
task window, 16-1, 18-6

localization, 28-7
task windows, 3-3, 4-5
TDI

adapters, 30-3, 30-10
common uses of, 30-2
communication (shown in figure), 30-8
compared to ADP, 30-11
definition of awareness, 30-4
flexibility, 30-3
messages are exchanged and processed

automatically, 30-1
prototypes, 30-3, 30-9
scope, 30-3

TDI connection
prototype installed, 30-9

TDI events, B-1
TDI messages, 30-7

terminology, 30-7
TDI-aware, 30-4
TDI-aware communication

providers and dependents, 30-6
shown in figure, 30-4

technical notes, 1-xxvii
templates, 13-13
text, 26-1

editing facilities, 12-10
justification in tables, 32-15
one-line area, 12-10
organizing into lines and paragraphs, 26-3
scrolling, 12-10
streaming to and from the clipboard, 27-6
validation, 26-3

text editing, 26-1
capabilities, 26-1
native classes, 26-1, 26-3

text items
selected items shown in reverse video, 24-5

theDefaultColumnWidth, 32-5
theDefaultRowHeight, 32-5
theSelectionPolicy, 32-6
thumb

color, 15-10
thumb, of scrollbar, 24-3
title of a check box, 17-3
TitleMouseClick, 32-40
Tools palette, 4-7
Translate CPoint, 16-14
translating coordinates, 16-14
translating strings, 11-3
translation, 1-12
translation, to widely spoken languages, 28-2,

33-2, A-1
traversal of menubar hierarchy, 20-2
traversing a collection, 27-13
tree views

building a static tree, 32-26, 32-28
changing attributes, 32-35
creating a dynamic tree, 32-33
creating a static tree, 32-27
customizing mouse handler, 32-44
displaying, 32-2, 32-26
embedding images, 32-36
expansion policies, 32-40
initializing, 32-27
instance variables, 32-35
mouse behavior, 32-43
mouse clicks, 32-40
selection policies, 32-42
setting tab stops, 32-36
sorting data, 32-43
sorting options, 32-42
style controls, 32-41
tab justification types, 32-36
using as a list, 32-41

Turkish, character codeset, A-7
type of TDI message, 30-7
type safety, 13-7

U
undo and redo, 4-9, 5-3
Unicode

not supported, 33-2
I-28

Index
union of coordinates, 1-12
units of measure, 16-13

setting, 31-2
specifying, 15-5

Universal Resource Language, 3-19
also called URL
compiling, 2-3, 3-23

UNIX
source file extension, 13-1

UpdateMenus, 20-5
updating

data, 14-8
graphical data, 14-6
scrollbars, 17-4
the environment, 15-8

URL, 1-16
creating CNativeView-derived classes from,

28-4
creating objects from resources, 28-3
defined, 28-1
icons, defining, 17-9
include files, 33-11
iterating held resources, 28-6
loading resources, 28-5
localization, 7-9, 11-4
using CResourceItems, 28-6
XVT Portability Toolkit, 28-1

url.h file, 33-13
user-supplied globals, 12-3
using the environment to draw shapes, 25-2
utilities, 1-1, 27-1

classes, 1-9, 27-1
methods, 13-12

utility programs
curl, 1-16

V
Validate, 26-3
validation

advantages of, 27-7
in tables, 32-19

validator
attaching, 27-8

validator factory, 27-8
value of TDI message, 30-7

variable grids, a definition and example, 22-5
variable names, 13-4
variable-sized text editing area, 12-10
vertical scroll range, 24-3
view

printing, 1-11
View palettes, 3-14, 5-4

described, 5-6
using, 5-10

views, 4-2, 14-11
activating and deactivating, 14-15
Application-Document-View paradigm, 4-2
attaching other views, 23-1
characteristics, 14-12
clipping, 14-13, 16-3
composite, 14-13
CView objects, 4-4
disabled, 14-15
drawing, 14-12, 14-13
enabling and disabling, 14-15
enclosures, 16-4
events to nested, 12-8
finding, 16-16
finding ones that share a point, 16-16
helper, 16-6
hierarchy, 5-7, 12-7, 16-5
keyboard navigation, 16-18
linking with documents, 12-7
managing TDI connections, 30-5
mouse events, 19-3
movable/sizable, 19-4
moving and sizing, 21-1
native, 16-6, 17-1
nested, 21-2
nesting, 12-8
nesting behavior, 16-15
origin of, 16-11
overlapping, 16-15
ownership, 16-6
placing on a screen, 1-12
properties, 14-12
properties of native, 17-2
relative coordinates, 16-13
resizable, 19-4
See also, objects and windows
I-29

Index
selected, 12-8, 16-16
selecting and moving, 21-2
setting a wire frame for, 21-2
setting environment, 14-16
setting up for ADP, 29-6
showing and hiding, 14-14
sizable, disabled, 21-2
stacking order, 16-20
stacks, 16-15
stickiness properties of, 16-6
windows, 4-4

virtual area, 12-11
virtual frame, definition of, 24-1
virtual frame/real frame, 12-12
virtual methods, 13-3
VScroll, 17-5, 18-2

W
wide interface, using, 16-18
window

mouse handler, adding, 19-7
task, 16-1

window decorations
scrollbars, 24-9
split boxes, 24-9

window manager, 18-4
windows, 3-7

and menubars, 20-2
attached scrollbars, 17-5
attributes, 18-2
automatic creation, 6-12
child, 4-8
communication between, 14-5
construction, 18-5
creating, 4-10, 12-6
creation flags, 12-12, 18-2
creation flags, XVT Portability Toolkit, 18-2
decorations, 18-2
deepest, 19-3
destroying, 18-5
enclosure, 16-1, 16-4
environments, 15-8
floating, 18-2
introduction, 18-1
keyboard navigation, 15-7

linking to documents, 4-13
manager, 12-7
managing, 12-4
naming, 4-11
native systems, 12-8
navigating between, 5-11
no menubar, 18-3
panes, 24-5
parent and child, 5-6
relationship to the document, 18-4
relative coordinates, 16-12, 19-3, 19-4
scrollbars, 3-15
scrollbars, attaching, 12-12
sizing, 5-11
split into multiple parts, 24-5
stack, 27-4
task, 3-3, 4-5, 18-6
top-most enclosures, 4-4
type flags, XVT Portability Toolkit, 18-4
XVT types, 12-7, 18-4

Windows 1252 character codeset, 33-9
Windows 95

supported platform, 1-xxxiii, 1-1
Windows NT

supported platform, 1-xxxiii, 1-1
wire frame, 19-4, 21-1

as selection box, 21-1
changing look-and-feel, 21-3
definition of, 16-8
drawing, 21-3
handles, 21-3
instantiating, 16-8, 21-2
shape, 21-4

WSF_* window creation flags, 12-12, 18-2
WWW address (for XVT), 1-xxxii

X
X Windows

supported platform, 1-1
X/Motif

icons, how handled, 17-9
XVT

documentation, Guide to XVT Development
Solution for C++, 1-xxvi

documentation, XVT Platform-Specific
I-30

Index
Books, 1-xxvi
documentation, XVT Portability Toolkit

Guide, 1-xxvi
E-mail address, 1-xxxv
FTP site, 1-xxxii
online documentation, listed, 1-xxvii
online references, 1-xxiv
PowerObjects, 1-xxvii
product updates, 1-xxxv
Professional Services Group, 1-xxxv
Software Customer Support, 1-xxxi
WWW address, 1-xxxii

XVT applications
specifying locale, 33-2

XVT Portability Toolkit
additional features, 1-14
color palettes and look-up tables, 1-14
cursors, 1-15
diagnostics and debugging, 1-15
documentation, 1-xxvi
drawing functions, 25-1, 27-5
drawing functions, using, 25-5
error code strings file, 33-10
event messages, 15-3
events, 1-11
events to XVT-Power++ calls, translating,

1-11
files, 1-15
Guide, 1-xxvi
hypertext online help, 1-15
images, 1-11
language support, 9-11, 33-2, A-1
native functionality, 1-16
portable API, 1-2, 1-14
portable API for both DSC and DSC++,

1-xxiii
predefined dialogs, 1-16
resources, 1-16
SLISTs, 27-13
system, 14-2
text editing capabilities, 26-1
URL, 28-1
URL standard resource strings file, 33-10
window types, 12-7, 18-4
window-creation flags, 18-2

window-type flags, 18-4
xvt_dwin_set_font_*, 26-1

XVT/Mac
border rectangles, 18-2
floating windows, 18-2
localization, 33-9, 33-12
scrollbars, 17-5
supported codesets, A-7

XVT/PM
iconizable windows, 18-2
localization, 33-9, 33-12
supported codesets, A-7
task window, 18-1

XVT/Win16
iconizable windows, 18-2
localization, 33-9, 33-11
scrollbars, 17-5
supported codesets, A-7
task window, 18-1

XVT/Win32
localization, 33-9, 33-11
scrollbars, 17-5
supported codesets, A-7
task window, 18-1

XVT/XM
iconizable windows, 18-2
localization, 33-9, 33-11
supported codesets, A-5

XVT_COLOR_* constants, 15-10
XVT_CONFIG, 28-7
xvt_help.csh file, 33-13
xvt_pattern_create, C-1
xvt_str_create_codeset_map, 33-3
xvt_vobj_set_formatter, 27-10
XVT-Architect, 2-1

building an application with, 2-2
generating factory files at command prompt,

8-4
visual components, 2-3

XVT-Power++
application framework, 4-2
class hierarchy, 1-4
coding conventions, 13-1
designing an application, 1-6
desktop, 18-4
I-31

Index
ID number base, 12-3, 15-4, 27-4
lightweight classes, 27-2
URL standard resource strings file, 33-10

XVT-Power++
object-oriented design, 1-1
steps in designing an application, 1-6
templates, 13-13

XVT-Power++ Reference, 1-xxvii
XVTPwr.h file, 13-2

Y
Yiddish, character codeset, A-7

Z
zero-argument constructor, 13-13
I-32

Index
I-33

Index
I-34

Index
I-35

Index
I-36

Index
I-37

Index
I-38

Index
I-39

Index
I-40

Index
I-41

Index
I-42

Index
I-43

Index
I-44

Index
I-45

Index
I-46

Index
I-47

Index
I-48

Index
I-49

Index
I-50

Index
I-51

Index
I-52

Index
I-53

Index
I-54

	Chapter 1: Introduction to XVT-Power++ 1-1
	Chapter 2: Introduction to XVT-Architect 2-1
	Chapter 3: XVT-Architect Tutorial 3-1
	Chapter 4: Blueprint 4-1
	Chapter 5: Drafting Board 5-1
	Chapter 6: Strata 6-1
	Chapter 7: Editors 7-1
	Chapter 8: Object Factory 8-1
	Chapter 9: Object Layering 9-1
	Chapter 10: Customizing XVT-Architect 10-1
	Chapter 11: Importing and Exporting Strings 11-1
	Chapter 12: Application Programming with XVT-Power++ 12-1
	Chapter 13: Coding Conventions and Style Guidelines 13-1
	Chapter 14: The Appl–Doc–View Hierarchy 14-1
	Chapter 15: Application Framework 15-1
	Chapter 16: Manipulating Views and Subviews 16-1
	Chapter 17: Native Views 17-1
	Chapter 18: Windows 18-1
	Chapter 19: Mouse Events and Mouse Handlers 19-1
	Chapter 20: Menus 20-1
	Chapter 21: Wire Frames and Sketchpads 21-1
	Chapter 22: Grids 22-1
	Chapter 23: Attachments and Palettes 23-1
	Chapter 24: Scrollbars, Splitters, and Virtual Frames 24-1
	Chapter 25: Drawing Basic Shapes 25-1
	Chapter 26: Text and Text Editing 26-1
	Chapter 27: Utilities and Data Structures 27-1
	Chapter 28: Resources and URL 28-1
	Chapter 29: Data Propagation 29-1
	Chapter 30: Transparent Data Integration 30-1
	Chapter 31: Logical Units 31-1
	Chapter 32: Displaying List and Columnar Data 32-1
	Chapter 33: Internationalization and Localization 33-1
	Guide
	Preface
	This Guide presents a basic yet thorough treatment of portable GUI programming with XVT’s Development Solution for C++ (DSC++) and the XVT-Power++ application framework.
	XVT-Power++ Documentation
	The XVT-Power++ documentation consists of:
	When to Use the Guide
	The purpose of this Guide is to describe XVT-Power++’s structure, survey the overall functionality that is available in related groups of classes, and explain how things work in XVT-Power++. In short, it gives you the total picture. When you want d...

	What You Already Need to Know
	Throughout the XVT-Power++ documentation, we assume that you have some basic knowledge of GUI features and programming, a working knowledge of C++, and access to the XVT Portability Toolkit documentation, which is available online.

	Reference Information Available Online

	How to Read This Manual
	Troubleshooting
	Before calling Customer Support, try using the following resources:
	XVT Documentation
	XVT provides several kinds of documentation:

	XVT Sample Set
	Using the provided XVT-Power++ Sample Set, you can:

	Error Messages File
	The XVT-Power++ library does some internal error checking. If you use an XVT-Power++ function incorrectly, you may see an “XVT-Power++ Error” dialog box, which displays the error number followed by the timestamp of the product release version (fo...

	Other XVT Documentation
	XVT provides many different pieces of documentation online:

	About This Manual
	Conventions Used in This Manual
	General Conventions
	Code Conventions
	

	XVT Customer Support
	When you buy an XVT product or an XVT maintenance agreement, you gain access to some of the most advanced application development assistance in the industry.
	If you have problems or questions while using XVT products, you can talk to an XVT Customer Support Engineer. XVT Customer Support helps you make more effective use of XVT products, enabling you to get your application up and running as quickly as po...
	How Customer Support Works
	XVT’s Customer Support goal is to respond to all requests within twenty-four hours. As soon as we log your call into our system, you will receive a service request number.
	Electronic Communication with Customers
	XVT has a T-1 connection to the Internet, and we provide anonymous and secured FTP and WWW sites. These services allow XVT to:
	XVT Developers’ Forum
	The XVT Developers’ Forum (xvtportabilitytools) is a community created to allow XVT developers to exchange XVT problems and solutions with one another. The forum is open to all XVT developers and other interested parties. The forum can be accessed at:
	http://groups.yahoo.com/group/xvtportabilitytools/

	What XVT Customer Support Provides
	XVT Customer Support can serve you better if you understand what services are available.
	This is what XVT’s Customer Support can do:
	Keep in mind that XVT Customer Support cannot do the following:

	Customer Support Services
	XVT’s Customer Support engineers can answer questions that arise from the use of a native GUI platform, or the operating system itself (see the following subsection, “Standard Customer Support Services”). When questions require investigation, y...
	Standard Customer Support Services
	XVT Customer Support personnel are experienced software developers that specialize in the use of XVT products on supported MS-Windows 3.1, Windows NT, Windows 95,Windows 98, Windows 2000, Windows ME, Windows XP, Motif, OS/2, Macintosh and Power Macin...

	Online FTP Site
	Support for XVT Software Purchased from Distributors
	XVT products are sold around the world, often through an independent distributor licensed by XVT Software. If you purchased your XVT product through an international distributor, your customer support requests must be routed through that distributor....

	Information We Need to Help You
	When you contact XVT Customer Support, please supply the following information:

	Product Updates
	XVT actively updates its products, issuing both minor releases (averaging 2–3 per year) and major releases (averaging 12–18 months apart). For most minor releases, and for all major releases, XVT supplies additions to or complete replacements for...

	How to Contact Customer Support
	You can contact XVT Software Customer Support in several different ways:

	XVT’s Consulting and Training Services
	The XVT Professional Services Group offers extensive fee-based services to help customers use XVT products. Experienced XVT professionals can help you learn GUI programming, or help you prototype, design, code, debug, and maintain your XVT applications.

	1
	Introduction to XVT-Power++
	1.1. What’s in the XVT-Power++ Package?
	1.1.1. Introducing XVT-Power++
	1.1.2. XVT Portability Toolkits
	Figure 1.1. XVT Portability Toolkits — the foundation of a well- written, versatile, and maintainable application

	1.1.3. The XVT-Power++ Application Framework
	The definition of an application framework is derived primarily from the word “framework.” A framework can be defined as a tree or a structure. Each must have a strong foundation to support the higher-level elements. These higher-level elements a...
	Figure 1.2. The XVT-Power++ class hierarchy

	1.2. Designing an XVT-Power++ Application
	1. At the very least, write a new application, a new document, and a new window class, deriving them from their corresponding XVT-Power++ classes.
	2. Determine what XVT-Power++ classes you want to use.
	3. Derive/write other classes that reflect the things you want your application to do.
	4. Design the structure of your own class and object hierarchies and decide how to assign the supervisor relationships among these classes. Who is going to own whom? Who is going to instantiate what?
	1.2.1. Development Platform
	1.2.2. Advantages of Object Hierarchies
	1.2.2.1. Advantages for XVT-Power++
	1.2.2.2. Advantages for XVT-Power++ Users
	An XVT-Power++ user does not need to know that a CListBox is a composite of the NScrollBar, RWOrdered, and CGrid classes. When the user instantiates a list box, its behaviors are already built into it. To get complete list box functionality, a user s...

	1.2.2.3. Advantages for Designers of XVT-Power++ Applications
	XVT-Power++ contains a wide range of classes that provide most of the functionality needed in a typical GUI application. However, when designing an XVT-Power++ application, you may find it necessary to write a completely new class from scratch. Most ...

	1.3. Application Framework
	The XVT-Power++ application framework consists of three different levels:

	1.4. Utility Classes
	XVT-Power++’s utility classes provide links between different parts of the XVT-Power++ system, such as:
	Each of XVT-Power++’s main objects has several helping and utility objects attached to it. For example, a native view can have a glue object, an environment object, a title object, and a list of commands. Every view has a CRect object that tells it...
	1.4.1. Storing Program Resources
	Almost all resources used by XVT-Power++ applications can be coded using XVT Portability Toolkit’s URL and the curl compiler. A resource can be a bitmap, an icon, the resource format of dialog boxes, an internationalized string, and so on.

	1.4.2. Defining Colors, Font Types, Drawing Modes, Line Colors and Widths
	1.4.3. Reporting Errors
	1.4.4. Memory Management
	XVT-Power++ does not override the global new and delete methods. It is up to you to decide the appropriate local or global overriding for heap management. Note that in some of its classes, Rogue Wave overrides these methods locally.

	1.4.5. Using Portable Images
	The CImage class provides a portable image facility. A subview- derived class, CPicture, maps a CImage to a region on the screen. Using CClipboard, images can be transferred to and retrieved from the clipboard.

	1.4.6. Accessing the Clipboard
	Any persistent, streamable object (text, XVT PICTURE, or binary data) can be streamed to and from the clipboard using the CClipboard class. Several derived classes automatically assist with the I/O associated with a clipboard operation.

	1.4.7. Translating XVT Portability Toolkit Events to XVT-Power++ Calls
	CSwitchBoard serves as a liaison between the XVT Portability Toolkit and XVT-Power++. The switchboard is in charge of channeling whatever events are occurring in the system to the appropriate object. For example:

	1.4.8. Printing

	1.5. Data Structures
	XVT-Power++ uses the Rogue Wave class library to implement its data structures. Rogue Wave provides a rich set of collections, data structures, and utility classes that you can take advantage of while using XVT-Power++.
	1.5.1. Specifying Locations on the Screen
	Every XVT-Power++ object has a CPoint object that tells it which origin to draw from and what its coordinates are relative to. Each CPoint is an x,y coordinate.

	1.5.2. Placing Views on the Screen
	1.5.3. Converting Global to Local Coordinates and Vice Versa
	1.5.4. Specifying Logical Units
	By default, all XVT-Power++ applications use a one-to-one pixel mapping for drawing or printing. You can set a different mapping— in centimeters, inches, characters, or a user-defined unit—by instantiating a CUnits object and then calling a certa...

	1.5.5. Representing and Comparing Character Strings
	1.5.6. Storing Items in Lists
	1.5.7. Iterating Over Lists
	1.5.8. Storing Two-dimensional Arrays and Conserving Memory

	1.6. Pass-through Functionality
	There are some features that it does not make sense to encapsulate in C++, or that XVT has not yet encapsulated in C++. These features include the following:
	1.6.1. Color Palettes and Color Look-Up Tables
	While XVT-Power++ provides an encapsulation of portable images through our CImage and CPicture classes, additional functionality is provided by the XVT Portability Toolkit for color palettes and color look-up tables.

	1.6.2. Cursors
	A cursor is a pointer or other shape that indicates the current mouse position. Each CWindow object can have a cursor, which is set to one of four standard shapes, or to a shape that is defined as a resource.

	1.6.3. Diagnostics and Debugging
	In addition to XVT-Power++ Error and debugging functionality, you can use the XVT Portability Toolkit error handling functions. The XVT Portability Toolkit provides error signaling with error codes, error handler functions, error definition and messa...

	1.6.4. Files
	The XVT Portability Toolkit provides a portable data type for referring to filenames, directories, and file types. This feature allows you to set and get file attributes, use standard functions for file input and output, and use standard file dialogs.

	1.6.5. Hypertext Online Help
	XVT Portability Toolkit's online help feature provides a powerful, flexible, hypertext-based help system for your applications. The online help feature includes the following key elements: a hypertext viewer, complete text formatting with multiple fo...

	1.6.6. Native Functionality
	Each XVT Portability Toolkit has a set of platform-specific, non-portable attributes. These attributes let you fine tune your application, or let you add functionality not provided by the XVT Portability Toolkit interface.

	1.6.7. Predefined Dialogs
	The XVT Portability Toolkit supports several common dialogs on all platforms. These dialogs allow you to perform the following:

	1.6.8. Resources
	XVT-Power++ uses the Universal Resource Language (URL) at the XVT Portability Toolkit level to specify resources for menus, dialogs, windows, strings, images, and fonts.
	With every Portability Toolkit, XVT supplies a compiler for URL, called curl. You can port your URL code to any supported XVT platform and compile it to the native resource format using the XVT compiler, curl. The curl compiler reads specifications i...

	1.6.9. User-defined Font Mappers
	XVT-Power++ features an encapsulated font model through the CFont class. The CFont class provides full coverage of the XVT Portability Toolkit font functionality, including user-defined font mapping. However, CFont does not include an available inter...

	1.7. Where To Go Next
	At this point, we have covered the functionality that XVT-Power++ makes available in the following:

	2
	Introduction to XVT-Architect
	2.1. What is XVT-Architect?
	2.2. Designing and Building Applications with XVT-Architect
	1. Design and lay out your application using XVT-Architect’s Blueprint, Drafting Board, and Strata modules, as well as XVT-Architect’s editors.
	2. Save the project. You must save the project before you can generate the Shell files (you can save the project as early and as often as you like).
	3. Generate the Shell files, which include a file for each object, a startup file, a URL file, and a makefile. Typically, you generate the Shell files once. However, if you modify your project, rename a file, or delete a file, you should generate the...
	4. Generate the project’s object Factory, which includes your project files and header files. You use the Factory to create the objects in your application. Therefore, if you modify your project with XVT-Architect, you should generate the Factory a...
	5. Establish a project file or makefile for your compiler, and add all necessary files. If you are using IDEs, you need to link any source files that are in the Factory directory.
	6. Run curl to compile XVT’s Universal Resource Language (URL), and add the generated *.rc file (or *.r file on the Macintosh) to your project. Every time you generate files, or regenerate files, it is a good idea to compile with curl. (For instruc...
	7. Compile, link, and execute your application. When you execute the application, the windows that you laid out in XVT-Architect will be displayed on the screen, but the application will not be interactive. You must write the code to implement the ap...
	8. Modify any files that you need to, and link in anything that you added as part of your application. If you change the names of any objects, you must (at least) edit the makefile.
	9. Interact with the PAFactory class to create the user interface objects for your application.
	10. Compile, link, and execute your application.

	2.3. Visual Components
	2.3.1. Blueprint Interface
	Figure 2.1. Blueprint interface

	2.3.2. Drafting Board Interface
	Figure 2.2. Drafting Board interface

	2.3.3. Using XVT-Architect’s Palettes
	2.3.4. Strata Interface
	Figure 2.3. Strata interface

	2.4. Saving Projects and Generating Files
	Generating Files
	1. Choose Generate Files from the File menu, which brings up the XVT-Architect File Generation dialog.
	2. Indicate which files you want generated.
	3. Click the Generate button.

	2.4.1. Factory Files
	2.4.2. Shell Files
	2.4.2.1. Generating Shell Files
	2.4.2.2. Generated Files

	3
	XVT-Architect Tutorial
	This Tutorial chapter demonstrates how to use XVT-Architect to build a simple application. While teaching you how to build the application, this Tutorial also illustrates the use of many of XVT-Power++ features.
	3.1. The Notepad Application
	This tutorial guides you through the creation of the Notepad application. The Notepad is a simple text file editor that allows you to open, edit, and save files.
	3.1.1. Learning XVT-Architect
	By building this application, you use and learn XVT-Architect’s three modules: Blueprint, Drafting Board, and Strata. In addition, you learn about several of XVT-Architect’s editors.

	3.1.2. Learning XVT-Power++
	The Notepad application demonstrates the use of the following features of the XVT-Power++ application framework:

	3.2. Getting Started
	By default, the Blueprint has an instance of a CApplication-derived class, an instance of CTaskDoc, and an instance of CTaskWin. These objects are linked together to form the rudimentary application. You cannot delete these objects.
	CTaskWin is a class that XVT-Power++ uses internally to represent the logical or physical window that carries the application menubar. On some platforms, this window is a container for all of the application windows.

	3.3. Designing the Notepad Application
	XVT-Architect’s Blueprint is used to design the object hierarchy of an XVT-Power++ application, based on the Application-Document- View paradigm. In this paradigm, the application creates and manages the documents. Each document stores and provides...
	This object hierarchy defines the message paths for inter-object communication and assigns categories of tasks to be performed at each level.
	The Application Object’s Roles
	The application object, or instance of a CApplication-derived class, manages the flow of the entire application. Its responsibilities include the following:
	The Document Object’s Roles
	Document objects, or instances of CDocument-derived classes, create and manage the windows that display its data. Each document class is responsible for many tasks, including the following:
	The View Object’s Roles
	Finally, applications contain views that display the data and allow the user to interact with the data. In XVT-Power++, window objects, or CWindow-derived classes, act as the top-level enclosures for all other views, and therefore are the view classe...
	3.3.1. Defining the Application Object
	Since all XVT-Power++ applications must have one application object, XVT-Architect automatically creates an application class for each new project. When you start XVT-Architect or open a new project, the application class is laid out in the Blueprint.

	3.3.2. Defining the Documents and Windows
	To the initial layout in the Blueprint, you add your own document and windows. For the Notepad application, you need to lay out only one document and one window.

	3.4. Building the Notepad
	This section describes the process of building the Notepad. The Notepad allows the user to do the following:
	3.4.1. Defining the Notepad’s Application Classes
	Starting in the Blueprint, lay out document and window classes necessary for the Notepad, name the classes, and link them into the existing application.
	1. Select the name below the icon CApplication(), and type “TNoteApp”.
	2. Click in the sketch region of the window to complete the editing process.

	3.4.1.1. Defining the Documents and Windows
	The next step is to create and name the document class, TNoteDoc, and the window class, TNoteWin (see Figure 3.1). When you create a document or window in the Blueprint, the name of the object is selected and ready for editing.
	1. With Pointer tool, click on CDocument and name it TNoteDoc.
	2. Then click on CWindow and name it TNoteWin.

	3.4.1.2. Linking Documents and Windows into the Application
	When you have laid out the documents and windows in the Blueprint, link them together to visualize the object hierarchy of your application.
	Figure 3.1. Blueprint with the Notepad’s document and window

	3.4.1.3. Setting the Document’s Attributes
	To view and modify the attributes of all objects (instances of classes) in XVT-Architect, go to the Strata of an object.
	Setting TNoteDoc’s Attributes
	In your application code, you will need a way to refer to the document. When you interact with any object in your application, you use the Factory name.
	1. Double-click TNoteDoc’s icon in the Blueprint.
	2. Bring the Factory page to the front by clicking on the tab with the Factory bitmap.
	3. Then, select the text in the Factory ID Name field, and type “NoteDoc”, and click the Apply button, which applies the change.
	Figure 3.2. Factory settings page of Strata

	A Note on Giving Factory Names to Objects
	When you write your application code, you must access some of the objects that you have laid out in XVT-Architect. In general, you must access those objects whose attributes you will be getting or setting dynamically at runtime.

	3.4.1.4. Setting the Window’s Attributes
	For the Notepad, you will lay out a text editing field that uses the window’s scrollbars. To set this attribute and other window attributes, go to the Strata for the TNoteWin.
	1. Double click on the TNoteWin object in the Blueprint, which opens the window’s Strata.

	In the Strata for TNoteWin, do the following:
	2. Set the Title on the CView page to “Notepad”
	3. Set the Factory ID Name to in the Factory page to “NoteWin”
	4. Then set the CWindow attributes in the CWindow page. For this window, you need to check the following Decorations attributes:
	5. When you have checked these attributes, click OK.

	3.4.2. Laying Out the Notepad’s Interface
	When you have set the attributes for the application objects, you can lay out the window’s text editing region in the Drafting Board (see Figure 3.3).
	Figure 3.3. Final Notepad window—Drafting Board

	3.4.2.1. Laying Out the Notepad Window
	To lay out the interface of Notepad, you will use XVT-Architect’s Drafting Board. The Drafting Board is a GUI builder with the facilities to lay out advanced user interfaces. To modify the attributes of the object that you lay out in the Drafting B...
	Laying Out the NScrollText for the Notepad
	In the Notepad, you lay out an instance of the NScrollText class (an NScrollText object), and specify that it should use the scrollbars that you just set for the window.
	1. Click the CNativeTextEdit button on the main Views palette, and tear off the Text Edit subpalette. (Note that to locate any button in the View palettes, you can move the cursor across the palettes and a class name and short description appears in ...
	2. On the Text Edit palette, click and drag the NScrollText button off of the palette.When you are in the position that you want the text object, release the mouse button.
	3. Using the Pointer tool, select the NScrollText object, and use the wire frame to size the object so that it fills TNoteWin’s entire window region. The “window region” is indicated in the Drafting Board’s sketch area by a sizing frame with ...

	3.4.2.2. Modifying the NScrollText Object’s Attributes
	To modify an object’s attributes, you open its Strata. In the Strata, you need to modify the NScrollText’s scrollbar assignment, color (environment setting), glue setting, and Factory ID name.
	1. Using the Pointer tool, double click on the object.

	Assigning the NScrollText Object Scrollbars
	2. Bring the NScrollText page to the front by clicking on its tab.
	3. Check “Uses Window Scrollbars”
	4. Click Apply.

	Setting the NScrollText Object’s Environment
	Next, you need to set the environment for the NScrollText object. To set the environment of objects in your application, use the Environment Attributes dialog. An environment object encapsulates the following information:
	1. Bring the CView page to the front by clicking on its tab.
	2. Check the Own Environment box, which enables the Environment button.
	3. Click the Environment button that becomes enabled just below the Own Environment field.
	1. Select Blue from the Background list button in the Text Attributes field.
	2. Click on the Color button to the right of the list button, which brings up the Standard Color Palette, and select a lighter shade of Blue from the palette. Click OK.
	3. Click OK in the Environment Attributes dialog, and click Apply in the Strata.

	Setting the NScrollText Object’s Glue and Active State
	Since the window is sizable, you need to specify that the NScrollText should resize when the window size changes. You accomplish this by setting the glue properties of the object, which determine how an object behaves when its enclosure is sized.
	Setting the NScrollText Object’s Factory ID Name
	In your application code, you will need a way to refer to this object, so give it a Factory name.
	1. Bring the Factory page to the front by clicking on the tab with the Factory bitmap.
	2. Select the text in the Name edit field on the Factory page,
	3. Type “Text”.
	4. To commit all of the changes that you have made in the Strata, click OK, which closes the window.

	Sizing the Window
	To resize the window, first locate the sizing frame of the window by scrolling the Drafting Board’s sketch region. The sizing frame will also have a representation of the scrollbars that you specified for the window in its Strata.

	3.4.2.3. Setting the Menubar for the Notepad Window
	For the Notepad, you will create a menubar using XVT-Architect’s Menu Editor.
	1. Select the Font menu by clicking on it.
	2. Click on the Delete button in the toolbar (it is the second button from the right).
	1. Select the File menu by clicking on it.
	2. Select the "New" menu item. (It is grayed out, but you can still click on it.)
	3. Check the "Enabled" box in the lower half of the window.
	4. Repeat the steps for "Open" and "Save As".
	5. Click OK, which closes the window and saves the menubar as part of the window.
	1. Close the Drafting Board.
	2. Go to the Blueprint Window.
	3. Open the Drafting Board for the CTaskWin class.
	4. Edit the menu of this window in the same way you edited the NScrollText object’s menu.
	5. Also remove the Font Menu and enable the "New" and "Open" menu items.

	3.4.3. Generating the Application
	When you have finished laying out the Notepad component, you need to save the project and generate the application.
	Saving the Project
	When you Save a new project (or “Save As” any project), XVT-Architect prompts you for a name. This is the name of the new project directory as well as the name of the project. An XVT-Architect project should always be maintained in its own indivi...
	Generating Factory and Shell Files
	Next, generate the Factory and Shell files for your application.
	The Factory is a repository that stores information about the objects in the application. However, unlike the project file, you interact with the Factory to create the objects of your application. You do not modify the Factory files.
	1. Select Generate Files from the File menu, which opens the XVT-Architect File Generation dialog.
	2. Click the Generate button. By default, both Factory and Shell are checked to be generated.

	A Look at Generated Code
	Take a look at the files that have been generated by XVT-Architect. There should be directory named "notepad". Inside you will find the following files (the file extensions may vary depending on platform or options settings):
	The two lines shown in boldface type above reveal interesting information. The first line includes a special header file generated in the factory directory:
	The second line declares a data member of type NoteDocData:
	Open the TNoteDoc_f file in the factory directory. The file’s name is actually _tnotedoc.h; below is shown most of its contents:
	Finally, open the tnotedoc.cpp file to see the implementation of this class. Take a look at the BuildWindow() method:

	3.4.4. Building and Running the Basic Application
	When you have generated your application with XVT-Architect, you can build and run the basic application. When you run the application, the window appears, but it does not have the ability to read and write the files. You must write the application c...
	1. Set up your generated makefile or project file for your compiler, and add all necessary files. (Enter make -f notepad.mak.)
	2. Run curl to compile XVT’s Universal Resource Language (URL), and if necessary, add the generated file to your project. Every time you generate files, it is a good idea to compile with curl. On most platforms, the execution of curl is automatical...
	3. Compile and link your application.
	4. Run your application, and the Notepad window will come up.

	3.4.5. Writing the Notepad Code
	XVT-Architect generates Shell files for each document and window classes indicated in the Blueprint. XVT-Architect generates a header and a source file for each class. This section describes the modifications that you must make to the Shell files to ...
	3.4.5.1. Modifying the TNoteDoc Class
	To implement the reading and writing features of the Notepad, start by modifying the TNoteDoc header file, which is the document class that XVT-Architect generated.
	Modifying TNoteDoc’s Source File
	The following sections describe the methods that you need to add the tnotedoc source file to implement the Notepad. Note that the Shell file has method “stubs” for some of your document class methods. In these cases, you add code only to the nece...
	Add the following statements to the top of tnotedoc’s source file, after the TNoteDoc_i include statement:
	The following is the TNoteDoc constructor:
	Now, locate the Open method of TNoteDoc. The Open method is called when DoOpen has successfully chosen a file to be opened. To this method, add code to read the file from an input file stream, like this:
	Modify the BuildWindow method as follows:
	Now, modify the Save method to save the contents of the Notepad, like this:
	Next, override the DoSaveAs method by inserting the lines shown below at the end of the file:

	3.4.5.2. Modifying the TNoteWin Class
	Modifying TNoteWin’s Source File
	The following sections describe the methods that you need to add to the tnotewin source file to implement the Notepad. Note that the Shell file provides method “stubs” for some of your window class methods. In these cases, you add code to only th...
	The following indicates the statements that you should add or uncomment at the top of tnotewin’s source file, after the TNoteWin_i include statement:
	Override the Key method so that the document is informed of a change in the Notepad by adding the following lines of code to the end of the file:
	Next, add the SetText method, which is a modifier used in setting the current state of the Notepad window. Note that you use the Suspend and Resume methods to avoid flashing. This approach suspends updates until the text has been set. Add the followi...
	Finally, add the GetText method to the TNoteWin class, so that you can query the current state of the Notepad window. Add the following GetText method:

	3.4.6. Compiling and Running the Application
	When you are done modifying the Notepad files, you can compile, link, and run the application. You can then use the Notepad to open, edit, and save files.

	4
	Blueprint
	4.1. Understanding Object Hierarchies and the Application-Document-View Paradigm
	The XVT-Power++ application framework contains two types of hierarchies: a class hierarchy and an object hierarchy. The class hierarchy shows the XVT-Power++ class library and its inheritance structure. The Strata module of XVT-Architect illustrates ...

	4.2. Application, Documents, and Views
	4.2.1. Application Object
	4.2.2. Document Objects
	4.2.2.1. Document-Centric Development

	4.2.3. View Objects
	4.2.4. Inter-Object Communication and Message Propagation

	4.3. Blueprint Interface
	In the Blueprint, you have basic interface elements, including a menubar, a toolbar, and a status bar (see Figure 4.1).
	Figure 4.1. Blueprint interface

	4.3.1. Menubar
	4.3.1.1. Tools Palette
	4.3.1.2. Alignment Palette

	4.3.2. Toolbar
	4.3.2.1. Undo and Redo

	4.3.3. Status Bar

	4.4. Laying Out the Application, Documents, and Views
	Figure 4.2. Blueprint with windows and documents laid out and linked
	4.4.1. Laying Out Documents and Windows
	4.4.1.1. Naming Classes
	4.4.1.2. Factory Names

	4.5. Linking Applications, Documents, and Views
	4.5.1. Editing Links
	4.5.2. Linking Documents to the Application
	4.5.3. Linking Windows to a Document

	4.6. Navigating Between Modules
	4.6.1. Getting to and from the Drafting Board
	4.6.2. Getting to and from the Strata

	5
	Drafting Board
	This chapter describes the interface and usage of the Drafting Board module—a GUI builder with the facilities necessary to lay out advanced user interfaces. In this module, you can lay out and manipulate the XVT-Power++ visual objects of your appli...
	5.1. Drafting Board Interface
	For each window, you go to the Drafting Board to lay out the window’s user interface.
	Figure 5.1. Drafting Board

	5.1.1. General Overview
	In its menubar, toolbar, and Alignment palette, the Drafting Board supplies you with a robust set of tools to manipulate the objects that you lay out using the View palette. The tools allow you to do the following tasks:
	However, you should be aware of the special features of Undo and Redo. All instances of Undo and Redo in XVT-Architect provide the ability for an unlimited number of Undo or Redo actions. The following are the only times that Undo and Redo are disabled:

	5.1.2. Menubar
	The menubar of the Drafting Board module includes the following menus:

	5.1.3. View Palettes
	Along with the pointer tool, the View palette and its subpalettes contain the tools that you use to create and lay out XVT-Power++ CView objects (see Figure 5.3).

	5.1.4. Alignment Palette
	With the Alignment palette, you can align, space, and size objects, and change their stacking order.

	5.1.5. Toolbar
	The toolbar contains a series of menubar short cuts, including the following:
	5.1.5.1. Navigating to Child and Parent Windows
	On the toolbar, there is a Child Window list button that contains a list of the open “child” windows for the specific Drafting Board. Drafting Boards can have both Menu Editor and Strata windows as child windows.

	5.1.6. Status Bar

	5.2. Understanding the View Palette
	There are several subpalettes contained in the main View palette, but once you understand the organization of the palettes, you should find them easy to use.
	Figure 5.2. XVT-Power++ CView hierarchy
	Figure 5.3. View palette and subpalettes (continued on next page)
	Figure 5.3. View subpalettes (continued from previous page)

	5.3. Using the View Palette to Lay Out Objects
	Using the View palette, you can create and lay out objects using the following creation methods:
	5.3.1. Dragging and Sizing the Objects
	All CView objects are draggable and sizeable. Thus, when you select an object using the pointer tool, a wire frame with sizing handles appears. You can use the handles to size the object. You can also move the object within its enclosure simply by dr...

	5.4. Sizing the Window
	In addition to sizing the view objects of your application, you can size any window object. To do so, you must first locate the sizing frame of the window by scrolling the Drafting Board’s sketch region. If, in the Strata, you indicated that the wi...

	5.5. Navigating Between Modules
	For each object, or instance of a class, that you lay out in XVT-Architect, there is a Strata. The Strata is an attribute editor. If you want to view and modify the attributes of an object, go to its Strata.

	6
	Strata
	This chapter describes the interface and usage of the Strata module of XVT-Architect—an object-attribute editor that provides quick access for viewing and modifying the attributes of both application and interface objects attributes. Every object i...
	6.1. Strata Interface
	Figure 6.1. Strata Interface
	6.1.1. Closing the Strata

	6.2. Class Browser
	The class browser (the icons along the bottom of the screen) illustrates the class hierarchy of the object. You can scroll across to see a full class hierarchy of the object (to get an idea of the classes from which an object is inheriting functional...

	6.3. Notebook Control
	Using the Strata, you can learn and fully utilize each XVT-Power++ class’s inherited attributes.There is a Strata for each object of your application. In the Strata, each class from which that object inherits (every base class) is represented by a ...
	6.3.1. Using the Notebook Control
	Using the notebook control, you can view and set attributes of an object at each inheritance level of the class hierarchy. The data members, or attributes, represented on each page of the notebook control are the initial data of the specific object i...

	6.4. CView Pages
	CView supplies a lot of functionality to its derived classes. It is important to acquaint yourself with the pages of CView, and the attributes that you can set at this level of the class hierarchy (to see CView’s first page, see Figure 6.1). The at...
	6.4.1. Environment Attributes dialog
	Using the Environment Attributes dialog, you can set the environment for the objects of your application. An environment of an object contains information regarding text attributes, drawing modes, brush and pen attributes, and colors. It is encapsula...
	Then, using the Environment Attributes dialog, you can set the following environment information (see Figure 6.2):
	Figure 6.2. Strata, Environment Attributes dialog

	6.4.1.1. Using the Environment Attributes dialog
	The Environment Attributes dialog is a window containing edit fields and list buttons that represent the environment variables. The color list buttons have color buttons on the right, and clicking one of the color buttons brings up a color palette. U...

	6.5. CWindow Pages
	You can use the CWindow pages for setting many window attributes. Use the CWindow pages to set the Border Type, Size, Modality, Decorations, and Initial Conditions of the window. In addition, use the Menus list box to assign an existing menubar to th...
	6.5.1. Sizing and Placing Windows
	When you first create a window in the Blueprint, it is given an initial default position and size, or frame rectangle. For top-level windows, the frame indicates the initial location and size of the window relative to the screen or task window, and r...
	XVT-Architect allows you to change a top-level frame rectangle in the following three places:
	Figure 6.3. CWindow’s third page, window placement

	6.5.2. Creating a Modal Window
	The XVT-Power++ CWindow class supports the creation of modal windows.
	1. Create the window using XVT-Architect.
	2. Using the CWindow Strata tab, set the window’s type to "Modal".
	3. In your code, invoke the CWindow::DoModal() method for the modal window defined in XVT-Architect.

	The following code fragment shows how a modal window defined in XVT-Architect is created and made modal:
	The call to DoModal does not return until the window is closed.

	6.6. CUserView and CUserSubview Strata Pages
	The CUserView and CUserSubview objects have Strata faces where you can register information for your customized classes. On these Strata faces, you must specify the name of the class, which must be a valid identifier.

	6.7. Factory Settings Page
	In addition to setting the attributes of an object, you can also set its Factory information in the Strata. Use the Factory Settings page, indicated by the “Factory” bitmap on the tab, to specify the information that XVT-Architect uses when gener...
	6.7.1. Using the Factory Settings Page
	Figure 6.4. Strata, Factory Settings page

	6.7.2. Using XVT-Architect’s Editors
	XVT-Architect supplies many editors to refine your application and manage global data. You can open the global editors from Editors menu (in the Blueprint and Drafting Board). In addition, you can open these editors from the Strata. When you open the...

	7
	Editors
	XVT-Architect has several editors that you can use to refine your application and manage your application’s global information. The following is a list of XVT-Architect’s editors, which are described in this chapter:
	7.1. Menu Editor
	In XVT-Architect’s Menu Editor, you can design and lay out menubars. In XVT-Power++, a menubar, or an instance of the CMenuBar class, is a collection of submenus. A submenu is a collection of menu items and other submenus.
	In the Menu Editor, you can do the following:
	7.1.1. Using the Menu Editor
	The Menu Editor window is divided into two areas. The top of the window is a scrollable area that you use to lay out the menubar. The bottom area of the window is an area populated with controls that you use set the menu-item data (see Figure 7.1).
	Figure 7.1. Menu Editor

	7.1.1.1. Using the Standard Submenus
	When you open the Menu Editor, the top, scrollable area contains the standard File, Edit, Font, and Help submenus for your development platform. These are the DEFAULT_*_MENU values as defined by the XVT Portability Toolkit. You can click on each stan...

	7.1.1.2. Moving Menu Items
	7.1.1.3. Setting Menu-Item Data
	Once you have named or renamed a submenu or menu item, you may need to specify or modify the data that is associated with the menu item. To do so, use the edit fields located at the bottom of the Menu Editor window.

	7.1.1.4. Using the Accelerator Editor within the Menu Editor
	You can set keyboard accelerators for the menu items that you have defined.

	7.1.1.5. Factory Name and Information
	1. Choose Factory Options from Menu Editor’s Options menu, which opens a Factory Options dialog box.
	2. Change the Menubar Name.
	3. Click OK to commit the change.

	7.1.2. Customizing Menus
	In the Menu Editor, you can customize the menubar for each window in your application. You can either modify the existing menus, or you can delete these menus and define new menus.
	7.1.2.1. Pop-up Menus
	You can customize a menu to act like a pop-up menu.
	1. Define a menubar with the Menu Editor. (Specify a menubar with only one menu Title.)
	2. Outside of XVT-Architect, in one of your user files, write code that creates a CMenu using the menubar ID of the menu defined earlier in XVT-Architect.
	3. Call the special DoPopup method.

	7.1.2.2. Modifying Standard Menus
	If you modify a standard submenu or any of its items, XVT-Architect changes the Menu Tag so that it is no longer a DEFAULT_*_MENU value. The tool also unchecks the specific “Standard” submenu on the Menu Editor’s Options menu.

	7.1.2.3. Translating Exported Menu Strings
	The menu strings that need to be translated to the language used by a particular locale are contained in the PAUserString object files discussed in section 11.2.1 on page 11-3. These files contain a series of strings with the following syntax:
	For example, here is a portion of an .aeo file, generated for the “Spanish” layer of an XVT-Architect project:

	7.1.2.4. Five Languages Already Translated
	Both at the Portability Toolkit level and at the XVT-Power++ level, XVT provides localized versions of its standard menus for U.S. English, German, French, Italian, and Japanese. These localizations are encapsulated in include files referenced by XVT...

	7.1.3. Associating Existing Menubars with Windows
	You can associate an existing menubar to the application, on the CApplication Strata page, and you can assign an existing menubar to each top-level window, on CWindow’s second page.
	1. Open the Strata for the window with which you want to associate the menubar.
	2. On the CWindow page, select the menubar from the list of menubars, and click Apply (or OK).

	7.2. Accelerator Editor
	You can open XVT-Architect’s Accelerator Editor from the Blueprint, Drafting Board, and Menu Editor. In the Accelerator Editor, you can set the key sequence, or keyboard shortcut, to send a DoMenuCommand for any menu items. When you generate the fi...
	In the Accelerator Editor, you can do the following:
	7.2.1. Using the Accelerator Editor
	The Accelerator Editor contains an “Accelerators” list box, which contains a list of Menu Tags and corresponding accelerators. The editor also contains a set of controls, which allow you to set the accelerators for these Menu Tags.
	1. Select a Menu Tag from the Accelerators list box.
	2. Check Shift, Control, and/or Alt.
	3. In the Key edit field, type the accelerator key. -OR- Choose a Key from the drop-down list.

	7.2.1.1. Creating Accelerators for “Ghost” Menu Items
	When you open the Accelerator Editor from the Blueprint or Drafting Board, you can create new menu tags and assign them accelerators. The tags are “ghost” tags, which are not associated with menubars in your application.

	7.3. Command Editor
	When end users manipulate views in an XVT-Power++ application, they cause commands to be generated, which are trapped programmatically (via the DoCommand method).
	Certain classes of the class hierarchy define commands, and their subclasses inherit these commands. The following classes have command attributes, and thus have the command fields on their page in the Strata:
	In XVT-Architect’s Command Editor, you can view and specify any of the following attributes for commands and command bases (see Figure 7.2):
	Figure 7.2. Strata with Command Editor

	7.3.1. Using the Command Editor
	The Command Editor has list boxes at the top, which list the Command Bases and the Commands that are already defined for your application.
	7.3.1.1. Creating New Commands and Setting Command Data
	In the Command Editor, you can create new commands, indicate command values, and specify comments.
	The following are definitions of the variables that you can indicate using the Command Editor:

	7.4. String Editor
	Using the String Editor, you can specify application-specific resource strings. The strings that you indicate for your application are placed within the Factory files.
	In the String Editor, you can do the following:
	7.4.1. Using the String Editor
	The String Editor has a list box that contains an alphabetical list of the strings defined for your application. In the String Editor, you can also modify the existing strings and create new strings.
	7.4.1.1. Using the String Editor Opened from the Strata
	When you open the String Editor from the Strata, you can also select an existing string from the list box and apply it to the object whose attributes you are editing; objects can “share” strings.

	7.5. String List Editor
	Using XVT-Architect’s String List Editor, you can set string lists that appear in the list controls of your application at startup. You can access the String List Editor from the Blueprint, Drafting Board, and Strata.
	In the String List Editor, you can do the following:
	7.5.1. Using the String List Editor
	On the top-left the String List Editor, a list box contains the String Lists that are defined for your application. On the top-right of the editor, a list box contains the Strings of the selected string list (see Figure 7.3).
	Figure 7.3. Strata with String List Editor

	7.5.1.1. Setting String List Names
	You can change the name of the string list or add new string list names. The String List Name is the symbolic name of the string list, which is the name you use to reference the string list from within your application, like this:
	1. Select the string list from the String Lists box.
	2. Select the name in the String List Name edit field.
	3. Type the new name.

	7.5.1.2. Setting the Strings Values in String Lists
	For each string list, you can indicate the Strings that it will contain.
	1. Select the string from the Strings list box.
	2. Select the string in the String Value edit field.
	3. Type the changes to the string.

	7.5.1.3. Using the String List Editor Opened from the Strata
	When you open the String List Editor from the Strata, you can also select an existing String List from the list box and apply it to the object whose attributes you are editing; objects can “share” string lists.

	8
	Object Factory
	This chapter describes XVT-Architect’s object Factory, including the Factory interface that you use to instantiate objects that you designed with XVT-Architect.
	8.1. Object Factory
	The Factory is a repository for application information, just like an XVT-Architect project file. However, they are different in that you use the Factory to instantiate the XVT-Power++ objects that you have laid out using XVT-Architect.
	8.1.1. Factory Interface
	The Factory has an interface that allows you to create objects. When you ask the Factory to create objects, you use an interface defined by the PAFactory class.

	8.1.2. Factory-generated Header Files
	XVT-Architect generates Factory files, which include your project- information files and several header files. The generated Shell files reference these Factory files; they are automatically included in your application. They contain the following in...
	8.1.2.1. Object IDs
	XVT-Architect’s Factory generates a #define for each of the objects in your application. The Factory generates this internal ID for each object, but, when interacting with the Factory, you can use the Factory ID Name, or string identifier, which yo...

	8.1.2.2. Command IDs
	XVT-Architect’s Factory also generates a #define for each of the command IDs in your application. You indicate the command IDs in the Command Editor, which you can access from the Strata. In the Command Editor, you can indicate the command’s name...

	8.1.2.3. String and String List IDs
	XVT-Architect’s Factory also generates #defines for each string ID and string list ID in your project. In addition, XVT-Architect generates a string resource file, strings.url.

	8.1.2.4. Data Member Classes
	Finally, in the Factory files, XVT-Architect also generates a data member class for each object. A data member class contains pointers to the nested views of an object.

	8.1.3. Generating Factory Files at the Command Line
	An alternate way to generate XVT-Architect factory files is to enter the following command at the command prompt:

	8.2. Using the PAFactory Class
	XVT-Architect generates the PAFactory class, which is an abstract class. Through the PAFactory public interface, you can create documents, windows, and views. In addition, you have a choice of either creating a specific object, by calling one of the ...
	8.2.1. PAFactory Public Methods

	9
	Object Layering
	9.1. Default and Parent Layers
	Figure 9.1. Object layering

	9.2. Layering Objects
	Figure 9.2. Layer Editor
	9.2.1. Creating Layers
	1. In the Layer Editor, click the Add New button.
	2. Name the layer and indicate whether you want XVT-Architect to include it in subsequent generations of the Factory. You can do so by checking the Factory Generated box.
	3. Select the new layer’s parent by selecting a parent from the Parents list box. The new layer “inherits” the objects and their attributes from the Parent that you indicate.
	4. Click OK.

	9.2.2. Viewing and Modifying Layers
	9.2.3. Using the Layers Menu
	Viewing Layered Objects
	Reverting an Object to be Defined by the Parent Layer
	Selecting Multiple Objects

	9.3. Indicating Variations in Layers
	Once you enable an object to be layered, you can modify any layer just as you would the default layer, by using XVT-Architect’s various features. Most of your modifications will only change the attributes of objects in the current layer, and the la...

	9.4. Factory Code
	9.5. Creating Localized Projects Using Object Layers
	XVT-Architect’s layering capabilities allow you to create special versions of the same application specialized for different needs, such as language. In order to localize an application, you create a specific layer to represent each locale. In gene...
	1. Identify and define the locales that need support
	2. Create a layer for each locale
	3. Localize the attributes of the objects in each layer
	4. Generate a localized factory

	9.5.1. Choosing and Defining Locales
	The first step in localizing an XVT-Architect application is to define the attributes of the locale.
	9.5.1.1. Defining the Attributes of the Locale
	9.5.1.2. Scope of Locale Definitions
	Locales are defined via the Global Options dialog, using the Locale Options Editor. This means that the definitions of locales are stored in XVT-Architect’s global options file. A global options file is associated with each version of XVT-Architect...

	9.5.2. Creating Layers
	The second step in localizing an XVT-Architect application is to create a layer for each locale. To create or edit a layer, open the Layer Editor, shown in Figure XXX.

	9.5.3. Localizing Each Layer’s Objects
	9.5.3.1. Replacing Colors and Graphics
	9.5.3.2. Translating Strings
	Object Titles
	String Editor
	Menu Titles
	Each menu in an application can be translated directly by editing the titles of each menu item. Menu item titles are not displayed by the String or String List Editors, so they must be edited within the Menu Editor.
	Import/Export Files
	Help Topics and Help Text
	XVT provides pre-translated help topic text for several of the reserved topic symbols, including XVT_TPC_HELPONHELP, XVT_TPC_KEYBOARD, and others. You have access to this pre- translated help topic text at the XVT Portability Toolkit level.
	A basic subset of help topics have been translated into the following five languages:
	Help source text files are compiled, using helpc, into binary resource files. The resultant binary file can be associated with your XVT application at start-up time or runtime. This means that a program executable can be the same in all environments ...

	9.5.4. Generating a Localized Factory

	10
	Customizing XVT-Architect
	10.1. Where to Save Shell and Makefile Templates
	To change where XVT-Architect searches for its shell and makefile templates, select Options=>Global after starting XVT-Architect—this opens an Options dialog. Click the Generation tab of the Options dialog, then enter a new path in the Shell Path f...

	10.2. Number of Files Used to Store Generated Factory Code
	To change the number of files used to store generated factory code, select Options=>Global after starting XVT-Architect—this opens an Options dialog. Click the Generation tab of the Options dialog, then enter a new number in the Factory File Count ...

	10.3. File Extension Used When Generating Shell or Factory Files
	To change the file extension used when generating shell or factory files, select Options=>Global after starting XVT-Architect—this opens an Options dialog. Click the Generation tab of the Options dialog, then enter a new string in the Source File E...

	11
	Importing and Exporting Strings
	XVT-Architect provides you with the ability to import and export strings and menu titles of a project. Using the import and export feature, you can do the following:
	11.1. Externalized Projects
	An externalized project consists of several files containing the project information. Each file is referenced in the master file.
	A master file contains an “overview” of an externalized project’s information. It also indicates the file in which specific information is stored. The master file contains the following:
	11.1.1. Export File Types
	Two types of export files are generated. The first type is a file with the extension .ame. This file is an index that tells you where to find externalized data specific to a specific object type in XVT-Architect. The other type of export file has the...

	11.2. Exporting Project Strings
	You can export XVT-Architect project strings to the externalized project format.
	1. Choose File=>Export Strings; the Export Strings dialog is displayed.
	2. In the Save File dialog that is displayed, indicate the location and name of the master file. The default filename extension of a master file is .ame.

	11.2.1. Exporting Strings for Localization
	One obvious reason to export a project is to localize one or more of its layers. XVT-Architect generates numerous files, but you only need to localize a small subset of them. Follow the standard steps for exporting, as described in section 11.2. When...
	XVT-Architect generates all strings for each layer in a separate file. This includes strings used inside views as well as the titles of menu items. The first step you must take after exporting the project is to open the project’s .ame file and use ...

	11.2.2. Additional Files that Can Be Localized
	Both at the Portability Toolkit level and at the XVT-Power++ level, XVT provides localized versions of its standard resource text and help source text for U.S. English, German, French, Italian, and Japanese. These localizations are encapsulated in in...

	11.3. Importing Project Strings
	You can import externalized project strings into XVT-Architect.
	1. Open a project (.amf) file.
	2. Choose File=>Import Strings, and specify a master (.ame) file that contains the strings for the project.

	11.3.1. Detecting Problems
	When XVT-Architect encounters a problem during the import process, it stops the process, reports the problem, and allows you to choose how to handle the problem.

	11.3.2. Detecting Errors
	If XVT-Architect encounters an error during the import process, it stops the process and opens a dialog that describes the problem. For example, if XVT-Architect detects a syntax error in the external project files, or if the master file references a...

	12
	Application Programming with XVT-Power++
	This chapter gives you an overview of the roles assigned to different parts of the XVT-Power++ system so that you will know how the various components interact with one another. The main parts that are discussed are: Application, Document, and View. ...
	12.1. Application Level
	The application level of an XVT-Power++ application controls various aspects of the program: starting it and shutting it down and initializing the network connections, database connections, and any other connections needed by the application.
	12.1.1. Controlling the Program
	12.1.2. Handling Application Startup
	Your program transfers control to XVT-Power++ inside of main. To start your program, giving control to XVT-Power++, create an instance of your user-derived CApplication class and invoke the Go method. An example of this procedure, found in the starta...

	12.1.3. Handling Application Cleanup
	12.1.4. Providing Global Objects and Global Data
	XVT-Power++ provides a class, CGlobalUser, which you optionally can derive. Use the derived class to define your own references to global objects, flags, or attributes. If you derive off this class, keep in mind that it is instantiated by your user-d...

	12.1.5. Getting Access to Global Objects and Global Data
	Your application gets access to all global data through CObjectRWC, which is initialized through the CApplication class. The CApplication initializer allows you to set up the global user data for your user-derived application object.

	12.1.6. Finding Out About Global Definitions in XVT-Power++
	The class that contains global definitions for XVT-Power++ is Global.h, which is actually a file. You may need to refer to it occasionally to find out how something is defined; do not modify this file.

	12.1.7. Creating Documents
	12.1.8. Propagating Messages
	CBoss, which is never itself instantiated, supplies the basis for the event and message-passing structure. It has three methods for event hooks that are located inside objects throughout the application framework hierarchy: DoCommand, DoMenuCommand, ...

	12.1.9. Creating a Desktop to Manage Screen Window Layout
	The user-derived CApplication object creates one CDesktop object per application. All core XVT-Power++ classes have access to the desktop through the global references stored by the following:

	12.1.10. Setting Up Menus and Handling Menu Commands
	The setting up of menus is typically done in the following two places:

	12.2. Document Level
	The document level of XVT-Power++’s application framework is responsible for accessing and managing data. The CDocument object manipulates files or internal pieces of data and acts as the link between the application and the views of the data. A do...
	12.2.1. Getting Access to Data
	Objects of the CDocument class are responsible for providing access to the model data to be displayed inside views, in the form of files, records, hooks to a database, and so on.

	12.2.2. Managing Data
	A CDocument object serves as a central means of communication for changes and updates in different windows. It has hooks for saving data, printing it, closing it, and so on.

	12.2.3. Creating Windows
	12.2.3.1. Creating a Task Window
	Inheriting from XVT-Power++’s basic window class, CWindow, is a variant child class: CTaskWin.

	12.2.3.2. Creating Modal Windows
	12.2.3.3. Creating Dialog Windows
	XVT-Power++ has a class for creating dialog boxes: CDialog. In XVT-Power++, dialog windows are different than regular windows. Dialogs are defined in URL resource format and thus do not inherit the properties of CWindow, such as the ability to nest o...

	12.3. View Level
	The view hierarchy is the most extensive branch of XVT-Power++. It comprises all of the classes that display some type of object on the screen when they are instantiated. The parent of all these classes is CView, an abstract class.
	12.3.1. Displaying Data
	Any class that inherits from CView can display itself.This includes CWindow, which constitutes the link between views and documents. CWindow is responsible for displaying data. The window is the topmost view in the nesting of views.

	12.3.2. Supplying Native Controls
	CNativeView is an abstract class from which several different types of controls have been derived for you, among them buttons, icons, check boxes, scrollbars, list edits, list buttons, list boxes, and radio buttons. When native view classes are insta...
	Native views are the means of communication between the application and the user who is operating the mouse. The user performs such operations as:

	12.3.3. Nesting One View Within Another
	12.3.4. Drawing Basic Shapes
	The shape hierarchy, probably the most self-explanatory of the XVT-Power++ view hierarchies, includes squares, circles, arcs, polygons, rectangles, and other basic shapes that a user can draw. Some of the objects can be rotated. Application designers...

	12.3.5. Creating Grids of Cells
	A grid object is a grouping of cells that are arranged into rows and columns. XVT-Power++ offers three grid classes: the abstract class CGrid, and the classes CFixedGrid and CVariableGrid that allow you to create grids with either fixed or variable-s...

	12.3.6. Displaying Lists of Selectable Items
	12.3.7. Providing Text Editing Facilities
	The abstract class CNativeTextEdit and its subclasses provide: 1) a one-line text area, 2) a variable-sized text editing area, and 3) a scrolling text area.
	Below CNativeTextEdit, the text editing tree branches out into these three variations of text editing objects:
	12.3.7.1. CText versus CNativeTextEdit

	12.3.8. Designating an Area of the Screen as a Sketching Area
	The CSketchPad class is provided for interaction with the user who wants to dynamically draw or create new objects inside a window. CSketchPad can be a basis for CASE or drawing programs.
	Figure 12.1. Defining a sketchpad on the screen

	12.3.9. Creating a Rubberband Frame
	12.3.10. Representing an Area on the Screen with a Virtual Size Larger Than its Display Area
	CVirtualFrame is an abstract class that has two regions associated with it—a real, visible region that is located inside a window or some other view, and a virtual region. Its subclass, CScroller, represents a virtual frame with scrollbars attached...
	Figure 12.2. Virtual frames display small portions of large datasets

	12.3.11. Attaching Scrollbars to a Window or View
	XVT-Power++ contains two classes that pertain to scrollbars. NScrollBar provides a horizontal and/or vertical scrollbar that has the look-and-feel of scrollbars in the native window manager. These scrollbars can be created anywhere inside a CSubview....

	12.3.12. Resizing and Moving Views with Glue

	13
	Coding Conventions and Style Guidelines
	This chapter presents the coding conventions and language/style guidelines that XVT-Power++ follows. Awareness of these guidelines will help you to use XVT-Power++ more efficiently.
	13.1. File Structure
	With few exceptions, XVT-Power++ consists of a set of C++ classes. The most basic rule is that there must be one class per file. The name of a file matches the name of the class to which it pertains. Each class has a pair of files, a .h (header) and ...
	13.1.1. Including Files for Usage
	When you write a piece of code that uses a certain class, you must include that class’s definition. The name of the file containing the definition of the class may vary from platform to platform. For example, on some platforms CRegularPoly is store...
	XVT-Power++ provides a special structure for including files that allows you to name your files as you desire, without worrying about platform restrictions. This structure is illustrated as follows:

	13.2. Naming Conventions
	This section describes XVT-Power++ naming conventions. It is not exhaustive, but it does cover the most common cases. Mangling is also discussed.
	13.2.1. Classes
	Class names begin with a prefix letter, a C for most classes. XVT-Power++ requires capital letters rather than underscores as separators. That is, the prefix and the first letter of each word in the class name are capitalized. For example:
	Native classes use the prefix N. For example:
	The classes that are in the Rogue Wave toolkit use the prefix RW. For example:
	The classes that XVT-Power++ derives from other classes in the Rogue Wave toolkit use the suffix RW, while classes that are also collectable, derived from RWCollectable, use the suffix RWC. For example:

	13.2.2. Data Members
	Class data members use a lowercase prefix of its, it or is. The latter two typically apply to BOOLEAN data members. For example:

	13.2.3. Methods
	The initial letter of each word in a method name is capitalized, as follows:
	Event methods are handled by the view object itself, while DoEvent methods are both handled and passed down to the rest of the subviews, which, in turn, pass them on down to any subviews they may contain. For example:
	Initializer methods use the class name but replace the class prefix with an I, as follows:
	The methods defined in the Rogue Wave libraries begin with a lowercase letter, but the subsequent words in the method name are capitalized. For example:

	13.2.4. Class Statics
	Static class methods or data members take as a prefix the name of the class to which they belong. Also, constants appear in capitalized letters (all-caps), as shown here:

	13.2.5. Constants and Defines
	The first word of a constant appears in all-caps. Any other words must appear in either all-caps or initial caps. For example:

	13.2.6. Functions
	Functions are not treated differently from methods. That is, the first letter of each word in the function name is capitalized:
	Within the signature of a method or a function, the parameters have a prefix of the to distinguish them from local variables:

	13.2.7. Variables
	Local variables have a prefix of a or an to distinguish them from parameters for methods and functions:
	XVT Portability Toolkit-related names contain the word XVT, as follows:
	Table 13.1. Naming conventions used by XVT-Power++

	13.3. Mangling
	Mangling is a useful utility that ensures that the names of XVT-Power++ classes will not clash with the names of any other classes that you define. Assume, for example, that you are also using some other class library that, by coincidence, also conta...
	Suppose you are in a file, foo.cxx, in which you want to use both the XVT-Power++ CStringRW class and another party’s CStringRW class. Immediately following the inclusion of the string header file, you would put in the following line:

	13.4. C++ Style Guidelines
	This section presents C++ style guidelines that XVT-Power++ users follow. Understanding them will enable you to use XVT-Power++ more efficiently; following them will make your code more compatible with XVT-Power++.
	13.4.1. const and enum
	Use const and enum rather than #define whenever possible, allowing your programs to take full advantage of C++’s type safety, like this:
	Make full use of constant methods whenever applicable, as shown here:

	13.4.2. Inlines
	Separate inlines from the actual class definition to avoid cluttering the interface. Most inline code is placed in a separate include file so that implementation is not revealed when the interface is the only concern. For example:

	13.4.3. Overloaded Methods
	XVT-Power++ strives to overload methods only while preserving semantics. For example, the following two methods take different parameters but have the same outcome:

	13.4.4. Internal Structure of Classes
	Classes are always organized as follows:

	13.4.5. Function Parameters
	Many times programmers calling methods or functions wonder what they can validly pass into them, whether they need to delete what they pass in later, whether they need to worry about their object being modified or not modified, or whether the object ...
	Because all of these questions arise, XVT-Power++ simplifies the number of case situations that can happen for parameters when a function is called. Thus, you should look at the type of the function parameter, and, depending on the type, you can make...
	13.4.5.1. Pass by Value
	13.4.5.2. Constant References
	13.4.5.3. Constant Pointers
	13.4.5.4. Non-constant Pointers

	13.4.6. Return Values
	The issues here are similar to those for parameters, except that now we are concerned with what is returned. XVT-Power++ returns only the following four values: temporary values, references, constant pointers, and non-constant pointers.
	13.4.6.1. Temporary Values
	On the safest side are the temporary values. These are usually used on the spot or are copied into local variables. Note that returning temporary copies to large objects can be inefficient. XVT-Power++ sometimes avoids this by using reference countin...

	13.4.6.2. References
	The return value can be used as an lvalue. XVT-Power++ guarantees to return references only to the object through which the method is invoked. References to newly allocated objects are never returned. The example shown here makes possible the followi...

	13.4.6.3. Constant Pointers
	13.4.6.4. Non-constant Pointers

	13.4.7. Inherited Methods
	You can assume an is-a relationship when one XVT-Power++ class is derived from another. Thus, only public inheritance is used unless otherwise noted in the documentation. Following are two examples of inherited methods:

	13.4.8. Basic Class Utility Methods
	There are some utility methods present in every XVT-Power++ class. Every class is guaranteed to have a constructor and a destructor. Also, an assignment operator is defined for every class. Many classes allocate some memory and have pointers to other...

	13.4.9. Templates
	XVT-Power++ does not use templates in its current implementation, and it will not use them until they are more portably supported across all XVT-supported platforms. Of course you are free to use templates in your own code provided they do not presen...

	14
	The Appl–Doc–View Hierarchy
	This chapter describes:
	14.1. Introduction to CApplication
	CApplication is an abstract XVT-Power++ class that you must override for each application that you write; it creates and manages the application object. The application object resides at the top-level of the XVT-Power++ application framework, perform...
	14.1.1. Application Startup and Shutdown
	The application object for each program is created in the main function, which is located in the StartUp source file. The main function creates an application object, giving it the information that it needs upon creation, and then invokes a Go method...
	The definition of Go is as follows:

	14.1.2. Tasks Handled at the Application Level
	When an XVT-Power++ application starts, it initializes various program defaults, such as enabling or disabling some menu items on the menubar and bringing up a default window such as a splash screen or a dialog box.
	One of the responsibilities of the CApplication class is to manage global objects and global data for the application. The objects managed by the application include the following:

	14.2. Introduction to CDocument
	The document is the link between the application level and the view level of the XVT-Power++ application framework. The CApplication object instantiates and manages CDocument objects, which in turn instantiate and manage CView objects for displaying ...
	14.2.1. Sharing Data at the Document Level
	Each application normally needs to manage data in some form, whether it be stored as a file or as a record in a database. The data can be accessed in different ways, perhaps through the network from a server process. The XVT-Power++ class that is in ...
	Figure 14.1. Order in which objects are created within the application

	14.2.2. Data Propagation
	CDocument can create totally different type of views for viewing the same set of data in different display formats. When a document has constructed multiple types of views to display the same set of data, it is in charge of coordinating changes in th...
	14.2.2.1. TDI Compared to ADP
	TDI is a very powerful feature in XVT-Power++. Using CNotifiers and CTdiValues, TDI automatically propagates a change of data from TDI-enabled objects to other TDI-enabled objects.

	14.2.2.2. Sharing of Data
	One way to update the graph would be for the spreadsheet window to communicate directly with the graph window through their common CDocument object. Yet another way is to use transparent data integration (TDI) to establish direct channels of communic...

	14.2.3. DoCommand Chain of Message Propagation
	Typically, if the data inside a view changes, the view generates a DoCommand to the document. In response, the document sets its “needs saving” state to TRUE and may update the data display in several of its windows to reflect the change.

	14.2.4. Tasks Handled at the Document Level
	The following sections describe in detail the data access and data management features provided in XVT-Power++’s CDocument class.
	14.2.4.1. Accessing Data
	XVT-Power++ provides different ways of creating new documents. Typically, a document object is instantiated when the user selects “New” or “Open” from the File menu. Some applications may create several documents and open them by default when...

	14.2.4.2. Building Windows
	Once you have accessed some data, probably through the CDocument constructor, and have opened it (i.e., have created an empty document), you are ready to build a window to display the data. Every document must define how to build a window. The CDocum...

	14.2.4.3. Managing Data
	The main CDocument management tasks pertain to opening and closing documents, updating/saving their data, and printing their data.

	14.2.4.4. Default Data Management Mechanisms
	XVT-Power++ provides the following default data management mechanisms that you can either choose to use or override in your particular documents:

	14.2.4.5. Managing Windows
	As already stated, BuildWindow must be defined by each derived document class in order to specify what should be done to build a window. As more windows are created for the same document, you will want to take advantage of CDocument’s window manage...

	14.2.4.6. Printing Data

	14.3. Introduction to CView
	The view resides at the third level of the XVT-Power++ application framework, serving as the layer that permits the programmer to display information on the screen. Some views are built up out of other views, as discussed in Subviews on page 16-15.
	14.3.1. Views Provide a Graphical User Interface
	Together, the various view classes give you access to a model for visual display that is functionally complex, yet easy to use, once you understand the model. Views display textual and graphical data, allow the user to interact with the application, ...
	Views display a representation of different kinds of data in an application. When a user reads in a file, the application opens a new document that represents the file. A view within a window associated with the document—say, an NScrollText object...

	14.3.2. Tasks Handled at the View Level
	14.3.3. General Characteristics of Views
	The primary characteristic shared by all views is that they draw themselves on the screen. Each view must supply its own drawing mechanism, which is done through a method called Draw. This method takes a constant CRect reference that indicates the cl...
	The following code shows how the drawing and clipping is handled when a DSC++ application draws a line:
	14.3.3.1. Drawing
	If you examine the Draw method for different types of views, you will notice the native XVT Portability Toolkit calls to XVT’s functions for drawing such objects as icons, arcs, lines, and so on, as shown in the following example:

	14.3.3.2. Showing and Hiding
	Related to a view’s capacity to draw itself is its ability to show and hide itself. There may be times when you want to tell a view not to draw itself any more by sending it a Hide message as shown here:
	When you send a view a Hide message, you are notifying it not to respond to update events from that point on. You are not notifying it to change the way the screen looks by immediately becoming invisible. You are just changing its behavior. You will ...

	14.3.3.3. Activating and Deactivating
	In addition to changing the visibility of views through Show, Hide, and Draw messages, you can notify views to be active or inactive. For example, a window may contain a spreadsheet with a grid full of text fields that can be activated one at a time ...

	14.3.3.4. Enabling and Disabling
	Enabling or disabling views is different from making views active or inactive. Disabling a view notifies it not to respond to any events from the user (i.e., keyboard or mouse events). If a user clicks on a disabled view, it will not respond. However...

	14.3.3.5. Dragging and Sizing
	Every view has a certain size and location, which can be changed when the user drags it. You can set the dragging or sizing properties of a view to be on or off. Some views act as enclosures for other views and can scroll their contents when the user...

	14.3.3.6. Setting the Environment
	Another characteristic of views is that they each have access to a helper environment object (CEnvironment) that specifies the colors pen, brush pattern, and fonts to be used to draw that view.

	15
	Application Framework
	15.1. Levels of the Framework
	15.1.1. Flow of Control
	There must be a logical order to the events that occur within the system, whatever they may be. The XVT-Power++ application framework assigns responsibility for the flow of control to its top level, where the CApplication class resides. For each appl...

	15.1.2. Accessing and Managing Data
	15.1.3. Displaying Data
	Figure 15.1. Application framework for a typical application

	15.2. Propagating Messages
	The core of XVT-Power++’s application framework is the ability of its different levels to communicate with each other and to delegate tasks to each other. For example, the user interacts with the application through the view level and sees the appl...
	15.2.1. Bidirectional Chaining
	15.2.2. Upward Chaining
	15.2.3. Downward Chaining
	Figure 15.2. Channels of message propagation

	15.2.4. The Role of CBoss and CObjectRWC
	15.2.4.1. DoCommand Messages
	The most often used type of message is the DoCommand. Any object in the XVT-Power++ application framework can receive a DoCommand message. The DoCommand allows you to send any generic message to any object. Two items of information can be passed alon...

	15.2.4.2. ChangeFont Messages
	Any object can receive a ChangeFont event when a user selects a change of font from the menubar. This font change can be handled on any level of XVT-Power++’s application framework: 1) at the view level as a particular view changes its font, 2) at ...

	15.2.4.3. DoMenuCommand Messages
	15.2.4.4. Unit Messages

	15.3. Handling Keyboard Events
	By default, keyboard events are handled the same way as menu events. When a keyboard event comes into a window, it goes through several layers of processing, as shown in Figure 15.3. CSwitchboard uses the information in the parameters of the E_CHAR e...
	Figure 15.3. Order in which keyboard events are processed within a DSC++ application

	The event is passed to the view possessing focus using the DoKey method. If that view elects not to consume the event, it is propagated on up to the document level and perhaps to the application— whichever level can take care of it. A keyboard even...
	15.3.1. Keyboard Navigation in Windows
	Keyboard navigation is the use of keyboard input, in lieu of mouse pointing and clicking, to interact with GUI objects. Generally, native look-and-feel for keyboard navigation includes using the Tab key and Shift-Tab key (back-tab) to traverse throug...
	Navigators created internally in CWindow are automatically registered with the global navigator manager. As keyboard events arrive at the application’s switchboard, the following actions are taken:

	15.4. Setting the Environment
	The “look-and-feel” is another aspect of a graphical application that is determined on all three levels of XVT-Power++’s application framework, through XVT-Power++’s CEnvironment class. CEnvironment allows you to give the various windows and ...
	Using CEnvironment, you set such display properties of objects as color, font type, pen attributes, brush attributes, drawing mode, and anything else that pertains to displaying an object that can have different attributes on the screen.
	15.4.1. Global Environment Object
	Figure 15.4. The use of environment objects in the XVT-Power++ object hierarchy

	15.4.2. Customizing Colors and Fonts in Native Views
	XVT-Power++ lets you assign colors and fonts to the native views, or controls, of an application. The interface for doing this is the same as the interface for setting the colors or fonts of any CView:
	These CView methods are overridden by CNativeView to supply the specific implementation of font and colors within different types of controls. Each native platform supports different control component colors, but there is much overlap.

	15.5. Factories
	As part of an object-oriented application framework, many XVT-Power++ classes must instantiate other classes as part of their implementation. There are many reasons why objects are instantiated internally. For example, CView instantiates CGlue object...
	15.5.1. Abstract Factories
	15.5.2. Framework Factory Manager
	1. Define a concrete subclass of CViewFactory and override the virtual methods that create the objects that you have customized:
	2. Install an instance of this factory into the factory manager as soon as the manager is created within CApplication::InstallFactories():
	3. Delete the factory after it is no longer used, because the factory manager will not delete it for you:

	15.5.3. Framework Factories
	XVT-Power++ defines several factories that are automatically registered into the application’s factory manager. These factories are used internally to create a variety of objects within the framework.
	This section lists the factories and what objects they create. If you would like to change the type of certain objects created within the framework, all you need to do is install a derived version of the appropriate factory.
	CApplicationFactory, CApplicationFactoryDefault
	CMenuFactory, CMenuFactoryDefault
	CPlatformFactory, CPlatformFactoryDefault, CWin32PlatformFactory, CMacPlatformFactory
	CResourceFactory, CResourceFactoryDefault
	CValidatorFactory, CValidatorFactoryDefault
	CViewFactory, CViewFactoryDefault
	CWindowFactory, CWindowFactoryDefault

	15.6. Printing
	XVT-Power++’s interface to the XVT Portability Toolkit’s printing facilities is called CPrintMgr. This class is in charge of queuing up data and printing it. At any point, you can notify any object in XVT-Power++’s application framework to prin...
	The actual implementation of printing is handled inside CPrintMgr. Upon receiving a print command, the following occurs:

	16
	Manipulating Views and Subviews
	Views display a representation of different kinds of data in an application. Views display textual and graphical data, allow the user to interact with the application, and reflect the state of the application. This chapter considers the possible rela...
	16.1. Enclosures and Nested Views
	As discussed in section 14.3, many views are built up by putting several views together and inserting them into a larger view that is capable of containing different kinds of smaller views. This composition is made possible by a relationship between ...
	16.1.1. Similarity Between Enclosures and Owners
	The concept of view ownership is discussed in section 16.2 on page 16-6. It is worth noting that while the distinction between enclosures and owners is real and useful, there is an important similarity between them that contributes greatly to XVT-Pow...

	16.1.2. Clipping
	Enclosures ensure that every view contained inside them is clipped to them. Clipping means that a view contained inside an enclosure cannot draw itself beyond the boundaries of its enclosure. Thus, a nested view may be only partially visible.
	For example, a text object or a picture contained within a window clips to the window’s border so that any text or part of the picture extending beyond the window’s border is not visible and will need to be scrolled or otherwise moved in order to...
	Figure 16.1. Nesting behavior of views; objects inside nested views may be clipped

	16.1.3. Defining a View’s Enclosure
	When a view other than a window is created, XVT-Power++ needs to know what enclosure to give that view. Thus, the constructors of most views have a parameter that passes a pointer to a view that is acting as the enclosure, as shown here:

	16.1.4. Limitations on the Hierarchy of Enclosures
	Figure 16.2. XVT-Power++ view hierarchy

	16.2. Owners and Helpers
	Another relationship between view objects that needs to be considered is ownership. Different views can be owners of other views that act as helper or auxiliary objects and provide a service to the owner view. If a view object that owns a helper obje...
	16.2.1. CGlue
	One example of a helper object is a CGlue object, which provides the “stickiness properties” of its owner. Stickiness refers to the behavior of a view when its enclosing view is sized. Depending on its type of stickiness, a nested view will stret...
	Suppose you want a rectangle to be “stuck” to all four sides of its enclosure, which is a window. You would give it a glue type of ALLSTICKY, as follows:

	16.2.2. CEnvironment
	Another helper class is CEnvironment, which provides an object that keeps track of its owner’s colors, pen, brush, fonts, drawing mode, and so on. You set the environment of a view as shown in the following example:

	16.2.3. CWireFrame
	CWireFrame objects are helper objects that can be owned by other views. A wire frame is an object that enables a view to be moved and sized. On the screen, a wire frame appears as a rubberband (flexible, dynamically changing) frame surrounding an obj...

	16.2.4. CPoint and CRect
	16.2.5. CDrawingContext
	CDrawingContext supports queue invalidation for high performance drawing.
	CDrawingContext flushes queued updates using one of two algorithms:

	16.3. The Coordinate System
	Coordinate systems are crucial to the use of views because the screen location of a view must be specified before it can be drawn. Understanding the coordinate system will help you use XVT-Power++. You must learn about three types of coordinates:
	16.3.1. CRect
	CRect is simply a class that provides a data structure for storing information about a rectangular region of the computer screen. CRect manages four different values: left, top, right, and bottom. Together, these four values form a rectangle that is ...
	Figure 16.3. The union of two views
	Figure 16.4. The intersection of two views

	16.3.2. CPoint
	CPoint is similar to CRect in that it also manages positions within XVT-Power++’s coordinate system. However, CPoint manages a value for a single point or single unit. Instead of an entire rectangular region, CPoint consists of a horizontal and a v...

	16.3.3. The Point of Origin
	Central to any coordinate is the point of origin from which the coordinate is calculated. That is, before a coordinate such as 3,9 makes sense, you need to know the context for the numbers — whether the point is screen-relative, window-relative, or...
	16.3.3.1. Screen-relative Coordinates
	16.3.3.2. Window-relative (Global) Coordinates
	In many places in XVT-Power++, you will encounter the term “global coordinates.” This term is synonymous with “window- relative coordinates”—“global coordinates,” as it is used here, refers to the window, not to the entire screen.

	16.3.3.3. View-relative (Local) Coordinates
	Suppose you decide to place a view inside the rectangle, say, another rectangle, as shown in Figure 16.5. The rectangle is inserted at position 5,15 and extends to 15,25. These coordinates, as you may have guessed, are relative to its enclosures’s ...
	Figure 16.5. View-relative coordinates for nested views

	16.3.4. Units of Measure
	Another critical issue for coordinate systems besides the point of origin is the size of the units—whether they are pixels, inches, centimeters, characters, or a user-defined unit. If the units are pixels, each unit maps one-to-one with pixels on t...

	16.3.5. Translating Coordinates
	XVT-Power++ provides facilities for translating from one coordinate system to another. Suppose you have defined a view that inherits from CSubview and therefore can act as an enclosure. This view contains several nested views. Moreover, it is defined...
	Call Translate and pass it the enclosure and the nested view, as follows:

	16.4. Subviews
	All XVT-Power++ views can, and in fact must, be nested inside an enclosing view, with the exception of the window, whose logical enclosure is the screen or the task window. However, not all views can act as enclosures; the subset of views that can ac...
	16.4.1. Nesting Behavior
	16.4.1.1. Overlapping Views
	Suppose there is a window in which you have inserted a circle object. You then place a square directly on top of the circle. In this case, the square is not nested inside the circle. Both shapes are nested inside of their common enclosure, a window, ...

	16.4.1.2. Obtaining Information About Nested Views
	The interface of CSubview allows you to find out several different things about a given enclosure’s nested views. You can find a view that is nested inside the enclosure, either by using a view ID or by specifying a location in coordinates relative...

	16.4.2. Routing Events to a Specific Subview
	16.4.3. Propagating Messages from Enclosures to Nested Views
	XVT-Power++ has many different types of messages that are propagated from an enclosure to all of its nested views, and then from each of these nested views (which may also be enclosures) to their respective nested views, and so on in a recursive fash...

	16.4.4. CView and CSubview—Interface Similarities
	This schema (base method/“Do-” method) works quite well for all views that can act as enclosures, that is, for objects derived from CSubview. It is unnecessary for views that derive directly from CView. A CView object, has no need to propagate me...
	16.4.4.1. Wide Interface
	At the CView level, a “wide interface” is in place to make CView objects almost identical in use to CSubview objects. CView’s “Do-” methods simply call the view’s basic method and do not attempt to do looping through enclosed views becaus...

	16.4.4.2. Narrow Interface
	In general, avoid direct calls to the narrow interface; always call the wide interface. The wide interface (DoDraw, DoActivate, DoKey, ...) is for your use, while the narrow interface (Draw, Activate, Key, ...) is used by the XVT-Power++ framework an...

	16.5. Keyboard Navigation
	The XVT-Power++ framework contains a set of classes that work together to provide keyboard navigation across multiple views of a window. The architecture of the keyboard navigation system is very flexible and allows you to customize it to the needs o...
	16.5.1. Navigation Terminology
	The CNavigator class provides many ways of customizing the navigation across views. The following components are used to define a navigation sequence:

	16.5.2. Automatic Default Navigation
	CWindow automatically creates a default navigator to manage top- level views (i.e., views nested one level deep). The type of navigator created is of the class CWindowNavigator. By default, this navigator performs the following:
	Special Instructions for XVT-Architect Users
	In XVT-Architect, you can set the default tabbing order of views managed by a CNavigator object by following these steps:
	1. Open the Drafting Board.
	2. Select Palettes|Alignment.
	3. Select the first view in the tabbing sequence.
	4. Click on the "Send to Front" button in the Alignment palette.
	5. Repeat steps 3 and 4 for the remaining views in the order that they should be tabbed.

	16.5.3. Keyboard Navigation Classes
	The following classes provide keyboard navigation:

	16.5.4. Handling Keyboard Events
	Navigators created internally in CWindow are automatically registered with the global navigator manager. As keyboard events arrive at the application’s switchboard, the following actions are taken:

	16.5.5. Customized Navigation
	There are times when the default automatic navigation is not suitable to the interface of an application. Navigation can be customized using the following approach:
	1. After a window’s views are created, obtain a pointer to the window’s navigator:
	2. Add tab stops as necessary. For example, the following code adds tab stops for a window with nested groups of views:
	3. Add more tab stops for a view in itsBottomViews enclosure.
	4. Define hot keys if necessary. The following code maps the “A” key to the selection of the “A” view.
	5. Add movements. The following code adds movements for the Tab and Back-Tab keys:
	6. Set any other CNavigator attributes as needed.

	17
	Native Views
	17.1. Introduction
	17.1.1. CNativeView
	At the top of the native view hierarchy is CNativeView, which handles much of the work that must be done to manipulate the native views that inherit from it—all the way from moving and sizing to creation/ destruction, enabling/disabling, and so on....

	17.2. Types of Native Views
	17.2.1. NButton
	17.2.2. NCheckBox
	The NCheckBox class provides an object that becomes selected (generating a select command) when the user clicks on it and deselected (generating a deselect command) when the user clicks on it again. Check boxes are commonly used for menu items or ite...

	17.2.3. NRadioButton and CRadioGroup
	A radio button is similar to the check box. Because the radio button object by definition must be used in groups, it is provided by two classes, NRadioButton and CRadioGroup.

	17.2.4. NScrollBar
	17.2.5. NNotebook
	A Notebook is comprised of three objects: The shell, the page windows and face windows of the notebook. The notebook shell is responsible for drawing the border of the notebook and the Tabs. Each Tab has a border, and possibly text and an image. The ...
	17.2.5.1. Creating and Destroying a Notebook
	There are five steps to creating a Notebook as follows:

	17.2.5.2. Interface Objects
	After calling NNotebook->SetFace, objects may be added to or removed from the CFaceWindow. Any desired Environment may also be set at this time.

	17.2.5.3. Navigation
	There are three navigators of concern when discussing notebook navigation. The three navigators involved are the notebook's enclosure, the NNotebook, and the CFaceWindow.

	17.2.6. Icons
	An icon resource is a bitmap picture that can be drawn on different platforms. XVT-Power++ contains a basic icon class called NIcon. NIcon derives from CNativeview, so icons have all the properties of native views.
	17.2.6.1. Icon Portability Issues
	When you want the most portability from platform to platform, you can safely assume that icons must be drawn in only two colors and are limited in size to 32-by-32 pixels. If you are willing to sacrifice portability to obtain more flexibility, you ca...

	17.2.6.2. Environment Settings for Icons
	On some platforms, the icon drawing appears in the foreground color, as does its title. Open spaces in the drawing appear in the background color. You can set the background and foreground colors. On other platforms, the icon’s color is fixed as de...

	17.2.7. Icon Resources

	18
	Windows
	18.1. Window Attributes
	When you instantiate an object of type CWindow, you can set several different attributes that are available through the XVT Portability Toolkit in order to tailor the window to the very specific needs of your application: deciding whether it has scro...
	Table 18.1. XVT Portability Toolkit window-creation flags

	18.2. Interaction With the Document
	A CWindow object can be of any XVT type; it receives all window events. Most of the window management, such as moving and sizing, is done by the window manager or the XVT-Power++ desktop. Possible XVT window types are shown in Table 18.2.
	Table 18.2. XVT Portability Toolkit window-type flags

	18.3. Window Construction
	1. Derive your own application-specific window class.
	2. Add some objects that will be nested inside the window, creating them in the window’s constructor.
	3. Give the window itself as the enclosure of the objects that will be nested inside.

	18.4. The Task Window
	The task window, CTaskWin, is a class that XVT-Power++ uses internally. It is a private class that can be instantiated only by XVT-Power++. This class is created for use on platforms that require a task window to enclose all other windows in the. CTa...
	Figure 18.1. Sample task window

	18.5. The Desktop
	No discussion of CWindow is complete without a consideration of CDesktop, which is responsible for managing the layout of the different windows on the screen. At any time while it is running, an XVT-Power++ application will have a number of windows o...

	19
	Mouse Events and Mouse Handlers
	One of the key features of graphical user interface applications is that they are mouse-driven. The mouse is a very popular way for the user to interact with the application. This chapter considers the kinds of interactions that occur as views receiv...
	19.1. Basic Mouse Events (Methods)
	These are the four different kinds of mouse events that can occur in XVT-Power++:
	19.1.1. Clicking the Mouse
	19.1.2. Mouse Event Parameters
	Each of the four basic mouse methods has the following three parameters:

	19.1.3. The “Do-” Mouse Methods
	The mouse events described in section 19.1 are not the only ones included in the interface. Actually, there are four additional mouse events:
	1. It determines which view should receive the event.
	2. It localizes the location to the coordinate system of the view that is to receive the event.
	3. It calls the receiving view’s basic mouse method theLocation with the localized information.

	19.1.4. Propagating Mouse Events Through Views
	Most view classes are programmed to respond with very specific behaviors to mouse events. For example, all moving and dragging is handled by the views themselves. A button is an example of a view that is programmed to respond to MouseDown and MouseUp...

	19.1.5. Using the Mouse to Resize a View
	If the view that is to receive the event is movable and/or sizeable, this state is treated as a special case. For example, if a button receives a mouse event, it typically changes its appearance when pressed and generates a DoCommand when it is relea...
	The following is a summary of the steps that occur in sending a mouse event to a view:
	1. A user clicks the mouse over a certain point on the screen.
	2. A CSubview “Do-” method receives this event and interprets the event’s location in window-relative coordinates; it is clear which window should be in charge of the event.
	3. The “Do-” method calls the CView FindEventTarget method to find the deepest subview containing the event’s location.
	4. FindEventTarget calls CView::FindHitView, which returns either the target view or its wire frame.
	5. If FindEventTarget returns the target view, the “Do-” method localizes the event location to the coordinate system of the target view.
	6. The target view’s basic mouse method is called with the localized information.

	19.2. Mouse Event Processing
	The XVT-Power++ framework provides different ways of dealing with mouse events in an application. Events originate in the system and are sent to the application’s CSwitchBoard object. As described in section 19.1, CSwitchBoard may receive four kind...
	Figure 19.1. Mouse event processing in an XVT-Power++ application

	XVT-Power++ view classes “expect” to receive four types of mouse events; with each event, the system provides the following information:
	19.2.1. Mouse Handlers
	Mouse handlers are ideal when mouse behavior needs to be changed for a window whenever a special kind of view is inserted into the window. For example, suppose you define a special view that requires that the cursor bitmap change whenever the mouse e...
	19.2.1.1. Why Use Mouse Handlers?
	CMouseHandlers are potential timesavers because they allow you to define a mouse behavior once and reuse it with any window by simply plugging an instance into the window. For example, XVT-Power++ provides a predefined CMouseHandler derived class tha...

	19.2.1.2. Registering a Mouse Handler
	Each XVT-Power++ window may have zero or more mouse handler objects that deal with the mouse events received by that window. Mouse handlers are registered with a window through the use of CWindow’s CMouseManager object. The mouse manager is simply ...
	The following code shows how a mouse handler is registered with a window:

	19.2.2. Virtual Mouse Event Methods
	When an event is not consumed by a window’s mouse handler, it is passed on to the window though one of the following virtual mouse methods:
	The default behavior of these methods is to locate the window’s view that should receive the event and pass the event on by calling one of the following virtual mouse methods:
	19.2.2.1. Overriding DoMouse*() Methods

	19.3. Drag Sources and Drag Sinks
	Drag-and-drop is a special behavior which allows a user to depress the mouse over a specific area or object in a window and drag that object or some form of data to a new location in the window or to another window.
	19.3.1. CDragSource and CDragSink
	XVT-Power++ provides this type of behavior through the implementation of a special mouse handler class named CDragSource. Figure 19.2 illustrates the CDragSource class and its relationship to other classes involved in the definition of a drag-and-dro...
	Figure 19.2. Drag-and-drop mouse behavior; relationship of drag sinks and drag sources to a mouse handler object

	19.3.2. CViewSource and CViewSink
	Figure 19.2 also introduces two other classes: CViewSource and CViewSink. These are specializations of the more generic CDragSource and CDragSink classes. CViewSource takes a pointer to a specific view during construction. Thereafter, this drag sourc...

	20
	Menus
	20.1. Introduction
	XVT-Power++ menus are handled through the following classes:

	20.2. Menubar, Menu, Menu Item, and Submenu
	Menubars can be built from resources or dynamically. Note that only windows can contain menus; dialogs do not have menubars.

	20.3. Menubar Creation
	Each XVT-Power++ window can use a default menubar or create its own. Dialogs do not have menubars.
	Windows create CMenuBar objects, dynamically or from resources. Windows access their menubar using their GetMenuBar method. They can also change their menubar after creation using their SetMenuBar method.
	The CMenuBar class provides methods to append, insert, remove, or replace submenus in the menubar hierarchy, such as:
	20.3.1. Traversal of the Menubar Hierarchy
	A powerful feature of XVT-Power++ menu handling is automatic traversal of the menubar hierarchy. Automatic menu item traversal is especially important when using multi-level cascading menus.
	A menu item ID is called a tag. Given a tag, CMenuBar can check, enable, and set the title of any menu item in the menu tree without having to traverse the tree. To do this, CMenuBar uses these methods:

	20.3.2. Defining Pop-up Menus
	A pop-up menu is a temporary menu displayed at a specified location over a window (only windows that can receive mouse events may be specified). Pop-up menus are created by sending a DoPopup message to a CMenuBar object. Different pop-up menus can be...
	1. Define a CWindow with a standard or customized menubar.
	2. Edit that window’s CMenuBar, calling the DoPopup method in a way that forces the pop-up menu to have the desired behavior.

	20.3.3. Menubar Deletion
	The CMenubar object associated with a CWindow is automatically deleted in the CWindow destructor

	20.4. Menubar Handling
	When you want the menubars to be consistent for an entire document, the CDocument object should be in charge of setting up the menubars for all the windows associated with it. When you want the menubars of all windows in an application to be consiste...
	20.4.1. SetUpMenus and UpdateMenus
	20.4.2. Menu Events Handling (DoMenuCommand)
	XVT-Power++ menu events are generated when a menu item is selected from a menubar.
	1. CSwitchBoard finds which window had the focus at the time the menu selection occurred, and calls that window’s DoMenuCommand.
	2. The window can handle any menu selection which affects it, and it can pass the message up to its document.
	3. The document’s DoMenuCommand method calls its appropriate method in response to one of the following menu items on the File menu:

	20.4.3. Handling Menu Commands
	As discussed earlier (section 20.4.2), the DoMenuCommand is first called for the window from which the menu item is selected. The DoMenuCommand method has parameters for specifying which menu item was selected and whether the Shift or Control key was...

	21
	Wire Frames and Sketchpads
	One of the features of XVT-Power++’s view classes is that you can easily make them movable and/or sizable. When you click on a view to select it, a rubberband frame surrounds the view, enabling you to drag the mouse to change the view’s size or m...
	21.1. Wire Frames
	The CWireFrame class acts as a friend class. When a view is set to be sizeable or draggable, it instantiates a helping CWireFrame object to enable the appropriate behavior. If an object is movable or sizeable and thus has a helper wire frame, this ob...
	21.1.1. Selection and Multiple Selection
	21.1.2. DoCommands
	A CWireFrame object generates internal XVT-Power++ commands through the DoCommand mechanism in response to certain events. For example, when a view is selected, a CWireFrame Select command is generated, and when the view is de-selected, a CWireFrame ...

	21.1.3. Drawing

	21.2. Sketchpads
	XVT-Power++’s CSketchPad class works in conjunction with CWireFrame to provide the drawing functionality that users typically expect from a graphical user interface. You can use it to draw objects on the fly and to select objects that have been dra...
	Figure 21.1. Window with a sketchpad embedded inside a scroller

	22
	Grids
	As a type of CSubview, XVT-Power++’s grid classes act as enclosures that divide a portion of the screen into rows and columns. The widths and heights of these rows and columns can be set in different ways, depending on whether the grid is fixed or ...
	22.1. Basic Grid Functionality
	XVT-Power++’s abstract grid class, CGrid, provides methods for manipulating a grid: inserting and removing objects and placing them in different ways inside their cells, sizing the grid, getting an object from the grid either by specifying a grid l...
	22.1.1. Inserting and Removing Objects
	You can insert as many views as you want into a grid cell by calling the Insert method. When you instantiate an object that you want to place within a grid, you must give it the grid object as its enclosure and then call the grid’s Insert method, s...

	22.1.2. Placing an Inserted Object Within Its Cell
	When you insert a view into a grid cell, the view can be clipped to the cell or the view may just overlay its cell, extending beyond the cell’s borders if it is too big to fit inside it. You can define how the view is placed within the cell boundar...
	Figure 22.1. A Clipped object and an overlayed object

	22.1.3. Sizing a Grid
	You can get the size of any grid cell, and you can change the size of a grid in one of two ways:
	To determine which of these ways you will size a grid, you must set its sizing policy through CGrid::SetSizingPolicy, which takes a value of either ADJUSTCellSize or ADJUSTCellNumber, as shown here:

	22.2. Fixed and Variable Grids
	Within a CFixedGrid object, all of the rows are the same size and all the columns are the same size. Thus, the cells of a fixed grid all have the same dimensions. When you change the dimensions of one cell in a fixed grid, then the size of all other ...
	Figure 22.2. Use of a fixed grid, an icon panel

	On the other hand, within a CVariableGrid object, the rows and columns have variable widths and heights, as in spreadsheets. Thus, you can set the size of a row or column individually. There is a default width and height for all of the rows and colum...
	Figure 22.3. Use of a variable grid, an order form

	23
	Attachments and Palettes
	23.1. Attachment Classes
	XVT-Power++ applications can provide support for attachments and palettes through the use of three flexible framework classes: CAttachment, CAttachmentFrame, and CAttachmentWindow:
	Figure 23.1. Managing attachments to XVT-Power++ views

	23.2. Managing Specialized Attachments — Toolbars and Status Bars
	One of the responsibilities of CAttachment is to provide a list of possible “fit” sizes for the view it manages. These sizes help the attachment classes figure out how to size and place views as they are dragged and attached to different sides of...
	Usually, you create floating and attachable palettes by defining a toolbar object in XVT-Architect and creating a CToolBarAttachment object to manage it. In addition to this approach, the framework provides one additional class for your convenience:

	24
	Scrollbars, Splitters, and Virtual Frames
	When you are programming a graphical user interface, what you want to display is often too large to fit into the display area on the screen. The object to be displayed might be a window or just a portion of view inside a window.
	Figure 24.1. Sample virtual frame

	24.1. The CVirtualFrame Class
	XVT-Power++’s CVirtualFrame class is an abstract class that provides mechanisms for viewing different areas of a virtual frame. For example, you can call the ScrollViews method, which scrolls the virtual area to the right, bottom, top, and so on. H...
	24.1.1. Automatic Sizing Capabilities
	When you create a CVirtualFrame, you can set the size of the virtual area as well as the size of the visible area. If you do not set the size of the virtual area, then it initially has the same size as the display area.

	24.1.2. The Scroll Range
	Tied to the automatic sizing capabilities of the virtual frame is the idea of both a vertical and a horizontal scroll range. A scroll range specifies the range that is allowed for scrolling a given virtual frame. If a virtual frame has a virtual area...
	Figure 24.2. Vertical and horizontal scroll range is defined within the virtual frame

	24.1.3. The CScroller Class
	24.1.4. The CListbox Class
	The CListbox class derives from CScroller, providing a scrollable box that contains a list of selectable text items. A CListBox object is a composite of the CScroller and CGrid classes. The scroller contains a grid into which the text items are inser...

	24.1.5. Use of the Environment
	The borders of both CScroller and CListBox are drawn with the pen, and the interiors are painted with the brush. You can set the color, pattern, and width of the pen, and also, the brush color. In addition, keep the following points in mind:

	24.2. Split Windows
	The XVT-Power++ framework contains several classes that work together to provide your application with GUI components that can be split into sections with the use of objects known as “splitters.” Splitters are frequently used in the user interfac...
	24.2.1. Types of Splitters
	XVT-Power++ supports two types of splitter interfaces. The first is referred to as a fixed splitter interface, and is shown in Figure 24.3. Think of a fixed splitter as a user-driven geometry manager. This interface is used when you need to allow the...
	Figure 24.3. Sample fixed splitter

	The second type of splitter is referred to as a mapped or dynamic splitter. These splitters are used when a single view uses a large region to display itself, and you want to give the user the option to split the view in two or more panes. Each pane ...
	Figure 24.4. Sample mapped splitters (one with multiple panes)

	24.2.2. Split Window Classes
	Use one or more of the following classes if you wish to use splitters:
	Figure 24.5. Hierarchy of classes used to implement split windows

	CSplitter uses several delegate classes to provide important services:

	24.2.3. Instantiating a Splitter
	24.2.3.1. Using Fixed Splitters
	In a static layout, you can only use a fixed splitter. That is, to use a fixed splitter, you must know ahead of time how many panes you need as well as their layout (arrangement) relative to each other. The fixed layouts are created by nesting splitt...
	First, create the top-level vertical splitter; this splitter contains two panes:
	Next, create a horizontal splitter; this splitter contains three panes:
	Now, the top pane of the browser is initialized by nesting into it the horizontal splitter with three panes:
	In a similar way, a scrollable text object is created and nested inside the bottom pane of the browser:

	24.2.3.2. Using Mapped Splitters
	Setting up mapped splitters is simpler than setting up fixed splitters since usually you must only create a single splitter and then let the user dynamically subdivide it into multiple vertical and horizontal panes. Note, however, that the CMappedSpl...
	First, a mapped splitter is created inside the window:
	Next, trap the event generated each time a new pane is created. When the event is received, the application responds by creating a new scroller and placing it inside the frame. Furthermore, a new oval is created inside the scroller, and the oval is a...
	Similarly, the application must trap the event generated each time a pane is deleted:
	Finally, the application must trap events generated when the user modifies an oval in any one of the panes. When this happens, all other ovals must be updated accordingly since they all mirror the same data:

	25
	Drawing Basic Shapes
	XVT-Power++ includes a wide range of shape classes that allow you to draw different shapes on the screen. Since all of the shape classes derive from CShape, which in turn derives from CSubview, they have the properties of subviews.
	25.1. Use of CEnvironment for Drawing
	The shape classes use CEnvironment for drawing purposes. The border of a shape is drawn with the pen, and its interior is painted with the brush. You can set the color and pattern of both the pen and the brush. Also, you can set the pen width. Severa...
	Figure 25.1. Various pen and brush patterns

	25.2. Rectangles and Squares
	An interesting feature of the CRectangle class is that rectangles can optionally have rounded corners. Specified values for the width and height of the corners indicate how high and how deep the rounding should be. A sample rectangle is shown in Figu...
	Figure 25.2. Example rectangle

	25.3. Ovals and Circles
	When you instantiate an object of the COval class to create an oval shape, you can construct it in one of the following two ways:

	25.4. Arcs
	CArc is analogous to the COval class, except that you specify a starting and ending angle for drawing the arc. You can also give the arc an interior fill so that you are drawing a piece of pie rather than an arc.

	25.5. Polygons
	CPolygon does not necessarily create a polygon. Basically, you give this class a set of points, and these points are connected.

	25.6. Lines
	XVT-Power++’s CLine class draws a line inside a view enclosure. Like the other shape classes, CLine brings with it all the freight of a CSubview. A line can receive events, generate commands, have different types of stickiness properties (see CGlue...
	Figure 25.3. Sample lines drawn with CLine

	25.7. Drawing Shapes in XVT-Power++
	XVT-Power++ users may be unsure about when to use the different shape classes to draw objects on the screen versus overriding the Draw method of a view and using the XVT Portability Toolkit drawing functions to draw lines, squares, ovals, and so on. ...

	26
	Text and Text Editing
	XVT-Power++ provides two overall text facilities. One is CText, XVT-Power++’s static text drawing class. The other is a set of native text editing classes that harness the text editing capabilities of the XVT Portability Toolkit. These classes are ...
	26.1. CText
	CText displays a string of read-only text that is useful for one-line instructions, button names, titles, and so on. When you instantiate a CText object, you give it a CStringRW object, which may or may not be initialized using a string resource ID. ...
	This code creates a textual view, as shown in Figure 26.1:
	CPoint(100,100) is the theTopLeft parameter.It is a coordinate, relative to the CText’s enclosure, where the text will be displayed.
	Figure 26.1. Window displaying a textual view

	26.2. Native Text Editing Classes
	All of the native text editing classes derive from an abstract class called CNativeTextEdit, which has methods for setting/getting, selecting/deselecting, cutting, copying, and pasting text, and many other editing operations. As an abstract class, CN...
	26.2.1. NLineText, NTextEdit, and NScrollText
	NLineText is the simplest of the native text editing classes. It allows you to create a one-line text editing field. You give it the length of the line, and the height is calculated in terms of the font’s size.

	26.2.2. Text Validation
	Whenever a text box receives a keyboard event, a CNativeTextEdit Validate method is called, which determines how each character is to be displayed. Validate can opt to display the character, map the character to some other character, or not display i...

	27
	Utilities and Data Structures
	All of the classes in XVT-Power++’s application framework derive from one common class, CObjectRWC, and they share a number of features: global data, message passing channels, data propagation, and so on. XVT-Power++ contains another set of classes...
	27.1. Rogue Wave Tools.h Class Library
	The utility classes serve as a link between various XVT Portability Toolkit features and XVT-Power++. XVT-Power++ uses the Rogue Wave class library to implement many of its utility classes and data structures. Rogue Wave provides a rich set of collec...
	27.1.1. XVT-Power++ and Rogue Wave Collectables
	All XVT-Power++ classes, except lightweight classes, now inherit from RWCollectable. A lightweight class is one to which it is generally inexpensive to apply copy semantics. However, for the other classes, the use of XVT-Power++ with Rogue Wave impli...
	27.1.1.1. Guidelines for Run-Time Type Identification Usage
	These are the guidelines for using XVT-Power++ run-time type identification when only an RWCollectable pointer is available:

	27.2. Managing Global Information
	Through CObjectRWC, all classes in XVT-Power++’s application framework have access to global XVT-Power++ information and to global user information, that is, application-specific information.
	27.2.1. The Role of CGlobalClassLib and CGlobalUser
	27.2.2. Managing Window Layout Through the Desktop
	Each time a window or a dialog is created in an XVT-Power++ application, the CDesktop object is notified. CDesktop is automatically instantiated within XVT-Power++ through CGlobalClassLib. Of course, you can derive your own desktop, create it, and se...

	27.2.3. Global Definitions

	27.3. Setting Up the Environment
	One data structure class that is pervasively used by XVT-Power++’s view classes is CEnvironment. This class contains different kinds of information about the environment: colors, types of pens and brushes, patterns, fonts, drawing modes, and so on....

	27.4. Handling XVT Portability Toolkit Events
	A utility class that XVT-Power++ instantiates automatically is CSwitchBoard, one of the most heavily used classes. It provides an interface between XVT-Power++ and XVT Portability Toolkit events.

	27.5. Transferring Data Using the Clipboard
	The CClipboard class and its associated streams can be used to put or get data from the native clipboard. This class is a wrapper for the XVT Portability Toolkit’s xvt_cb functions and allows text, application (binary), and PICTUREs to be put on, o...
	27.5.1. Streaming Data into the Clipboard
	Any persistent, streamable object (text, XVT PICTURE, or binary data) can be streamed to and from the clipboard. The classes used to handle the streams are:

	27.5.2. Using Multiple Clipboards
	You may create more than one CClipboard object but when you do this, there are a few things to keep in mind. First, the clipboard will adopt the mode of the first opened CClipboard. Thus, if you create a CClipboard in CB_WRITE mode, then all CClipboa...

	27.6. Field Formatting and Validation
	XVT-Power++ supports field formatting and validation, hereafter referred to in this section by the single term, validation, with the CValidator class. The primary advantages gained by using CValidator are:
	Validation allows your XVT-Power++ applications to be more secure, since confidential passwords and other sensitive data are not flashed to the screen, and thus inadvertently revealed. CValidator provides this additional level of security by trapping...
	XVT-Power++ supports validation on the following view objects:
	27.6.1. Validation Basics
	The most straightforward way to use validation is to: 1) create a CValidator from a validation expression, and 2) attach a validator to a CView. You can usually combine both steps into a single line of code, as shown in the following example:
	Auto-completion
	SetValidator() has a second argument, AutoComplete, that, if omitted, defaults to TRUE. With AutoComplete set to TRUE, if the user types a partial word, such as ‘S’, the field automatically completes the entry to the first word in the list that m...

	27.6.2. Writing Your Own Validators
	CValidator is a proxy class that contains a pointer to another class, CValidatorImplementation, that does the actual validation “work.” The TestMatch() method takes a string and returns TRUE only if the string is acceptable to your validation mec...
	27.6.2.1. Customizing a Validator
	To implement your own validation routines, subclass CValidatorImplementation and override the TestMatch() and FormatString() methods. For example, your overridden version could modify the input string and return the modified string (instead of return...
	To use your customized validator, you must create the validator implementation, add a validator (CValidator), and pass the validator to an edit field, as shown in the following example:

	27.6.2.2. Substituting Your Own Validators
	The validator factory enables you to easily replace the factory that XVT-Power++ uses to create validators. Though validation is not currently supported directly by XVT-Architect, the factory approach could be useful in the future if you are using a ...

	27.6.3. Other Approaches to Validation
	Two other approaches allow you to supplement (or circumvent) your use of CValidator for validation:
	NEditControl
	NLineText

	27.7. Data Structures
	27.7.1. Collectables
	Rogue Wave assumes that objects referenced in its collections all inherit from RWCollectable. RWCollectable defines a virtual interface that the collections and utility classes use to determine identity, ordering, equality and for persistence. The ro...
	27.7.1.1. Temporary Collectables
	27.7.1.2. Dictionary Collections for Collectables

	27.7.2. Collections
	27.7.2.1. Converting RWOrdered into a Sorted Collection
	27.7.2.2. Iterators

	27.7.3. Strings
	27.7.4. The Coordinate System: CPoint, CRect, and CUnits

	27.8. Checking For Errors
	XVT-Power++’s Error.h file defines a macro called PwrAssert that is used throughout XVT-Power++. It allows you to assert that certain things are true or false and to get an XVT Portability Toolkit error if something is wrong.

	28
	Resources and URL
	This chapter explains how XVT-Power++ supports XVT Portability Toolkit’s Universal Resource Language (URL). You can use these resources to create XVT-Power++ objects and classes. In addition, XVT-Power++ supplies helper classes for the efficient lo...
	28.1. Why Use Resources?
	URL resources are specifications for menus, dialogs, windows, strings, images, and fonts that are kept in a small, read-only database located outside your application’s runtime address space. Resources do such things as:
	28.1.1. Resources in XVT-Power++
	XVT-Power++ supports URL resources as defined by the XVT Portability Toolkit. URL resources are all read-only with respect to the Toolkit’s API calls. However, writing to an alternate source is supported by some objects, such as images. XVT-Power++...

	28.1.2. X Window System Resources
	For applications running on X platforms, the resources must be coded separately in CMyResourceFile.cxx. Use CMyResourceFile.cxx to indicate what resources your X-based application will use.

	28.2. Creating Objects from Resources
	XVT-Power++ creates objects from resources using a class constructor of the following format:
	28.2.1. Using XVT-Power++ Classes
	The following list contains XVT-Power++ classes that may be used to construct objects from resources:

	28.3. Creating CNativeView-derived Classes
	You can create the following CNativeView-derived classes from resources:

	28.4. Optimizing the Loading of Resources
	CResource, CResourceMgr, CResourceWindow, and CResourceMenu are helper classes used by some resources for the efficient loading of monolithic resources. When reading windows and menubars, the XVT Portability Toolkit API allows the reading of one larg...
	28.4.1. Window Resources
	CResource supplies an interface for the holding and releasing of resources. When the resource CWindow constructor is called, this is done. In this case, CResource creates the resource and holds it. It keeps the monolithic structure in memory, in what...

	28.4.2. Using CResourceItems
	XVT-Power++ provides a convenience class, CResourceItems, to hide the hold/release protocol through object construction and destruction, like this:

	28.4.3. Iterating Held Resources
	CResource also provides a mechanism to iterate over a held resource. Note that the iteration supported by CResource does not allow for multiple clients to iterate or for stacked iterations.

	28.5. Resources for Internationalized Applications
	When writing an internationalized/localized XVT application, resources become an integral aspect of the application design and your software development process. In addition to other attributes, your localized application must notify the PTK that it ...

	29
	Data Propagation
	Automatic Data Propagation (ADP) is a powerful feature of XVT-Power++. Using the Model-View-Controller approach, ADP automatically propagates a change of data from objects to other objects.
	29.1. How to Use ADP
	XVT-Power++ uses these four basic classes to provide Automatic Data Propagation:
	To use ADP, first create a model representing the data. Register that model with a CController. Then register the CController with the CControllerMgr. (See Figure 29.1.)
	Figure 29.1. Using ADP

	29.2. ADP Classes
	Let’s review in more detail each class that contributes to the ADP mechanism.
	29.2.1. CModel Class
	CModel is an abstract class. When you are using ADP, override this class and specify your own model. This is a place to specify which data set will be subject to ADP.
	To specify the ways the model can change, you override the pure virtual Change(command, model) method. A model might change in several ways. For instance, only part of the model might be altered by the end user. Each type of model change is specified...
	From each command:

	29.2.2. CControllerMgr Class
	CControllerMgr manages CControllers, and assigns CController IDs.
	CControllerMgr is automatically instantiated in CGlobalClassLib and can be accessed through the global G pointer (in CObjectRWC) G->GetControllerMgr(). XVT-Power++ allows only one instance of this class. Its copy constructor is protected; it does not...
	The CControllerMgr uses its Insert method to automatically register a new CController in its list of CControllers. The CControllerMgr can also remove a CController from its list using its Remove method. Its Find method returns a CController pointer b...

	29.2.3. CController Class
	CController is responsible for managing a list of dependents and a list of providers, and provides access to its model. There is one CController per model. However, that model can be made of several models.

	29.2.4. CNotifier Class
	CNotifier is a base class that provides the “wide interface” to request model changes and to update dependents of a model change. Every dependent and every provider is derived from CNotifier.
	CNotifier maintains these two RWOrdered pointers:

	29.3. Example
	Let’s look at a simple example of how ADP is used.
	29.3.1. Setting up the Document for ADP
	Following the usual XVT-Power++ paradigm, we first instantiate a document object. In this example, the document instantiates a model representing some piece of data. The data is passed to the model constructor in order to fill the model with the init...

	29.3.2. Setting up the Views for ADP
	29.3.2.1. Setting up a Provider View
	We instantiate the spreadsheet window. The window constructor then builds the spreadsheet. In order to display the model data, the spreadsheet will need to query the model. The CController queries the model using its GetModel method. To get to the CC...

	29.3.2.2. Setting up a Dependent View
	Now let’s create the graph window. The window constructor queries the model and passes it to the DoUpdateModel(command, model) method, just like the spreadsheet. The window constructor then draws the window content based on the queried model. The c...

	29.3.2.3. How ADP Looks to the End User
	Now let’s see what happens at runtime.
	Figure 29.2. ADP at runtime

	29.4. Automatic Data Propagation Key Points
	Keep in mind the following key points about ADP:

	30
	Transparent Data Integration
	Common uses of TDI include:
	30.1. Synchronizing Your User Interface with TDI
	TDI addresses the needs that most XVT-Power++ developers face. Consider a typical C++ application that links a user with a database. The interface of the application contains objects that display particular pieces of information obtained from the dat...
	30.1.1. Advantages of TDI
	TDI helps DSC++ application developers by automating most of the details described in section 30.1. Using TDI, creating a typical application is reduced to:

	30.1.2. Flexibility of TDI
	Much of the flexibility of TDI comes from the use of prototypes. Each dependent managed by a TDI controller can be coupled with a special CTdiValue object known as a prototype. Prototypes translate from messages understood by one type of object to me...

	30.1.3. Scope of TDI
	The following XVT-Power++ classes participate in the definition and implementation of TDI:

	30.2. Common Uses for TDI
	TDI addresses a problem that most C++ application developers must solve. Three common ways to use TDI are shown in Figure 30.1.
	Figure 30.1. Typical uses of TDI (adapter classes not needed when two TDI-aware XVT-Power++ objects communicate directly with one another)

	30.2.1. Synchronizing the State of Different Objects
	TDI can be used to connect XVT-Power++ views together so that their behavior and state is synchronized. Imagine the interface for a typical “File Open” dialog—this dialog contains a list box displaying known filenames that can be selected as we...

	30.2.2. Creating Data Models and Connections
	You can use TDI to connect views to back-end objects such as those supplied with the ODBC++ product. The back-end database objects will likely contain data returned by SQL queries. If you connect each view in the user interface to the appropriate dat...

	30.2.3. Communication Links with Third Party Objects

	30.3. Structure and Implementation
	Connections are always made between CNotifier-derived objects. In each connection, one CNotifier acts as a provider, while the other acts as a dependent. Figure 30.2 illustrates the basic structure of TDI connections (depicted conceptually).
	Figure 30.2. Basic structure of TDI communication

	30.3.1. Communication Between Dependents and Providers
	TDI providers normally send a message to their dependents via a call to one of several TdiNotify methods defined in CNotifier. In essence, the TdiNotify function packages the message into a CTdiValue object, and sends the message to each dependent by...
	30.3.1.1. Important Components of TDI Messages
	Each TDI message conveys the following information:

	30.3.1.2. TDI Message Terminology
	This section introduces the terminology that is used later in this chapter and elsewhere in this Guide to describe TDI functionality/

	30.3.1.3. Internal Configuration of a TDI Connection
	Each CNotifier provider actually uses a helper CTdiController object to manage its list of dependents. In turn, each dependent managed by the controller may be coupled with a special CTdiValue object known as a prototype. Figure 30.3 shows the actual...
	Figure 30.3. Specialization with prototypes; detailed internal structure of TDI communication with a CTdiConnection

	30.3.2. Using Prototypes with a TDI Connection
	To understand the use of prototypes, you must first understand how messages are sent when a prototype is not registered with a dependent. As described in section 30.3.1, in a normal TDI message, a CNotifier sends a TDI command and a CTdiValue object ...
	30.3.2.1. Specializing Connections with Prototype Values
	Prototypes add a lot of flexibility to TDI. Furthermore, the CTdiConnection class usually knows automatically when it needs to use a prototype. In general, you only need to explicitly add a prototype to a connection in the following cases:

	30.3.2.2. Specializing TDI Connections with Adapters
	TDI provides a second way to customize connections. Sometimes messages sent by a provider need to be translated into a set of actions or operations on the dependent. The logic for such operations can be coded in a TDI adapter which is simply an extra...
	Figure 30.4. Specializing a TDI connection with an adapter

	30.4. TDI and ADP Compared
	TDI (transparent data integration) is similar in some ways to ADP (Automatic Data Propagation). Both mechanisms contain objects that act as dependents and/or providers. Both mechanisms rely on the use of CModel objects and DoUpdateModel() messages as...

	31
	Logical Units
	31.1. Setting the Units of Measure
	XVT-Power++’s CUnits class enables you to set the size of the units of measure used in your application, with the options being pixels (the default), inches, centimeters, characters, or a user-defined unit.

	31.2. Dynamic Mapping
	31.3. Owners of Units
	31.4. Incorporating Units into XVT-Power++ Applications

	32
	Displaying List and Columnar Data
	XVT-Power++ provides many ways to display columnar (including list) data, each of which offers an optimized solution to a particular problem. This chapter will help you choose the best method for your application.
	Figure 32.1. Sample view

	32.1. Choosing the Method for Displaying Data
	Use the summaries given in Table 32.1 on page 32-3 to help you decide which view to use for your application. Keep in mind that CTable or CTreeView may be the best solution (rather than CListBox, NListBox) for displaying some lists and that CTreeView...
	In general, heavyweight objects have more features than lightweight objects, however, lightweight objects give better performance than heavyweight objects. For example, if you have thousands of rows of data, CTable is the best object to use, even if ...
	32.1.1. Table Data
	If you need to display table data, choose between CTreeView and CTable based on the size of data set and the amount of control you need over appearance. For example, can you supply the entire data set in less than a second? CTable handles very large ...

	32.1.2. Tree-style Data
	32.1.2. Tree-style Data
	Table 32.1. View trade-offs for displaying columnar data

	32.1.3. Long Lists of Data
	Choosing which view to use for a list is more complicated, but two factors may make the decision for you. If you must have a native list, use NListBox. If you must be able to embed arbitrary objects (such as other lists), use CListBox. If you can rel...

	32.2. CTable
	CTable readily displays textual data, as well as embedded pictures, check boxes, and button menus. Its flexible event-driven data- feeding mechanism makes the CTable useful for large lists and tables that would be time-consuming to completely populat...
	CTable’s features include:
	32.2.1. How to Use Tables in Your Application
	Including a table in your application requires the following steps:
	A callback scheme is used to supply data to the table. The table view only requests the data that it needs to display the currently visible range of cells (possibly plus some margin of cells to increase scrolling performance). This dynamic request/su...

	32.2.2. Creating Tables
	32.2.2.1. Creating a Table View
	Like most views, CTable has a single constructor that takes an enclosure and a rectangular region as the only required arguments.
	Choosing Row Height and Column Width
	Internal Chunk Size
	CTable organizes its internal data in square chunks of cells that it allocates when those cells become visible. The final two arguments of the CTable constructor determine the chunk size that the table uses internally. This scheme allows the table to...

	32.2.2.2. Setting the Initial Attributes
	After creating a table, you should call ITable() to initialize it before calling any other table methods or allowing the table to be drawn on the screen.
	Selection Policies
	Available Policies
	Table 32.2 shows the policies available for CTable.
	Table 32.2. Available policies

	Focus Compared to Selection

	32.2.2.3. Setting the Table Size
	XVT-Power++ tables can be as big as you want to make them—only limited by the size of a “long”. CTable manipulates the table structures as infinitely large sparse arrays. You can dynamically set the bounds (number of column and rows) of a table...

	32.2.3. Supplying Data to Tables
	32.2.3.1. Table Data Sources
	Tables get their data using callbacks. When a cell becomes visible on the screen, CTable requests the data for that cell from its data source. The data source must then provide a CTdiValue that represents the contents of this cell.
	Creating a Data Source
	Create your data source by subclassing CTableSource abstract class and override its three methods: Prime(), GetTableData(), and PutTableData().
	Adding to an Existing Class
	If you have an existing object you can mix it in. Mixing in refers to the multiple inheritance technique of adding additional methods to an existing class. This approach makes it easy to convert existing classes into table data sources with little mo...
	Read-only Table Sources
	For read-only tables you need only implement the GetTableData method.
	Read-write Table Sources
	Read-write table sources require that you implement the PutTableData() method of your table source. Like GetTableSource(), the table is not passing ownership of the CTdiValue. Remember this pointer will be invalid upon exiting the PutTableData() m...

	32.2.3.2. Using CTableTdiSource as a Data Cache
	CTableTdiSource is a flexible class that can both provide and consume table data. In other words, you can easily place it between your table data source and the table view.

	32.2.3.3. Using TDI to Supply Data to a Table
	To make a TDI connection to a table, create a CTableTdiSource and connect the TDI client to this object rather than the table. CTable does not accept TDI connections directly, but uses CTableTdiSource as an adapter.

	32.2.4. Controlling Rows and Columns
	There are many methods available for controlling various aspects of the table. Some of these methods take the row or column number as a parameter. These are numbered sequentially starting with 0.
	32.2.4.1. Setting Column Width and Row Height
	Call the SetColumn() method of CTable with a numerical argument to set the width of an individual column and call the SetRow() method of CTable to set individual row heights. These two methods have the following signatures:

	32.2.4.2. Deleting and Inserting Rows and Columns
	CTable has methods to insert and delete rows and columns from a table view. CTable automatically adjusts any rows and columns beyond the insertion or deletion.
	The delete and insert methods are:

	32.2.5. Setting Attributes
	You can set attributes at the cell, row, column or table level. Each cell inherits unset attributes from its row, then its column, and finally the table.
	1. Create a CTableAttributes object.
	2. Set the attributes you want to change.
	3. Apply the attribute set to the table, or to a row, column, or cell.

	32.2.5.1. Colors, Fonts, and Justification
	Colors, fonts, and justification are the simplest attributes to understand.
	The font attribute has these three methods:
	Justification Values
	CTable supports compass justification of multi-line text within each cell. The possible values of justification are:

	32.2.5.2. Borders
	Cell borders lie within the bounds of each cell and are specified independently for the four cell sides.
	Border Styles

	32.2.5.3. Data Interpreters for Other Types of Data
	CTable provides an extensible framework for representing data other than text, such as pictures. Currently, CTable supports (in addition to text) native check boxes, list buttons, and pictures.
	Displaying Pictures
	Displaying Check Boxes
	Displaying List Buttons

	32.2.5.4. Field Validation
	You can add a validator to cells using text edit field or list button interpreters. Adding validators to other types of cells does not cause an error—they simply are not used. The code that attaches a validator to a cell looks similar to the code t...

	32.2.6. Adding Row and Column Labels
	Row and column labels are specialized tables that are clients to the main interior table. Consequently, you can set attributes such as font, color, and border style on labels much as you would with regular table cells.
	32.2.6.1. Setting Label Text
	The most likely thing you will change with labels is their text. You can easily change the text of labels by calling the following table methods:

	32.2.6.2. Setting Label Width and Height
	You can also use the TITLE_ROW and TITLE_COLUMN constants with the SetRow() and SetColumn() table methods to change label height and width.

	32.2.6.3. Setting Label Attributes
	Any of the attributes that you can set on a regular cell can also be applied to a label.

	32.2.7. Tracking Selection Areas in the Table
	CTable maintains a complex region, CRegion, that represents each selected cell, row, or column. You can get a reference to this region using the GetSelectedRegion() method of CTable. All of the CRegion iterators work with this region, thus allowing y...

	32.2.8. Processing Events in Tables
	CTable uses two classes of events: permission and notification.
	32.2.8.1. Table Events
	Delete and Insert Events
	Size Events
	Focus Events
	Select Events
	Key Events
	Origin Events

	32.3. CTreeView
	CTreeView displays tree type data with tab-justified text and pictures. The flexible tabbing scheme and lightweight construction of the tree view makes it useful for displaying lists and small tables that do not require cell level attributes or in-ce...
	The main features of CTreeView are:
	32.3.1. Creating Static Trees
	32.3.1.1. Creating a CTreeView
	Like XVT-Power++’s simplest views, CTreeView has a single constructor that takes an enclosure and a rectangular region as arguments. All other attributes are set in the initialization method ITreeView().

	32.3.1.2. Initializing the Root Node
	When you create a tree view, the root node is automatically created for you. After calling ITreeView(), you need to set the attributes of the root node. Subsequent population of the tree, either statically or dynamically, adds additional tree items ...
	Most applications explicitly set the images associated with expanded nodes, collapsed node, and terminal nodes. These images are created and destroyed by your own code, not by the CTreeView. Be sure your application destroys these images after it has...

	32.3.1.3. Populating the Tree
	Building a static tree starts with populating the root node, which is automatically created for every tree. To populate a static tree view you must recursively add children to each node of your tree.

	32.3.1.4. Traversing a Tree Programmatically
	You can visit all of the items of a tree by starting at the root item and recursively getting the child item of each node. The GetRoot() method of CTreeView returns a CTreeNodeItem representing the root node. Calling the GetNChildren() method of a no...

	32.3.2. Attaching User Data to Tree Items
	CTreeView supports user data attached to each tree item. The user data must be a pointer to a subclass of RWCollectable. To attach user data to a tree item, call myItem->SetUserData(myData). CTreeItem::GetUserData will retrieve the stored data.

	32.3.3. Creating Dynamic Trees
	Dynamic trees work on a callback basis. When a node is expanded, by the user or programmatically, the tree view requests the data for that node from its data source. The data source provides descriptions of all the tree items, including additional nodes

	32.3.4. Changing Attributes of Items in a Tree View
	CTreeView provides you with many choices in setting individual attributes on each line item of the view. You can do this when populating the tree by modifying the information objects, as in the previous examples, or you can change the attributes afte...
	32.3.4.1. Instance Variables
	32.3.4.2. Setting Tab Stops
	A CTabSet object contains an ordered list of justified tab stops represented by CTextTab objects.

	32.3.4.3. Embedding Images
	Image tab types in a CTextTab object tell the tab set to use the text in the field as a key string to find an image to display rather than draw the text. Thus, an image tab set maintains a list of images and the key string associated with each image.

	32.3.4.4. Manipulating Fields of a String
	The previous sections described how to set both text and image tabs of a tree view. This section shows how to divide a string into tab fields, analogous to embedded tab characters in the text.
	Field Manipulation Methods of CTabSet

	32.3.5. Processing Events in a Tree View
	Tree events (CTreeEvent objects) are received by the tree view whenever the user performs any of the following operations:
	CTreeEvent Methods for Mouse Clicks

	32.3.6. Expansion Policies
	Tree view expansion policies determine what the tree view does when: 1) the user expands a node, or 2) when you expand a node programmatically.

	32.3.7. Tree Styles
	32.3.8. Selection Policies
	32.3.9. Sorting and Re-sorting Tree Items
	Addition of sorting options can enhance certain applications. The tree view normally displays items in the order that you have provided them from the data source. However, you can sort tree items within a node and recursively from a node by calling t...

	32.3.10. Changing Mouse Behavior
	If you are an experienced XVT-Power++ programmer you can change the mouse behavior of a tree view by installing your own mouse handler. To install a mouse handler, subclass CTreeMouseHandler and override the methods, such as DoDown(), that you want ...

	33
	Internationalization and Localization
	This chapter provides an overview of concepts you need to understand to write a DSC++ application that is easily internationalized and localized. Cross-references point to other sections of this Guide (or other XVT documentation) where you can obtain...
	This chapter also describes an overall methodology for writing XVT applications that support locales and international languages, including specific steps you can follow to implement the methodology. The chapter also lists compile constants you can u...
	33.1. Multibyte Character Set and Localization Support
	XVT-Power++ (along with its underlying PTK libraries) has recently added support for application development for multiple locales and international languages. All XVT classes, methods, and functions, including text edit object functions, now handle m...
	33.1.1. Externalized Resource Files
	XVT applications can allow the user to select the language/locale of the user interface at application startup time. The user selects the resource file used by the application before invoking the application.
	All resources are separated from the executable code and can be selected at application startup time. This mainly affects the PC and Macintosh platforms, since the Motif platform has always provided separate resource files. Of course, running any loc...

	33.1.2. How to Adapt an Application
	33.1.3. More Support for Internationalized Applications
	The help compiler, helpc, handles help text containing multibyte characters. The help viewer, helpview, displays help text containing multibyte characters.
	Furthermore, file and pathnames may contain multibyte characters. All PTK functions and data types that accept file or pathname strings are multibyte capable.

	33.2. Internationalization
	Internationalization requires disassociating any locale-sensitive information from your application and encapsulating it in external files such as resource files. Any locale-sensitive processing operations also must be encapsulated and handled in a g...
	33.2.1. Considerations for Internationalization
	Some of the factors you must consider when internationalizing include the following:
	If you are using character codesets that use wide character or multibyte encoding schemes, your application code for manipulation of strings must be modified to handle these character codesets. The following string operations are candidates for modif...

	33.2.2. Specific Instructions for XVT-Architect Users
	If you are using XVT-Architect, the basic steps for internationalizing a DSC++ application are as follows:
	1. Create the basic application.
	2. Define the global locales (and their corresponding codesets) that XVT-Architect needs to support.
	3. Create a layer for each locale that must be supported by the application.
	4. Localize the objects of each layer (translate strings, change colors, replace icons, etc.).
	5. Generate XVT-Architect factories with the needed layers.
	6. Add code to the application to select the default layer based on the locale.

	Runtime Considerations

	33.3. Localization
	Localization is quite straightforward once your application has been internationalized. The biggest part of localization is placing string literals in an external file that can be modified as required by specific locales. If you are using XVT-Archite...
	33.3.1. Considerations for Localization
	Your application must be localized for each unique environment in which it will operate. In addition to the steps involved when using XVT-Architect, you should be aware of other steps which vary slightly depending on the application and the selected ...
	1. Decide which character codeset to use for translation depending on: 1) which languages you need to support, and 2) which operating systems your application must work with. Different codesets used on the various platforms that XVT supports are list...
	2. Translate string literals to the target language.
	3. Set up special strings such as dates and times for formatting.
	4. Select the appropriate keyboard modifiers, mnemonics, and accelerators.
	5. Select fonts appropriate to the character codeset.
	6. Provide locale-specific icons and colors.
	7. Adjust text and graphic object sizes and positions.
	8. Compile locale-specific resource and help files.
	9. Establish the proper operating/window system locale-specific environment (set up environment variables, code pages, etc.).
	10. Set the application locale environment information (locale information can be bound at application build time or application startup time.

	33.3.2. Compile-time Considerations
	In addition to localizing the resources and code of your application, you will need to make sure that the application is compiled to take advantage of localization support available from within XVT’s libraries and resources.
	1. Modify your makefile or makefile templates to build localized versions of your resources. If you wish to build, for example, a German version, you would also define LANG_GER_W52. The various compile constants you can use are listed in Table 33.2 o...
	2. If your makefile did not completely finish the build, you should now complete any unfinished steps in your build process.

	33.4. Localized PTK Resources
	For your convenience, XVT provides compatible localizations of standard PTK and XVT-Power++ resources and help text; the various codesets used to provide these resources are listed in Table 33.1.
	Table 33.1. Localized versions of standard PTK resources and help text predefined for five languages

	The XVT PTK data is externalized in one of three file types for localization by your application:

	33.5. PTK Filenaming Conventions
	XVT’s PTK uses a set of conventions for defining relevant constants and filenames using three character abbreviations for language and three or four character abbreviations for character codeset (see Appendix A for a complete list of these abbrevia...
	Table 33.2. Language and character codeset constants and filenames recognized in XVT-Power++ and the XVT Portability Toolkit (part 1 of 2)
	Table 33.2. Language and character codeset constants and filenames recognized in XVT-Power++ and the XVT Portability Toolkit (part 2 of 2)

	A
	Appendix A: Languages and Codesets
	This appendix lists XVT abbreviations for languages and character codesets. However, XVT does not directly support all these languages and character codesets. The five languages that are fully supported at this time are:
	A.1. Language Abbreviations
	XVT <3 character language code> abbreviations are as follows:

	A.2. Character Codeset Abbreviations
	The XVT <3-4 character codeset> abbreviations are one of the following:

	B
	Appendix B: TDI Events in XVT-Power++
	B.1. TDI Events Received
	B.1. TDI Events Received
	B.1. TDI Events Received
	B.1. TDI Events Received
	B.1. TDI Events Received
	Table B.1. TDI events received by XVT-Power++ classes

	B.2. TDI Events Sent
	B.2. TDI Events Sent
	B.2. TDI Events Sent
	B.2. TDI Events Sent
	B.2. TDI Events Sent
	Table B.2. TDI events sent by XVT-Power++ classes

	C
	Appendix C: Field Formatting Language reference
	Creates an XVT_PATTERN From a Pattern String [New 4.5 Function]
	Summary
	Description
	Description
	Description
	Description
	Description
	Caveats and Limitations

	Examples

	Index

	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

