

 © 2011 Providence Software, Inc. All rights reserved. Using XVT for Windows® and Mac OS

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished under license and may be used or copied
only in accordance with the terms of such license. Except as permitted by any such license, no part of this guide may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of Providence Software Incorporated. Please note that the content in
this guide is protected under copyright law even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Providence Software
Incorporated. Providence Software Incorporated assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this
guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The unauthorized incorporation of such
material into your new work could be a violation of the rights of the copyright owner. Please be sure to obtain any permission required from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any actual organization. XVT, the XVT logo, XVT DSP,
XVT DSC, and XVTnet are either registered trademarks or trademarks of Providence Software Incorporated in the United States and/or other countries.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Macintosh is a trademark of Apple Inc.
registered in the U.S. and other countries. All other trademarks are the property of their respective owners.

Table of Contents

XVT-DESIGN
CONTENTS
Chapter 1: INTRODUCTION .. 1-1
1.1. What is XVT-Design?.. 1-1
1.2. Using This Manual ... 1-2

1.2.1. On-line Help ... 1-3
1.3. Conventions Used in This Manual ... 1-3

Chapter 2: XVT-DESIGN CONCEPTS ... 2-1
2.1. GUI Objects.. 2-1
2.2. Portable Resources ... 2-1
2.3. Events ... 2-1
2.4. Event Handlers ... 2-2
2.5. GUI Object Attributes .. 2-2

2.5.1. Geometry .. 2-2
2.5.2. Title... 2-2
2.5.3. Symbolic Identifier ... 2-3
2.5.4. Other Attributes .. 2-3

2.6. User Interface Code.. 2-3
2.6.1. Integrated Code Editing .. 2-3
2.6.2. Structural Code ... 2-3
2.6.3. Tags... 2-4
2.6.4. Action Code .. 2-4
2.6.5. Context.. 2-4

2.7. TestMode.. 2-5
2.8. Connections.. 2-5
2.9. External Source Code... 2-5

2.10. XVT-Design Files .. 2-6
iii

Table of Contents
Chapter 3: TUTORIAL ...3-1
3.1. The Hello Application ..3-1
3.2. Creating a New Project...3-2
3.3. Creating a Menubar and Menus..3-2

3.3.1. The Menubar Editor ..3-3
3.3.2. The Menu Editor ...3-4

3.4. Saving the Project ...3-10
3.5. Creating Containers ..3-11

3.5.1. Creating the Message Window3-11
3.5.2. Creating the Other Choices Dialog3-17
3.5.3. Creating an About Hello Dialog3-22

3.6. Setting Application Attributes ..3-23
3.7. Setting Connections Between Objects..................................3-25

3.7.1. Task Menubar Connections3-26
3.7.2. Message Window Menubar3-28
3.7.3. Message Window Connections3-29
3.7.4. Other Choices Dialog Connections...........................3-30
3.7.5. About Hello Dialog Connection3-31

3.8. Running TestMode ...3-31
3.9. Attaching Action Code to Tags ..3-33

3.9.1. Storing the Message ..3-33
3.9.2. Displaying the Message ..3-35
3.9.3. Changing the Message with Menu Commands.........3-35
3.9.4. Checking the Menu Items ...3-36
3.9.5. Changing the Message with the Choices Dialog3-37
3.9.6. Changing the Font and Style3-40

3.10. Generating the Application...3-40
3.10.1. Setting the Application Name3-41
3.10.2. Generating the Source Files3-42

3.11. Building and Running the Application.................................3-42
3.12. XVT-Design and Beyond ...3-43

Chapter 4: USING XVT-DESIGN...4-1
4.1. Project Files ..4-1

4.1.1. Creating New Projects ..4-2
4.1.2. Project Attributes ..4-2
4.1.3. Working with Multiple Projects..................................4-4

4.2. Using the Action Code Editor (ACE).....................................4-4
4.2.1. Invoking the ACE ...4-5
4.2.2. ACE Code Fragment Templates4-5
4.2.3. ACE Controls ..4-7

4.3. Creating Windows, Dialogs, and Controls4-15
iv

Table of Contents
4.3.1. Creating Windows and Dialogs4-16
4.3.2. Creating Controls ..4-18
4.3.3. The Object Palette ...4-18

4.4. Layout Windows...4-20
4.4.1. Alignment..4-20
4.4.2. Spacing..4-21
4.4.3. Grid ...4-22
4.4.4. The Toolbar...4-23

4.5. Setting Object Attributes ..4-23
4.5.1. Common Attributes...4-24
4.5.2. Control Attributes ...4-30
4.5.3. Custom Controls ...4-32
4.5.4. Text Edit Attributes...4-37
4.5.5. Dialog Box Attributes ...4-40
4.5.6. Window Attributes ..4-41

4.6. Specifying Creation Order..4-43
4.6.1. Keyboard Navigation in Windows............................4-45
4.6.2. Radio Button Groups ..4-46

4.7. Using the Menu Editor ...4-48
4.7.1. Menubar Editor ...4-49
4.7.2. Menu Editor ..4-50
4.7.3. Menu Attributes ..4-53

4.8. String Resources ...4-55
4.8.1. Strings ...4-55
4.8.2. String Lists ..4-56

4.9. Userdata Strings..4-58
4.9.1. Creating Userdata..4-58
4.9.2. Editing Userdata..4-59
4.9.3. Userdata Labels...4-59
4.9.4. Generating Code with Userdata4-60

4.10. TestMode ..4-61
4.10.1. Entering TestMode..4-61
4.10.2. Leaving TestMode ..4-62
4.10.3. Special Considerations for TestMode4-62

4.11. Generating Source Code...4-63
4.11.1. Setting the Destination Directory..............................4-63
4.11.2. Filenames ..4-64
4.11.3. Types of Generated Files ..4-65
4.11.4. Choosing Files to Generate4-66
4.11.5. Makefiles...4-67

4.12. Code Recovery ...4-68
4.12.1. Edit and Recover Code ...4-69
v

Table of Contents
4.12.2. Important Notes About Recovering Code.................4-70
4.12.3. Special Caution When Using the Code Recovery

Feature4-71

Chapter 5: INTERNATIONALIZING YOUR APPLICATION.................................5-1
5.1. Introduction ..5-1

5.1.1. About Internationalization and Localization...............5-1
5.2. Internationalization Support In XVT PTK5-2
5.3. Internationalization Support in XVT-Design5-2
5.4. The LOCAL_C_STRING Macro ...5-3
5.5. Using LOCAL_C_STR in User Code5-4
5.6. Other LOCAL_* Macros..5-5

5.6.1. LOCAL_* Macro Definitions5-5
5.7. The XVT_LOCALIZABLE Compile-Time Flag...................5-5
5.8. The strscan Utility ..5-6

5.8.1. Using strscan ...5-7
5.9. Localization ..5-7

5.10. A Step-by-Step Guide to Internationalization5-8
5.10.1. General Steps To Internationalize Your XVT

Application..5-8
5.10.2. General Steps To Localize Your XVT

Application..5-9
5.11. Advanced Internationalized Topics5-11

Chapter 6: PROJECT FILE MANAGEMENT ...6-1
6.1. Using pfm at the Command-Line ...6-1

6.1.1. Splitting Project Files..6-1
6.1.2. Merging Project Files..6-2

6.2. Using the GUI Version of pfm ...6-2
6.2.1. Listing the Project File Containers..............................6-4

6.3. Working with Multiple Projects ...6-4
6.3.1. External Connections ..6-5
6.3.2. Name and Identifier Conflicts.....................................6-5
6.3.3. Merging Unrelated Projects ..6-5

Chapter 7: REFERENCE..7-1
7.1. Menu Commands..7-1

7.1.1. File Menu ..7-1
7.1.2. Edit Menu..7-3
7.1.3. Tools Menu ...7-5
7.1.4. Controls Menu...7-5
7.1.5. Layout Menu ...7-6
7.1.6. Window Menu...7-8
vi

Table of Contents
7.1.7. Help Menu...7-8
7.2. The Configuration File ...7-8

7.2.1. Name and Location ...7-9
7.2.2. Format ...7-9
7.2.3. Available Options ...7-10
7.2.4. Configuration File Example......................................7-16

7.3. Objects and Tags ..7-16
7.3.1. Tag Descriptions ...7-16
7.3.2. Object/Tag Pairs..7-20

7.4. Variables and Constants in Action Code..............................7-21
7.4.1. Variables ..7-21
7.4.2. Constants ...7-21

A.1. Running the Image Editor..A-1
A.2. Color Selector ..A-2
A.3. Pattern Selector..A-3
A.4. Pen Color Selector ...A-4
A.5. The Clipping Region ...A-5
A.6. Drawing Tools ...A-5

A.6.1. Point ...A-5
A.6.2. Line ..A-6
A.6.3. Poly Line (Polyln) ..A-6
A.6.4. Polygon (Polygn) ...A-7
A.6.5. Rectangle (Rect)...A-7
A.6.6. Rounded Rectangle (RndRct)A-8
A.6.7. Oval ..A-8
A.6.8. Arc..A-8
A.6.9. Pie...A-9

A.6.10. Text ..A-10
A.7. Menu Commands...A-11

A.7.1. File Menu ...A-11
A.7.2. Edit Menu...A-11
A.7.3. Image Menu ...A-12
A.7.4. Options Menu...A-13
A.7.5. Font and Style Menus ..A-14
vii

Table of Contents
viii

Introduction
1
INTRODUCTION

This chapter provides a brief overview of XVT-Design and suggests
how to use this manual most effectively.

1.1. What is XVT-Design?
XVT-Design is a graphical, interactive design tool and application
generator. It simplifies the design and implementation of graphical-
user-interface-based applications in three major ways:

• XVT-Design lets you create the user-interface objects of your
application (windows, controls, menus, and so on)
graphically and interactively, rather than by programming
manually.

• XVT-Design provides a TestMode that lets you preview your
application’s user interface without separate compilation and
linking steps. You can use XVT-Design to build and refine
application prototypes rapidly without writing any code.

• XVT-Design generates event handlers and other source code
for your application’s user interface. Instead of rewriting
“generic” user-interface code by hand for each new
application, you can use XVT-Design to create this code
automatically.

Without XVT-Design, it is necessary to write resource language
source code by hand to define the necessary GUI resources for an
application in a portable manner. Since you cannot visually inspect
your resources until you run the application, this is a cumbersome,
iterative process.

With XVT-Design, you create a “project” file containing the GUI
resources for your application. For each project, you can create any
number of dialog boxes and windows. Then you draw the needed
1-1

XVT-Design Manual
controls right on your computer screen, placing them just where you
want within a window or dialog box—without ever having to
calculate the screen coordinates numerically.

XVT-Design automatically generates a complete set of source files
for your application:

• C code for the application’s user interface

• A C header file containing function prototypes and constant
declarations

• An XVT Universal Resource Language (URL) file,
containing portable definitions of your application’s
resources

• A complete makefile for compiling and linking your
application

• A help text file

1.2. Using This Manual
This manual is intended for programmers who have some
experience with building and using GUI applications. It assumes
familiarity with basic GUI concepts, such as events and resources,
and some familiarity with the XVT Portability Toolkit. Since
XVT-Design generates XVT-based programs, use this manual in
conjunction with the other XVT Development Solution manuals.

Because XVT-Design is an XVT application available on multiple
platforms, separate installation instructions are provided with each
media distribution. This manual assumes you have already installed
XVT-Design and the XVT Portability Toolkit on your development
system.

Along with this introduction, this manual contains the following
chapters:

Chapter 2: Concepts

Introduces the general ideas required to use XVT-Design well.

Chapter 3: Tutorial

Provides a step-by-step tutorial that introduces you to many of
the main features of XVT-Design.

Chapter 4: Using XVT-Design
Describes how to use all the features of XVT-Design.

Chapter 5: Project File Management
Describes XVT-Design’s support for multi-developer
1-2

Introduction
programming projects, through splitting and merging project
files.

Chapter 6: Internationalization
Summarizes all the menu commands in XVT-Design and
describes Control Description Files.

Chapter 7: Reference
Describes the issues relating to internationalizing your XVT
application.

Appendix: Image Editor
Describes how to use the Image Editor.

1.2.1. On-line Help

In addition to this manual, summary documentation is available for
all XVT-Design features and menu items in an on-line Help utility.

1.3. Conventions Used in This Manual
In this manual, the following typographic and code conventions
indicate different types of information.

General Conventions

code
This typestyle is used for code and code elements (names of
functions, data types and values, attributes, options, flags,
events, and so on). It also is used for environment variables and
commands.

bold
Bold type is used for filenames, directory names, and program
names (utilities, compilers, and other executable).

italics
Italics are used for emphasis and the names of documents.

Tip: This symbol marks the beginning of a procedure having one or more
steps.

Note: An italic heading like this marks a standard kind of information:
a Note, Caution, Example, Tip, or See Also (cross-reference).

Code Conventions

<non-literal element> or non_literal_element
Angle brackets or italics indicate a non-literal element, for
which you would type a substitute.
1-3

XVT-Design Manual
[optional element]
Square brackets indicate an optional element.
1-4

XVT-Design Concepts
2
XVT-DESIGN CONCEPTS

This chapter briefly introduces some terms and concepts that you’ll
need before working through the tutorial in the following chapter.

2.1. GUI Objects
A graphical user interface (GUI) has four main types of graphical
components: windows, dialogs, controls, and menus.

You can lay out all these GUI objects with XVT-Design. XVT-
Design also constructs the C-language source code to manage the
objects.

2.2. Portable Resources
XVT-Design transforms your WYSIWYG layout of GUI objects
into a portable resource language called URL. Since the URL code
is portable, you need only use XVT-Design to generate it once. You
can compile the URL code to any supported native resource format.

XVT’s curl compiler translates URL resource specifications into
the native resource language. The native resources are bound to the
executable program, either by loading the resources directly into the
executable image or by creating a resource file with a canonical
name. (Native environments use differing methods to bind
resources.)

See Also: For more information, see XVT Portability Toolkit Guide, Chapter 5.

2.3. Events
XVT bases its Portability Toolkit on a set of abstract, portable event
representations. These deliver user and GUI system event data to
GUI objects within your application.
2-1

XVT-Design Manual
In XVT-Design, each type of event is represented by a tag in the
Action Code Editor. Developers generally use the Action Code
Editor to enter calls to functions (defined in external source files),
which are executed in response to particular events.

See Also: For more information, see XVT Portability Toolkit Guide, Chapter 4.

2.4. Event Handlers
An event handler is a function with the proper prototype for
receiving events, meaning that it accepts a WINDOW and an EVENT*
as arguments.

Most windows—and all dialogs—must be assigned an event handler
to process the events generated during their lives. The exception is
the screen window, which has no event handler because it receives
no events. Windows can have unique event handlers, or multiple
windows can share a common event handler.

2.5. GUI Object Attributes
All the GUI objects provided by the XVT Portability Toolkit have
a number of attributes that describe their appearance and behavior.
For example, windows might be sizeable or iconizable, or might
contain scrollbars or titlebars.

XVT-Design allows you to set the values of GUI objects
interactively, rather than specifying them programmatically.

See Also: For more information, see XVT Portability Toolkit Guide.

2.5.1. Geometry

Rectangles specify the size and position of windows, dialogs, and
controls. Instead of describing the size and position of objects in
resource-description text files, XVT-Design lets you create and
modify objects graphically.

2.5.2. Title

All objects have a title string, which is the name of the object from
the application user’s point of view. The object may or may not have
a visible title, depending on the type and conventions of the native
windowing system. (For instance, document windows and buttons
almost always have visible titles, but scrollbars do not.)
2-2

XVT-Design Concepts
2.5.3. Symbolic Identifier

Objects have a second string that is used by the application
developer, rather than the user. This symbolic identifier string lets
you refer to the object with a symbolic name, instead of its resource
ID number. The symbolic identifier string associates a symbolic
name with the ID number that is used in the resource file.

2.5.4. Other Attributes

Each type of object has additional attributes, specific to its type.
For instance, windows have attributes that describe their border
decorations, and menus have attributes that specify accelerator
and mnemonic keys.

2.6. User Interface Code
In addition to creating resources graphically, XVT-Design helps you
create the program code for your application’s user interface objects.

2.6.1. Integrated Code Editing

XVT-Design’s Action Code Editor (ACE) lets you create and edit
your user interface source code without leaving XVT-Design. This
ensures that the code you enter is preserved as part of the interface
definition.

Tip: XVT recommends putting only small fragments of source code into
your project with the Action Code Editor and putting the bulk of
your user-written code in external files.

2.6.2. Structural Code

XVT-Design creates event-handling functions and other code that
produces a structure for your application’s user interface. Rather
than writing your event handlers and other “generic” code from
scratch, you can use XVT-Design to generate this code for you.

Note: While using XVT-Design, you do not actually see the structural
code. The code you create is integrated with the structural code
when XVT-Design generates the source code files for your
application.
2-3

XVT-Design Manual
2.6.3. Tags

XVT-Design assigns two types of tags to your user interface objects:
event tags and special tags.

Event tags
All user interface objects have a number of associated events,
that is, occurrences that the application responds to.
XVT-Design assigns event tags to these events. The event tags
correspond exactly to the E_* events defined in the XVT API.
Each object also has a number of special tags.

Special tags
Special tags do not correspond to any runtime events, but are
“markers” in the generated code for an object. They indicate
positions in the framework where you may want to insert your
own code. For instance, the Var Decl special tag marks a
location appropriate for declaring local variables for an object’s
event handler.

2.6.4. Action Code

Action code is C source code that implements some action in
response to an event.

You add action code to your application with the Action Code
Editor. XVT-Design incorporates it into structural code when
generating your application’s source code files.

2.6.5. Context

Action code is always associated with a specific context. In most
cases, the context represents an event generated by a specific action
or specific user interface object. (If the context includes a special
tag, it represents a place for you to insert code not related to an event,
for example allocating or releasing dynamic memory.)

A context is composed of three parts:

Module
A module is a user-interface component that contains other
components. Windows, dialogs, menubars, and the application
itself are all modules.

Object
An object is one of the components contained by a module.
Controls and menu items are objects. In XVT-Design, modules
2-4

XVT-Design Concepts
are also considered to be objects (in a sense, they contain
themselves).

Tag
Every object has one or more tags (event or special), as
described above.

The unique combination of a module, an object, and a tag makes up
a context. Three list buttons in the Action Code Editor specify the
context for action code.

2.7. TestMode
XVT-Design's TestMode lets you view an application’s user
interface without compiling and linking source code. As a result,
you can rapidly refine the appearance of user interface objects
without leaving XVT-Design.

2.8. Connections
Rather than interpreting or executing an application’s source code,
XVT-Design’s TestMode defines relationships between objects by
using connections.

Like action code, connections are associated with tags. A connection
opens or closes a container (window or dialog) when a tag’s event
occurs. Connections can also invoke XVT’s predefined dialogs,
such as the standard open-file and save-file dialogs.

2.9. External Source Code
You can include other source code modules into an XVT application
by adding them to your XVT-Design project. To do this, choose
External Files from the File menu. XVT-Design includes any files
specified in this way when it generates the makefile.

Tip: XVT recommends the following approach to adding your code to
the default C-language structural code supplied by XVT-Design:

1. Write functions in external files to hold any large blocks of
action coder.

2. In the Action Code Editor, place calls to the functions that you
defined in external files.

3. Then, using the External Files option from the File menu, tell
XVT-Design to include the external files in the makefile.
2-5

XVT-Design Manual
XVT recommends this approach for several reasons:

• It supports modularity

• It keeps the code generated by XVT-Design simple and free
of errors

• It keeps the code that is more apt to be changed and added to
during the application’s development external to the
XVT-Design project

• It lets you edit external code without modifying the
XVT-Design project file

Note: With XVT-Design, you can edit the generated files using a text
editor and later recover code from inside of XVT-Design.

If you check the Code Recovery checkbox in the Project Attributes
dialog, code fragments are enclosed between special comments in
the generated code. You can edit the code between the comments
using a standard text editor. Then click on a “Recover Code” button
to recover all the changes you have made to the generated files.

2.10. XVT-Design Files
Your XVT-Design project file—a portable, binary file—contains
the layout, GUI objects, action code, and configurations made
within XVT-Design. In addition, XVT-Design generates the
following files:

Module header and source files
XVT-Design generates source (.c) files and a header (.h) file for
the application module (task window), and for each window,
menubar, and dialog in the project.

Makefile
XVT-Design generates an application makefile, using a
template appropriate for the platform/compiler. You select the
template from a list in the Generate Application dialog.

Universal Resource Language (URL) file
This file defines the external resources of the project.

You can inspect these files, or change their names, by choosing
Generate Application from the File menu.

Note: The project file does not display when you choose Generate
Application. The prefix of the project filename matches the name of
the project, but you can configure its suffix in XVT-Design’s
configuration file.
2-6

XVT-Design Concepts
Figure 2.1 illustrates the relationship among all the XVT-Design
files.

Figure 2.1.XVT-Design files

XVT-Design

URL FileMakefile

Makefile
Templates

Source and
Header
File

Project
File

design.cft
File

design.cfg
File

Help File

Custom control
.cdf and .bmp files
2-7

XVT-Design Manual
2-8

Tutorial
3
TUTORIAL

This tutorial chapter demonstrates how to use XVT-Design to build
a sample application. The tutorial is designed to show you how
quickly you can develop GUI applications with XVT’s
Development Solution for C.

Before doing the tutorial, you might read the previous chapter of this
manual. It contains definitions of key terms used throughout the
tutorial.

Tip: To begin the tutorial

Start XVT-Design.

3.1. The Hello Application
The sample application you will build is called “Hello.” It has the
following features:

• The user can open any number of windows by choosing the
New menu item on the File menu. These windows display a
message, chosen by the user, and can be moved, resized, and
closed in the usual fashion of the native window system.

• The messages displayed in the windows can be changed by
choosing menu items on the Choices menu. Choosing the
Other Choices menu item brings up a dialog that has several
other message options.

• The user can select the font, size, and style for the message
using the Font menu.

Note: This is a hands-on tutorial. If you do not want to create the Hello
application yourself, you will find a copy already created for you.
Look for the hello.dpr file in the tutorial directory in your XVT
directory.
3-1

XVT-Design Manual
3.2. Creating a New Project
In building the tutorial application, as in building any application
with XVT-Design, you first create a new project file for the
application. An XVT-Design project contains most of the resources
and source code for your application’s user interface.

Tip: To create a new project:

1. From the File menu, choose New Project.

XVT-Design opens an Action Code Editor (ACE) window and a
layout window, “Window 101.”

Figure 3.1.The Action Code Editor and a layout window
(Macintosh platform)

You won’t use either the Action Code Editor or the layout window
right away.

2. Close both windows by clicking their close boxes.

3.3. Creating a Menubar and Menus
Now that the project file is open, you will create the menubar and
menus for your application. The finished menubar looks like this:
3-2

Tutorial
Figure 3.2.The Menubar for the sample application

XVT-Design supplies the File, Edit, Font/Style, and Help menus—
they’re called the standard menus. (The Help menu doesn’t appear
explicitly on all platforms.) You will create the Choices menu and
its submenu.

To create this menubar, in the next sections you will follow these
basic steps:

• Create a new menubar

• Create the Choices menu

• Add items to the Choices menu

• Create the submenu

• Add items to the submenu

3.3.1. The Menubar Editor

Tip: To create the new menubar

1. From the Tools menu, choose Menubar Editor.

The Menubar Editor looks like this:

Figure 3.3.The Menubar Editor

The list box in the Menubar Editor shows all the menubars in the
project. Notice that XVT-Design has automatically created one
3-3

XVT-Design Manual
menubar, called TASK_MENUBAR. TASK_MENUBAR is the default
menubar containing the four standard menus mentioned in the
previous section.

3.3.1.1. Creating a New Menubar

To create a new menubar,

2. Click New

XVT-Design adds a new menubar to the list box, with a default
name of MENU_BAR_2.

Change the name to WIN_MENUBAR:

3. Enter the name “WIN_MENUBAR” in the edit field at the top of
the Menubar Editor.

4. Click Rename.

3.3.2. The Menu Editor

Now you will add a new menu—the Choices menu—to the menubar
you created, using XVT-Design’s Menu Editor.

Tip: To add a menu to a menubar,

1. In the list box, select your menubar, WIN_MENUBAR.

2. Click Edit in the Menubar Editor to bring up the Menu Editor.

The Menu Editor looks like this:

Figure 3.4.The Menu Editor
3-4

Tutorial
The name of the menubar appears at the top of the Menu Editor, to
show which menu you are editing. The list box in the Menu Editor
lists the names of the menus on the menubar. The menu items will
read left-to-right on the menubar, in the same order as they appear
reading top-to-bottom in the list box. XVT-Design has already
added the standard menus to the menubar; they are enclosed in
parentheses.

In the Menu Editor, the New button creates new menus, and adds
them to the list.

3.3.2.1. Creating a New Menu

Tip: To make the Choices menu appear to the right of the Edit menu
on the menubar, insert it in the list after the Standard Edit menu.

3. Select Standard Edit in the list box, and click New.

A new menu appears in the list, with the default title “new item.”

3.3.2.2. Changing the Menu Title

One of the attributes of a menu is its title. Instead of “new item,”
you’ll change the title to “Choices.”

4. Click Attributes in the Menu Editor or double-click on Standard
Edit in the listbox.

The attributes dialog for the new menu appears. The title appears at
the top of the dialog.

5. Click in the edit control and change the title to “Choices.”

After you’ve changed the title, the dialog looks like this:
3-5

XVT-Design Manual
Figure 3.5.The Menu Attributes dialog

Notice that you could use this dialog to set other attributes, such as
the menu’s Menu ID (symbolic identifier) string. For this menu,
leave those attributes unchanged.

6. Click OK to save the title and close the attributes dialog.

3.3.2.3. Adding Items to the Menu

You have created a new menubar, and added a menu to it. Now you
will add items to the menu. For the Choices menu, these items are
“From Menu” (which has a submenu) and “From Dialog.”

7. In the Menu Editor, click Add Menu.

This opens another Menu Editor window, in which you can add the
items to the Choices menu. The list of menu items is empty, since no
items have been added to the menu yet.

Creating the First Item

8. To create the first item, click New.

A new item is added to the list, as shown in Figure 3.6.
3-6

Tutorial
Figure 3.6.The Menu Editor showing a new item

Change the title of the new item, just as you did for the Choices
menu itself.

9. Click Attributes to open the attributes dialog for the new item.

10. In the title field, change the title to “From Menu.”

Figure 3.7.Changing the menu title to “From Menu”

11. Click OK to dismiss the attributes dialog.

Creating the Second Item

12. Create another menu item, using the same procedure you
followed to create the first item.
3-7

XVT-Design Manual
13. Give it the title “From Dialog…”

Caution: Be careful to create a new item first, and then click on Attributes.

3.3.2.4. Associating Help Topics with Menu Items

XVT-Design lets you provide help text that is specific to the context
the user has questions about. The “Menu Attributes” dialog contains
a list box that lists all available help topics. If a help file were
available, you would choose the topic that pertains to this particular
menu item.

This tutorial does not address generating the help topics. Typically,
you develop your application’s user interface before writing the help
text. (Sometimes these tasks are done simultaneously). Once you
have created a help file, you use XVT-Design to select a topic that
addresses each item for which you want to provide help.

3.3.2.5. Creating a Submenu

The final addition to the menubar is the submenu for the From Menu
item. This submenu has two items, “Hello” and “Good-bye.” A
check mark appears next to these items when they are chosen. You
build the submenu by adding items to the From Menu item, and
setting their attributes, just as you did before.

Creating the First Submenu Item

14. In the Menu Editor’s list box, select the From Menu item.

15. Click Add Menu to open another Menu Editor window.

16. Add a new item, as before, by clicking New.
3-8

Tutorial
Figure 3.8.Adding a submenu to the “From Menu” menu

17. Next, click Attributes to bring up an attributes dialog box for the
item.

18. Enter “Hello” in the Title field and “M_HELLO” in the Menu ID
(symbolic identifier) field.

Your application’s source code will refer to the menu item by the
symbolic identifier string, rather than using its equivalent integer
resource ID.

19. Also click Checkable and Checked so the item will be initially
checked.

Figure 3.9.Changing the menu item title to “Hello”

20. Click OK to dismiss the attributes dialog.
3-9

XVT-Design Manual
Creating the Second Submenu Item

21. Create a second menu item called “Goodbye,” just as you
created the Hello menu item.

22. Set its Menu ID (symbolic identifier) string to “M_GOODBYE”.

23. And then click Checkable.

Figure 3.10.Changing the second menu item title to “Goodbye”

You have completed creating the menus and menu items for the
application.

24. Close all the Menu Editor windows by clicking Done in each of
the three Menu Editor windows.

25. In the initial Menubar Editor dialog, click Done again.

3.4. Saving the Project
Tip: This is a good time to save the work you’ve done so far.

1. Choose Save Project from the File menu.

Since this is the first time you’ve saved this project, a standard file
save dialog appears.

XVT-Design (running on the Mac and Windows platforms) gives
the project file a default name of “proj1.dpr.”

2. Change the default name to “hello.dpr.”

3. Use the Save As dialog from the File menu to save the file to the
directory you want.
3-10

Tutorial
4. Click Save.

Figure 3.11.Saving the “hello.dpr” project

As with any application, it’s a good practice to save your file
frequently.

3.5. Creating Containers
Next you will create the containers—windows and dialogs—for the
application. You need three containers:

• The document window for the application, to display a
message chosen by the user

• A Choices dialog, with several controls, to allow the user to
choose one of several messages

• An “About box” dialog, to display the name of the
application

Each of these containers has several attributes, such as its name and
size, that you will set. First you will create the document window
and set its attributes. Then you will create the Choices dialog and its
controls. Finally, you will create the About box.

3.5.1. Creating the Message Window

At start-up, XVT-Design created an empty layout window called
Window 101, which we’ll now use as our message window.

Tip: To create a message window,

1. From the Tools menu, choose Action Code Editor.

2. Select Window 101 from the Module list button

3. Click Layout to open the window.

4. Close the ACE window by clicking its close box.
3-11

XVT-Design Manual
If you wanted to create additional windows, you could choose New
Window from the Window menu. When you do this, XVT-Design
creates a new window resource and opens a layout window for it.

Figure 3.12.Layout window for Window 101

3.5.1.1. Setting the Window’s Attributes

5. Choose Attributes from the Edit menu to open the attributes
dialog for the new window.

(As a shortcut, you can double-click in the client area of the window
to open its attributes dialog.)

This dialog lets you change all of the attributes of the window, such
as its title, size and location, and border style.
3-12

Tutorial
Figure 3.13.Setting attributes for a new window

XVT-Design gave the window a default title of “Window 101.”

6. Change it to “Message” by clicking in the Title edit control and
editing the string.

7. Change the Window ID (symbolic identifier) string from the
default “WIN_101” to “WIN_MESSAGE.”

8. Click the check boxes labeled Close Box and Sizeable.

9. Click on Own Color check box.

10. Click on Set Color push button.

11. Click on Own Color radio button. A dialog will appear. See
Figure 3.14. below.

12. Click on the Select Component button.

13. Choose Magenta from the Predefined color list.
3-13

XVT-Design Manual
Figure 3.14.Setting control color components

14. Click OK.

3.5.1.2. Associating the Window’s Menubar

You have already created a special menubar for the message
window: the menubar entitled WIN_MENUBAR. Now you will
associate this menubar with the application’s message window.

15. Click on the list button located to the right of the label Menubar.

A list of all the menubars in your project descends from the list
button.

16. To associate your previously created menubar with the message
window, choose WIN_MENUBAR from the menubar list button.

17. Click OK to close this attributes dialog.

3.5.1.3. The Object Palette

When you create a new window or dialog in XVT-Design, or
when you open an existing window or dialog, it contains an
“Object Palette” on the left side. This palette contains graphical
toggle buttons for all the controls you can place into the window or
dialog. Figure 3.15. shows the toggle buttons and the controls they
represent.
3-14

Tutorial
Figure 3.15.The object palette

Note: After you place the controls into your window or dialog, you can
hide the object palette so you can more accurately see what the
window or dialog looks like.

To hide the palette, select Hide Object Palette from the Layout
menu.

To redisplay it, select Show Object Palette.

3.5.1.4. Adding a Push Button Control

The message window in your sample application will have one
control: a push button.

18. To create the button, click the push button toggle button in the
object palette.

19. Then click in the lower section of the Message window to place
the button. (An alternate method is to choose Push Button from
the Controls menu and click in the window.)

20. Select the pointer toggle button from the object palette and
double-click on the push button to open its attributes dialog.

Pointer

Check Box

Horizontal
Scroll Bar

Static Text

Text Edit

List Button

Group Box

Push Button

Radio Button

Vertical
Scroll Bar

Edit Control

List Box

List Edit

Custom
Control
3-15

XVT-Design Manual
Figure 3.16.Setting attributes for a push button

The default title of the push button is “Push Button 1”.

21. Change it to “Custom String...”

22. Click OK to close the dialog.

You may find that the button is too small to contain the new name.
If so, enlarge it by dragging the small rectangle near its lower-right
corner. When you’re done, the window should look like this:

Figure 3.17.How the push button looks in the window

3.5.1.5. Saving the Project

Tip: Again, this might be a good time to save the work you’ve done so
far.
3-16

Tutorial
1. Choose Save Project from the File menu.

3.5.2. Creating the Other Choices Dialog

Now you will create the Other Choices dialog. First, you’ll create an
empty dialog and set its attributes. Then, you’ll place some controls
in the dialog, and set their attributes.

3.5.2.1. Creating a New Dialog

Tip: To create the dialog

1. Choose New Dialog from the Window menu.

XVT-Design opens a layout window for the dialog.

Note: XVT-Design uses resizeable windows to represent both windows
and dialogs, so that you can easily change the size and position of
the dialogs you create. When your finished application is running, an
actual native dialog is used appropriately.

3.5.2.2. Setting the Dialog’s Attributes

2. Double-click in the dialog layout window to open its attributes
dialog:

Figure 3.18.Setting attributes for a dialog

3. Change the dialog’s title to “Other Choices” and change its
Dialog ID (symbolic identifier) string to “DLG_CHOICES.”

Note: The following step is an important one; make sure you perform it.
3-17

XVT-Design Manual
4. Click Modal to make the Choices dialog modal.

5. Click OK to close the attributes dialog.

3.5.2.3. Adding Radio Buttons

Now you’ll add a group of radio buttons to the dialog. XVT-Design
provides two methods for creating multiple controls:

Method 1: Using the object palette

1. From the object palette on the left side of the dialog, select the
desired control by its toggle button.

2. Click in a layout window to create a control.
Every time you click in the layout window, a control of this type
is created.

3. When you are done placing controls of this type, choose the
pointer toggle button from the object palette.

Method 2: Using the Controls Menu

1. Before choosing the desired control from the Controls menu,
press and hold the Shift key on your keyboard. Then choose the
control.

2. Click in a layout window to create a control.
Every time you click in the layout window, a control of this type
is created.

3. When you’re done creating controls of this type, choose Pointer
(or another control) from the Controls menu.

Tip: Use one of these methods to place four radio buttons in the Other
Choices dialog.

When you’re finished creating controls, remember to choose the
pointer toggle button from the object palette or Pointer from the
Controls menu.

The dialog’s layout window should look like Figure 3.19.
3-18

Tutorial
Figure 3.19.Adding radio buttons to the dialog

3.5.2.4. Changing the Radio Button Titles

Now change the titles of the radio buttons to correspond to messages
that the user of the application can choose.

1. Double-click the first radio button (or choose Attributes from
the Edit menu) to bring up its attributes dialog.

2. Change its title to “Have a nice day!” and click OK to dismiss
the attributes dialog.

3. Change the titles of the remaining radio buttons to “See ya later,
alligator!”, “Beam me up, Scotty!” and “Make it so!” (or
whatever other messages strike your fancy).

Note: In the layout window, the titles of the buttons might be truncated on
the right; if so, make the buttons larger by clicking them and
dragging the black rectangle at their lower-right corner. You might
also need to change the size of the dialog itself to accommodate the
controls; do this by resizing the dialog’s layout window.

3.5.2.5. Change the Radio Button Fonts

For each of the radio buttons, do the following:

1. Double-click on the individual radio buttons to bring up the
Attributes window.

2. Click on the Own Font check box.

3. Click on the Set Font button.

4. Change the fonts and styles to ones of your own choosing.

5. Click OK when you are done.
3-19

XVT-Design Manual
6. Click OK to dismiss the Radio Button Attributes editor
window.

3.5.2.6. Adding Push Buttons

Tip: Now you will give the dialog two push buttons: OK and Cancel.

Creating the OK Button

1. Create a push button, and double-click it to open its attributes
dialog.

2. Change its title to “OK,” and click Default.

In a dialog, the button having the Default attribute appears with a
thick border drawn around it (at runtime, not in the Layout
Window). It recognizes Return and Enter keystrokes. (For example,
in the attributes dialog, OK is the default button.)

Creating the Cancel Button

3. Create a second push button, and double-click it to open its
attributes dialog.

4. Change its title to “Cancel,” and click the Cancel radio button.
(You can change the font for the button at this point, too.)

In a dialog, the button having the Cancel attribute has the behavior
appropriate for the native platform. (On most platforms this makes
the “Escape” key equivalent to the Cancel button.)

5. When you have finished setting the title of the control, click OK
to quit the attributes dialog.

The dialog should now look something like this:
3-20

Tutorial
Figure 3.20.How controls look in the new dialog

3.5.2.7. Using Layout Options

The Layout menu contains several items for aligning, spacing, and
sizing controls within a dialog or window. The toolbar that appears
at the top of the window or dialog in layout mode provides another
way to access these layout functions—with toggle buttons

1. Select all four of the radio buttons by clicking in the upper-left
corner of the window and holding the mouse button down as
you drag a rectangle to enclose all four buttons.

2. Align the left edge of the four radio buttons by using either the
Align Left menu option or toggle button.

3. While all buttons are still selected, choose the Even Vertical
Spacing menu option or toggle button.

You can also position the group of radio buttons and move them
together within the window by clicking on any one of the radio
buttons and holding the mouse button down as you drag the
group.

4. Use the alignment functions (from the Layout menu or toolbar)
to position the two push buttons in the dialog.

5. Then, to get an accurate picture of what your dialog looks like,
hide the toolbar and object palette (by selecting these items
from the Layout menu).

6. Do any final positioning of objects with the toolbar and object
palette hidden.
3-21

XVT-Design Manual
3.5.3. Creating an About Hello Dialog

The last container to create is the About box. This simple dialog
contains some text and one push button.

Tip: To create the dialog,

1. Choose New Dialog from the Window menu.

2. Open its attributes dialog, change its title to “About Hello,” its
Dialog ID (symbolic identifier) string to “DLG_ABOUT,” and
click Modal. Click OK to dismiss the dialog.

3. Next, add two static text controls and a push button to the About
dialog.

4. Change the title of the first static text control to “Hello version
1.0,” and the title of the second to “A simple application created
with XVT-Design.”

(Adjust the size of the control and the size of the dialog as
needed so this entire string is visible.)

5. Change the title of the push button to OK, and check its Default
check box.

When you’re finished, the dialog should look something like this:

Figure 3.21.An About box dialog

To get an accurate picture of what your dialog looks like,

6. Using the options from the Layout menu, turn off the toolbar
and object palette.
3-22

Tutorial
7. Do any final positioning of objects with the toolbar and object
palette hidden.

3.6. Setting Application Attributes
So far you have been creating the individual user-interface objects
of the Hello application, and setting their attributes.

Tip: Now you will set the attributes of the application itself.

1. Choose Project Attributes from the Edit menu to open the
Project attributes dialog.

In the Project Attributes dialog, you will set the following seven
attributes:

Task Menubar
The Task Menubar is the menubar attached to the task window.
A list box shows the names of all the menubars in the project.
The selected name is the task window’s menubar.

2. For your Hello application, this should be TASK_MENUBAR.

About Box
The About Box is the dialog displayed when the application
user brings up the About box. A list box shows the names of all
the dialogs in the project. The selected name is the About box.

3. Click About Hello, the name of the dialog you created
previously.

Task Window Title
This is the title of the task window. (This feature is not
applicable on the Mac platform.) The title is displayed in an edit
control.

4. Change it to “XVT-Design Tutorial.”

Document Prefix
The Document Prefix is a string put at the beginning of the titles
of the application’s document windows. It is displayed in an
edit control.

5. Change the Document Prefix to “Hello.”

Internationalization
This check box allows you to generate internationalized code
from XVT-Design.

Code Recovery
This check box must be clicked before you begin generating the
3-23

XVT-Design Manual
application in order to enable code recovery. See Chapter 4 for
details.

6. The check box must remain selected to allow recovery of code
after you have generated the application.

Own Font and Own Color
These buttons allow you to change the default control fonts and
colors for the entire application. If you want all the control,
containers, etc., to be , for example, magenta in color and in
courier font, click one or both of these buttons.

Note: Individual GUI objects, windows, etc., can have their colors and
fonts set as well. Settings at the individual level will override any
settings made at the application level. These buttons allow you to
change the default control settings for the entire application.

When you have finished setting the project attributes, the dialog
should look like this:

Figure 3.22.The Project Attributes dialog

7. Click OK to save these changes.

X

3-24

Tutorial
3.7. Setting Connections Between Objects
Now that you have built all the user-interface objects for the Hello
application, you will begin to build the program that makes these
objects do something.

If you were creating this application without XVT-Design, you
would start writing C source code at this point. However, with
connections and TestMode, XVT-Design lets you develop much of
the functionality of your application’s user interface without writing
any code.

Tip: To start building the application’s source code, you’ll create
connections by using XVT-Design’s Action Code Editor.

1. Close any layout windows that you have left open, and choose
Action Code Editor from the Tools menu. (You can leave layout
windows open if you want, but your screen may not match the
following illustrations if you do so.)

The Action Code Editor looks like this:

Figure 3.23.The Action Code Editor

The ACE Context

Look at the three list buttons near the top of the ACE window,
labeled Module, Object, and Tag. The settings of these list buttons
constitute the context of the ACE—the unique combination of a
module, one of the objects contained by the module, and one of the
tags for the object.

The text-editing pane in the ACE always displays the action code for
the context shown by the list buttons.
3-25

XVT-Design Manual
3.7.1. Task Menubar Connections

When the user chooses New from the File menu of the Task
menubar, a new window will be created. You will set a connection
for the Select tag of this menu item that opens the Message window.

To create this connection,

2. First set the context of the Action Code Editor as follows:

• Set the Module list button to TASK_MENUBAR

• Set the Object list button to ITEM:New

The list buttons in the ACE should look like this:

Figure 3.24.Setting the context of the ACE

In the remainder of this tutorial, the following format will represent
the Action Code Editor’s context:

3. Click Connections ...to open the Connections dialog.

4. Since this connection will open one of the containers you have
constructed, click Create User-defined Object.

A list button next to this radio button lists all the containers in the
project.

5. Set this list button to Message, the title of the application’s
window.

The Connections dialog looks like Figure 3.25.

TASK_MENUBAR ITEM:New EVNT:Select
3-26

Tutorial
Figure 3.25.The Connections dialog

6. Click OK to dismiss the dialog.

Notice that XVT-Design adds the following code to the ACE’s text-
editing pane:

if (!xvt_win_create_res(WIN_MESSAGE, TASK_WIN,
EM_ALL,WIN_MESSAGE_eh, 0L))
xvt_dm_post_error("Can’t open window");

When executed, this code invokes your window. It checks the return
value of xvt_win_create_res for errors, and puts up an error message if
the window is not successfully created.

What Happens When You Create a Connection

When you create a connection, XVT-Design does two things:

• Records the connection in the project file, so that the
connection will occur during TestMode.

• Adds action code to the ACE’s editing pane. This code is
added to the module’s source code file when XVT-Design
generates your application’s files, so that the connection will
occur when the compiled application is executed.

Connections and Action Code

You can always add to or modify the action code that XVT-Design
generates. Keep in mind that XVT-Design doesn’t interpret or
execute any of your application’s action code. XVT-Design
3-27

XVT-Design Manual
maintains connections separately from the code fragments. Hence
you can have a connection with no code fragment (and vice versa).

Remember that you can specify the default code that Design
generates by editing the design.cft file. See Chapter 6 for further
details on editing this file.

3.7.2. Message Window Menubar

You will create two connections for the window’s menubar, to
accomplish the following:

• Open a new window when New is chosen from the File menu
(the same as for the task window’s menubar)

• Bring up the Other Choices dialog when From Dialog is
chosen from the Choices menu

Tip: To create a connection for a window’s menubar,

1. For the first connection, set the context in the Action Code
Editor to:

2. Click Connections, and set the connection in the dialog just as
you did for the task window (see instructions on the previous
page).

Notice that even though you have only created one window
resource, at runtime the application can create any number of
windows using this resource. You don’t have to create a separate
window resource for every window the application might create.
In fact, application users can create as many windows as they like.
The windows initially will have the same size and location, but can
be moved independently and can display different messages.

3. For the second connection, set the context in the Action Code
Editor to:

4. Open the Connections dialog, click Create User-defined Object,
and choose Other Choices from the list button.

After you’ve completed these operations, the Connections dialog
looks like Figure 3.26.

WIN_MENUBAR ITEM:New EVNT:Select

WIN_MENUBAR ITEM:From Dialog... EVNT:Select
3-28

Tutorial
Figure 3.26.Connecting the “Other Choices” dialog to the
Choices menu

5. Click OK to dismiss the Connections dialog.

3.7.3. Message Window Connections

The application’s window has one button, which will serve to
demonstrate the pre-defined dialogs available in XVT-Design.
(You can pretend that this button represents a feature in the
application that has not yet been implemented.)

6. Set the context in the ACE to:

This context tag corresponds to the event of the user clicking the
button in the application’s window.

7. Click Connections, and check Create XVT Dialog in the
Connections dialog.

8. Set the list button to “Note,” and click Dialog Strings.

9. In the small dialog that opens, enter “Not Yet Implemented!” in
the dialog’s edit control.

This is the message that will be displayed when the button in the
application’s window is clicked.

Message PB:Custom String EVNT:Control
3-29

XVT-Design Manual
10. Click OK to dismiss the string dialog, then click OK in the
Connections dialog to dismiss it.

3.7.4. Other Choices Dialog Connections

The connections for the Other Choices dialog are quite simple:
when the user clicks OK or Cancel, the dialog should go away.
For both buttons, you will create a connection that closes the dialog.
(You must also handle the dialog’s radio buttons, but that comes
later.)

Tip: To make the connection for the OK button

11. Set the context to:

12. Click Connections to open the Connections dialog.

13. Click Close Object, then click OK to dismiss the dialog.

Figure 3.27.Creating a “Close Object” connection

Now, when the OK button in the Other Choices dialog is clicked, its
connection closes the dialog.

14. Set the same connection for the Cancel button, using this
context:

Other Choices PB:OK EVNT:Control

Other Choices PB:Cancel EVNT:Control
3-30

Tutorial
3.7.5. About Hello Dialog Connection

The connection for the button in the About box is the same as those
in the Other Choices dialog. When the user clicks the button, the
dialog should disappear.

Tip: To make the connection,

15. First set the context to:

16. Then set the connection to Close Object, and click OK.

3.8. Running TestMode
So far, you have created all of the user-interface objects for the
sample application, and have defined connections between them.
Now you’ll use XVT-Design’s TestMode to check your work. With
TestMode, you verify the appearance of the windows, dialogs, and
menus, without compiling, linking, and running the application.

Testing the Hello Application

Tip: To test the Hello application,

1. Choose Begin TestMode from the Tools menu.

XVT-Design hides any open layout and Action Code Editor
windows, and replaces its menubar with your application’s task
window menubar.

2. Answer “Save” to the dialog box that appears in order to your
project.

Testing Connections

Tip: Now test some of the connections you created.

3. Choose New from the File menu, and the Message window
appears (as shown on the next page).

Notice that it has the correct menubar—the one you named
WIN_MENUBAR and associated with the Message window
resource.

About Hello PB:OK EVNT:Control
3-31

XVT-Design Manual
Figure 3.28.Message window showing a menubar and button

4. Try moving and resizing the window—it behaves as you would
expect a GUI document window to behave.

5. If you click Custom String, a dialog with the sample error
message (“Not Yet Implemented”) appears.

Recall that you didn’t have to define the dialog explicitly—you
asked XVT-Design to use a pre-defined dialog, and gave it the
string to display. Click OK to dismiss the dialog.

6. Try opening the Other Choices dialog, by choosing From
Dialog from the Choices menu.

At this stage, the radio buttons won’t do anything if you click
them, but the OK and Cancel buttons do dismiss the dialog, as
intended.

Close the Other Choices dialog box.

7. Finally, choose End TestMode from the TestMode menu.

XVT-Design added this menu to the application’s menubars to
provide a way to leave TestMode. This menu is added only in
TestMode. It will not appear in the final, compiled application.

You can also exit TestMode by, from the File menu, choosing
Exit or Quit.
3-32

Tutorial
Making Adjustments to Interface Objects

You may have noticed that some of the user-interface objects needed
minor adjustments. Perhaps you didn’t like the location of the
Messages window, or maybe the buttons in the Other Choices dialog
were not arranged correctly.

You can fix these problems by adjusting the location of the
resources, and re-entering TestMode to check your work.

XVT-Design lets you refine the application’s appearance without
the time-consuming process of editing and compiling resource and
source code files, linking the modules, and running the application.

3.9. Attaching Action Code to Tags
With connections, you have implemented much of the application’s
user-interface behavior; however, you still need to define a few
features in source code. Specifically, you must implement the
following features:

• Displaying the appropriate message in the Message window,
when the user chooses Hello or Goodbye from the Choices
menu

• Placing a check mark next to the Hello or Goodbye menu
item, after the user chooses one of them

• Displaying the appropriate message in the Message window,
after the user clicks OK in the Other Choices dialog

• Changing the appearance of the message when the user
chooses commands from the Font/Style menus

To add these features, you’ll use the Action Code Editor to create
action code for several tags.

Note: Remember that XVT-Design allows you to recover code after the
application has been generated. See Chapter 4 for details.

Tip: You might find it useful to refer to the XVT Portability Toolkit Guide
as you complete this part of the tutorial.

3.9.1. Storing the Message

The application’s windows will display a message, which is held in
a string variable. Because the application can have several windows
open at once, and since each window can have a different message,
you need to associate a string variable with each window.
3-33

XVT-Design Manual
The window’s application data pointer will hold the message string.
When a window is created, you allocate some memory for the string,
put a default message into the string, and set the window’s
application data variable to point at the string.

When a window is created, you also initialize its menubar by setting
the Font menu to reflect the default font.

1. Set the context of the Action Code Editor like this:

2. and enter the following code into the ACE’s editing pane:

XVT_FNTID theFont;
/*

Allocate space for a text string, and set the
window’s app data field to that pointer. Set the
initial string to "Hello," which will be displayed
when the update event for this window occurs.

*/
char *s;
if ((s = xvt_mem_alloc (100)) == NULL)
 xvt_dm_post_error("Insufficient memory");
else {
 strcpy(s, "Hello!");
 xvt_vobj_set_data(xdWindow, PTR_LONG(s));
}
/*

Initialize the Font menu.
*/

theFont = xvt_dwin_get_font(xdWindow);
xvt_menu_set_font_sel(xdWindow, theFont);

Tip: This is about the largest block of code you should ever enter into the
Action Code Editor. Generally, XVT recommends that you place a
call to a function instead, and define the function in an external file.
You then instruct the makefile to include the external file containing
the function as part of the project’s compilation.

Since memory is allocated when you create the window, you must
free it when the window is destroyed.

3. Set the context of the ACE like this:

4. and enter the following code:

Message WIN:Message EVNT:Create

Message WIN:Message EVNT:Destroy
3-34

Tutorial
/*
 Free the string that’s attached to the window’s

app data.
*/
char *s = (char*)xvt_vobj_get_data(xdWindow);
if (s != NULL)
 xvt_mem_free(s);

3.9.2. Displaying the Message

When a window receives an update event, its contents need to be
redrawn. In this application, you will erase the window and draw the
string you placed there previously.

Tip: To add code to handle the update event,

5. Set the ACE’s context to:

XVT-Design has already added default code to erase the window’s
contents. Your code goes immediately after the default code. The
code that XVT-Design generated is shown in italics:

/*
 Clear the window to the default background color,

and draw the text string that’s referenced in
the window’s app data field.

*/
xvt_dwin_clear(xdWindow, (COLOR)xvt_vobj_get_attr

(xdWindow, ATTR_BACK_COLOR));
xvt_dwin_draw_text(xdWindow, 20, 50,

(char *)xvt_vobj_get_data (xdWindow), -1);

3.9.3. Changing the Message with Menu Commands

When the user chooses Hello or Goodbye from the Choices menu,
the corresponding string should appear in the Message window.
For the Select tag of both of these menu items, you’ll add action
code that copies a string into the window’s message string. Also,
you’ll force an update event for the window to occur, so that the new
message will be redrawn.

Tip: For the Hello item,

6. Set the context like this:

7. and enter the following code:

Message WIN:Message EVNT:Update

WIN_MENUBAR ITEM:Hello EVNT:Select
3-35

XVT-Design Manual
/*
 Copy the new string into the buffer, and force an

update. Also, check the appropriate menu item in
the Choices menu.

*/
strcpy((char *)xvt_vobj_get_data(xdWindow),

"Hello!");
xvt_dwin_invalidate_rect(xdWindow, NULL);
menu_fix(xdWindow, xdEvent);

(The last line of code is a call to a function you haven’t written yet.
You will write it shortly.)

The action code for the Goodbye item is almost identical:

/*
 Copy the new string into the buffer, and force an

update. Also, check the appropriate menu item in
the Choices menu.

*/
strcpy((char *)xvt_vobj_get_data(xdWindow),

"Goodbye!");
xvt_dwin_invalidate_rect(xdWindow, NULL);
menu_fix(xdWindow, xdEvent);

Note: It is sometimes easier to cut and paste functions that are similar
instead of typing the code in each time.

3.9.4. Checking the Menu Items

Now you’ll enter code to produce the following behavior: when the
user chooses Hello or Goodbye from the Choices menu, a check
mark appears next to the menu item. When the user chooses From
Dialog, the check mark disappears.

You’ll call this check mark function from the action code for the
Select tag for each of the items on the Choices menu. You’ll place it
in the menubar’s Object Declaration action code.

The Object Declaration Tag (Obj_Decl)

The Object Declaration is a convenient tag for functions that are
called from several of a module’s action code fragments, but are not
called from outside of the module.

8. Set the context like this:

WIN_MENUBAR ITEM:Goodbye EVNT:Select

WIN_MENUBAR

MBAR:WIN_MENUBAR
 SPCL:Obj_Decl
3-36

Tutorial
9. and enter the following code:

/*
 Check the appropriate Choices menu item when the

user selects one of the items.
*/

void
menu_fix(WINDOW win, EVENT *ep)
{
 xvt_menu_set_item_checked(win, M_HELLO,

ep->v.cmd.tag == M_HELLO);
 xvt_menu_set_item_checked(win, M_GOODBYE,

ep->v.cmd.tag == M_GOODBYE);
}

Notice that this function both places a check mark next to the item
the user selected, and removes the check mark from the other item
(if it was checked).

3.9.5. Changing the Message with the Choices Dialog

Changing the message based on the user’s interaction with the Other
Choices dialog is slightly more complicated. The dialog must
communicate user actions to the window. Did they press OK or
Cancel to close the dialog? Did they click a radio button?

To do this, you’ll allocate a temporary string variable, and pass it to
the dialog when it is created. The dialog’s event handler then
handles the string according to the user’s actions:

• When the user clicks a radio button, the event handler puts the
appropriate message into this string

• If the user clicks Cancel, the event handler clears the string
before returning

If the string is empty after the event handler returns, the user clicked
Cancel and there is no need to change the message. On the other
hand, if the string is not empty, you will copy its contents into the
window’s message string, and force the contents of the window to
be redrawn.

Allocating a Temporary String Variable

10. Set the context like this:

XVT-Design has already added some code for this tag, because you
set a connection for it. You will add code both before and after this

WIN_MENUBAR ITEM:From Dialog… EVNT:Select
3-37

XVT-Design Manual
existing code, and change the connection code slightly to pass the
string variable to the dialog’s event handler.

11. Enter the following code (the code previously generated by
XVT-Design is shown in italics):

/*
Allocate a temporary string variable, and pass it
to the dialog’s event handler. After the event
handler returns, copy the string into the window’s
message string and force a redraw of the window.

*/
char *s;
if ((s = xvt_mem_alloc (100)) == NULL)
 xvt_dm_post_error("Insufficient memory");
else {

strcpy(s, "");
if (!xvt_dlg_create_res(WD_MODAL, DLG_CHOICES,

EM_ALL, DLG_CHOICES_eh, PTR_LONG(s)))
xvt_dm_post_error("Can’t open dialog");

if (strlen(s) > 0)
{

strcpy((char *)xvt_vobj_get_data(xdWindow),
s);
xvt_dwin_invalidate_rect(xdWindow, NULL);
menu_fix(xdWindow, xdEvent);

}
xvt_mem_free(s);

}

Caution: When you enter the above code, be sure to change the last parameter
in the xvt_dlg_create_res call to PTR_LONG(s), as shown in bold.

The dialog itself needs code to accomplish the following:

• When any radio button is clicked, the button’s title must be
copied into the dialog’s application data (that is, the string
allocated before creating the dialog)

• If OK is clicked, the dialog closes, leaving the button title in
the previously allocated string, so that it can be copied to the
window’s message string

• If the user clicks Cancel, the string is erased so that the
message is left unchanged

XVT-Design creates default action code for radio buttons, which
handles checking and unchecking the buttons as a group. You’ll
leave this code in place, and add code that copies the title of the radio
button into the dialog’s application data.
3-38

Tutorial
Adding Code for the Radio Buttons

12. Set the context to:

13. And add the following code after the existing code in the edit
pane:

/*
copy the button’s title into the dialog’s app data

*/
xvt_vobj_get_title(xvt_win_get_ctl(xdWindow,

DLG_CHOICES_RADIOBUTTON_1), (char *)
xvt_vobj_get_data(xdWindow), 100);

The action code is almost exactly the same for each of the other radio
buttons. For each one, set the context as shown, and enter the code
that follows it. You might find it convenient to use the Copy and
Paste commands on the Edit menu to paste copies of text in each
context.

/*
copy the button’s title into the dialog’s app data

*/
xvt_vobj_get_title(xvt_win_get_ctl(xdWindow,

DLG_CHOICES_RADIOBUTTON_2), (char *)
xvt_vobj_get_data(xdWindow), 100);

/*
copy the button’s title into the dialog’s app data

*/
xvt_vobj_get_title(xvt_win_get_ctl(xdWindow,

DLG_CHOICES_RADIOBUTTON_3), (char *)
xvt_vobj_get_data(xdWindow), 100);

/*
copy the button’s title into the dialog’s app data

*/
xvt_vobj_get_title(xvt_win_get_ctl(xdWindow,

DLG_CHOICES_RADIOBUTTON_4), (char *)
xvt_vobj_get_data(xdWindow), 100);

Other Choices RB:Have a nice day! EVNT:Control

Other Choices RB:See ya later, alligator! EVNT:Control

Other Choices RB:Beam me up, Scotty! EVNT:Control

Other Choices RB:Make it so! EVNT:Control
3-39

XVT-Design Manual
Adding Code for the Push Buttons

Finally, you must enter code for the push buttons. Both buttons
already have action code for their tags, which XVT-Design inserted
when you created connections for the buttons.

14. The OK button needs no additional code, but the Cancel button
needs code to clear the application data string:

15. Add this text before the existing code:

/*
Clear the application data, so that the string
will not replace the window message

*/
strcpy((char *) xvt_vobj_get_data(xdWindow), "");

3.9.6. Changing the Font and Style

The last action code you must create deals with the Font/Style
menus. The XVT Portability Toolkit handles most of the details—
you simply need to call the appropriate functions at the right time
(that is, when the user chooses an item from the Font/Style menu).

/*
Set the window’s font, update the check marks on
the Font menu, and force the window to redraw its
contents.

*/
xvt_dwin_set_font(xdWindow,

 xdEvent->v.font.font_id);
xvt_menu_set_font_sel(xdWindow,

xdEvent->v.font.font_id);
xvt_dwin_invalidate_rect(xdWindow, NULL);

3.10. Generating the Application
At this point, you have created all of the application’s resources,
made connections between them, and added action code. Now you
will generate the source code files. XVT-Design will create
complete a source code, a header, and a resource file, as well as a
platform-specific makefile to build the complete application.

Other Choices PB:Cancel EVNT:Control

Message WIN:Message EVNT:Font
3-40

Tutorial
3.10.1. Setting the Application Name

Before XVT-Design generates files for the application, you must tell
it where to put the files, and provide an application file.

1. Choose Generate Application from the File menu.

The dialog shown in Figure 3.29. opens.

Figure 3.29.The Generated Files dialog

2. Click Change, and a standard file save dialog appears.

3. Navigate to the directory in which you want to place the
generated code files, which might probably be the same one that
contains your project file.

4. In the Name field, enter the name of the finished application:
“hello.”

5. Click Save to dismiss the file save dialog.

In the center of the Generate Application dialog, a list box shows the
names of the files that XVT-Design will generate for your
application.
3-41

XVT-Design Manual
Notice that they have been changed to reflect the name you just gave
to your application, as shown in Figure 3.30.

Figure 3.30.New names for the generated files

Selecting a Makefile Template

A list button in the Generate Application dialog, labeled “MakeFile
Template:”, contains the makefile templates XVT-Design knows
about on your platform.

6. Select the makefile for your compiler if it uses a makefile.
Otherwise, double-click on hello.make to stop a makefile from
being generated. (The asterisk next to hello.make will disappear.)

3.10.2. Generating the Source Files

To generate source files, click Generate. XVT-Design now creates a
source code, a makefile, a header, and a resource file in the directory
you specified in the previous step. You may want to examine these
files to see how XVT-Design incorporated the action code you
created with its structural code.

7. When the dialog tells you that application generation was
successful, click OK.

3.11. Building and Running the Application
How you actually build the final application depends on your
development environment:

• If you’re using an environment with makefiles, XVT-Design
will have created a complete makefile for your application.
3-42

Tutorial
Use make (or whatever your make utility is called) to
compile the application.

• If you’re using an environment without makefiles, use the
project file in the tutorial directory in your XVT-Design
installation.

8. Once you’ve compiled the application, run it and test the
features constructed in this tutorial. Open several windows and
set a different font and style in each. Try changing the
messages, first by choosing Hello and Goodbye from the
Choices menu, and then by opening the Other Choices dialog
and clicking different radio buttons.

3.12. XVT-Design and Beyond
This tutorial has demonstrated how XVT-Design can speed the
creation and layout of application resources such as windows and
dialogs, controls, menus and strings.

You have seen how to create a project, create and lay out GUI
objects, set application attributes, add and test connections, add
action code, and generate an application. Now that you have
finished this tutorial, you can learn more about XVT’s Development
Solution for C:

• See the XVT Portability Toolkit Guide.
3-43

XVT-Design Manual
3-44

Using XVT-Design
4
USING XVT-DESIGN

This chapter describes the main features of XVT-Design, and tells
how to use them to build your application. The chapter covers the
following topics:

• Project Files

• Using the Action Code Editor (ACE)

• Creating Windows, Dialogs, and Controls

• Layout Commands

• Object Attributes

• Creation Order

• The Menu Editor

• String Resources

• Userdata Strings

• Help with Help Files

• TestMode

• Generating Source Code

• Code Recovery

4.1. Project Files
For every application you build with XVT-Design, you begin by
creating a new project file. Project files are the “documents” you
create and modify with XVT-Design. A project file contains all the
resources and source code for your application’s user interface.

Projects are stored in binary files. These files are portable across all
platforms on which XVT-Design runs. You can create a project file
on one platform, then move it to another platform—without
4-1

XVT-Design Manual
modification—to develop and refine your application on both
platforms.

4.1.1. Creating New Projects

Tip: To create a new project:

Choose New Project from the File menu.

XVT-Design creates a new project and opens an Action Code Editor
window and a layout window for the project.

4.1.2. Project Attributes

There are several attributes which affect your application as a whole.
You set these attributes with the Project Attributes dialog.

Tip: To open this dialog:

Choose Project Attributes from the Edit menu.

Figure 4.1.The Project Attributes dialog (Macintosh Platform)

You can set the following attributes with this dialog:

Task Menubar

The task menubar is the menubar shown in the task window. The
Project Attributes dialog has a list box that contains the names of all
4-2

Using XVT-Design
of the menubars in the project. Click the appropriate name to select
the task window’s menubar.

All new project files contain a default menubar, named
TASK_MENUBAR, which includes the standard File, Edit, Font and
Help menus. This menubar appears first in the list box.

Task Window Title

The title of your application’s task window is usually the same as the
name of your application. To set the task window’s title, type its
name in the edit control.

Document Prefix

The document prefix string is placed at the beginning of the names
of new document windows in your application. To set the document
window name prefix, type it in the edit control.

Internationalization

You can easily generate internationalized applications with XVT-
Design. The program supports efficient localization process and
allows flexibility in internationalization schemes

See Also: For details on the entire internationalization process, see Chapter 6
of this manual.

Code Recovery

With XVT-Design you can edit the generated files using any text
editor and later recover code from inside of XVT-Design.

Code fragments are wrapped with special comments during the code
generation process. You can edit the files using a standard text editor
and recover all the changes you have made to the generated files.

To make the most of this feature, it must be activated by clicking on
the Code Recovery radio button (in the Project Attributes dialog
box) early in the design process.

See Also: For further explanation of code recovery, see Code Recovery on
page 4-68.

Own Font

You can set the default control font for the entire application by
clicking on this button.
4-3

XVT-Design Manual
See Also: For further explanation of choosing and setting fonts, see Fonts and
Colors on page 4-26.

Own Color

You can set the default control color for the entire application by
clicking on this button.

See Also: For further explanation of choosing colors, see Fonts and Colors on
page 4-26.

About Box

The About Box is a dialog that is invoked when the user of your
application chooses the “About…” menu item. You can either use a
default dialog supplied by XVT-Design, or create your own. Any
modal dialog in your project can be used.

The Project Attributes dialog has a list box that contains the names
of all of the dialogs in the project. Click the appropriate name to
select the About box.

4.1.3. Working with Multiple Projects

You can work with more than one project at a time. The names of all
open projects are listed at the bottom of the Edit menu.

Only one project is active at a given time. The active project has a
check mark next to its name on the Edit menu. The windows for any
inactive projects are hidden. To make a project active, choose its
name from the Edit menu.

4.2. Using the Action Code Editor (ACE)
In XVT-Design, the Action Code Editor (ACE) is the primary tool
for creating and editing your application’s user-interface source
code. Using the ACE, you can

• Create and edit user action code

• Create and modify connections for TestMode

• Invoke other XVT-Design editors

This section describes how to use the ACE for each of these
functions.
4-4

Using XVT-Design
4.2.1. Invoking the ACE

Tip: You can invoke the ACE in several ways:

• From the Tools menu, choose Action Code Editor. You can
use this method at any time, as long as a project is open.

• From the Edit menu, choose Edit Code. This menu item is
available only when the active window is a layout window for
a window or dialog.

• In a layout window, hold down the Shift key and double-click
on a control, or the layout window itself.

4.2.2. ACE Code Fragment Templates

In previous version of XVT-Design, the initial ACE code for each
tag was hardwired. In this new version of Design, initial ACE code
is contained in a text file called design.cft.

• The design.cft file can be customized.

• When XVT-Design starts up, it reads design.cft.

• Each tag whose code fragment has not previously been
modified in the ACE gets initialized with the code you have
specified.

• You can create multiple versions of design.cft for use with
different applications.

Note: It is important to note that ACE code fragments should not be
created larger than 32K.

4.2.2.1. Editing the Design.cft file

The design.cft file is located in the same directory as design.cfg.

Figure 4.2.Directory for the design.cft file
4-5

XVT-Design Manual
4.2.2.2. Viewing the design.cft file

You can use any text editor to open the file.

The design.cft file is shown in the diagram below. There are two
types of string variables and they are detailed in the file itself.

Figure 4.3.A portion of the design.cft file

4.2.2.3. Rules for Editing design.cft

• Do not add or remove any templates.

• Do not change the BeginTemplate or EndTemplate
statements.

• Do not add or remove %’s – XVT-Design expects a specific
number of %’s for each template.

• If you change the design.cft file after a project has been
created, note that only tags which have never been modified
are updated from the design.cft file.

4.2.2.4. Resolving %s’s.

%s’s are documented in the design.cft file itself. There are two types
of %s’s:

• A string variable that references a variable that XVT-Design
knows about. These variables are like printf functions in C. Do
not change these types of variables.

• A string variable that references internal values.
This kind of variable can be changed.
4-6

Using XVT-Design
4.2.3. ACE Controls

When opened in a new project, the ACE window looks like this:

Figure 4.4.Controls in the Action Code Editor (Macintosh Platform)

The ACE window contains several controls: three list buttons for
setting the editing context, a text editing region for examining and
modifying source code, and several push buttons for other
operations. The following section describes the function of each
control.

4.2.3.1. The Editing Context

In the ACE, context refers to a specific tag for a specific object. The
context consists of three parts: the module that contains the object,
the object itself, and the tag. Three list buttons in the ACE
correspond to these parts (see below).

The titles of the list buttons always indicate the current context.
Action code can be associated with each context. The action code is
displayed in the text editing pane of the ACE.

Module

The Module list button lists the titles of all the containers and
menubars in the current project. An additional item, “Application,”
4-7

XVT-Design Manual
refers to the context for application events. The code for each
module in the project is generated into a different C file.

Object

The Object list button lists the titles of all the objects contained by
the item specified by the Module list button:

• If the Module item is a window or dialog, the objects are the
controls in that window or dialog

• If the Module item is a menubar, the objects are the titles of
the menu items

• If the Module item is “Application,” there is only one object,
also titled “Application”

Items in the Object list button have a prefix that indicates their type:

Containers
DLG: Dialog WIN: Window

Controls
CB: Check Box LX: List Box
CC: Custom Control PB: Push Button
ED: Edit Control RB: Radio Button
HS: Horizontal Scrollbar TE: Text Edit
LB: List Button TX: Static Text
LE: List Edit VS: Vertical Scrollbar

Tag

The Tag list button lists all the tags available for the item indicated
by the Object list button. The items on this list vary depending on the
kind of object (control, menu item, etc.) in the context. There are two
types of tags:

• Event tags have the prefix “EVNT:”

• Special tags have the prefix “SPCL:”

4.2.3.2. The Text Editing Pane

The center of the ACE window contains a rectangular pane for
editing text. You’ll use this editor to create, modify, and examine all
the action code fragments for your application. The code in this pane
always corresponds to the current context of the ACE, as shown by
the three list buttons.
4-8

Using XVT-Design
If the code won’t fit in the editing pane, you can use the horizontal
and vertical scroll bars to view it. You can change the size of the
pane by resizing the ACE’s window.

To edit text in the ACE, you can use three Edit menu commands:

Cut
Removes the selected text from the editor and places it on the
system clipboard.

Copy
Places a duplicate of the selected text onto the system clipboard.

Paste
Places the text from the system clipboard in the editor, at the
insertion point. If text is selected in the editor, the clipboard text
replaces it.

All text created with the editor is stored on disk in your project file
when it is saved. When XVT-Design generates the source files for
your application, the text is copied into the appropriate files.

You can also recover code after it has been generated.

See Also: For further explanation of code recovery, see Code Recovery on
page 4-68.

See Also: You can change the font and font size used in the ACE text pane by
editing XVT-Design’s configuration file. See Fonts and Colors on
page 4-26.

4.2.3.3. Creating and Editing Connections

You create connections in the ACE, using the Connections button.
Connections provide a link between user interface objects in your
application. For example, you can make a connections between a
push button and a window; once the connection is made, when the
button is pushed, the window appears.

Adding a connection usually means that XVT-Design generates
code and places it in the ACE editing window.

Connections

Brings up the Connection editing dialog (see following illustration).
This button is enabled only when the context is set to an object and
tag that allows a connection. In other words, it is enabled only when
the context is a menu item’s Select event, a push button’s Control
event, or the application’s Create event.
4-9

XVT-Design Manual
Figure 4.5.The Connection Dialog (Macintosh Platform)

The Connection dialog displays the object title and tag near the top
to indicate the context for the connection. Radio buttons on the left
indicate the action that will be executed when the event occurs:

Create User-defined Object

If this box is checked, the connection creates one of your
application’s windows or dialogs. A list button, enabled only when
this radio button is checked, indicates which one will be created.
From the list, choose the name of the object that the connection will
create.

Create XVT Dialog

If this box is checked, the connection invokes one of the pre-defined
XVT dialogs. A list button, enabled only when this radio button is
checked, shows the names of the pre-defined XVT dialogs:

Question
A dialog with a question icon, a message, and two or three
buttons, used to query the application user.

Error
A dialog with an error icon, a message, and an OK button.

Note
A dialog with a note icon, a message, and an OK button.
4-10

Using XVT-Design
Message
A dialog with an information icon and a message, useful in
low-memory or error conditions.

Save
A native save-file dialog, which allows the application user
to enter a name for a file and to choose its directory.

Open
A native open-file dialog, which allows the application
user to open a file.

Font
A dialog which allows the application user to choose a font
and type style.

From the list, choose the name of the dialog that the connection will
invoke.

Dialog Strings

To enter the message that the dialog displays, click the Dialog
Strings button. A small dialog opens; enter the message in the
dialog’s edit control and click the OK button.

If the connection creates the XVT “Question” dialog, you can also
enter titles for the three buttons in the dialog.

Create External Object

If this button is checked, XVT-Design creates an external
connection—that is, a connection to an object outside of the current
project. You must supply the symbolic identifier for the object (for
example, WINDOW_101), and click the appropriate radio button to
indicate the type of the object.

Tip: To create a connection to an external object:

1. Click the Create External Object radio button.

2. Type the symbolic identifier of the object in the edit field.

3. Click the radio button that corresponds to the type of the
external object—Modal Dialog, Modeless Dialog, Modal
Window or Window.
4-11

XVT-Design Manual
Close Object

If this button is checked, the action closes the window or dialog that
contains the object. Typically this connection is used to dismiss a
dialog or close a window when a button in that container is pushed.

Do Nothing

If this button is checked, the connection will not have any effect, and
no code will be generated for it. This button is checked by default
when the connection dialog is first opened for a context. To remove
an existing connection, check this button.

Note: Only the internal connection that XVT-Design uses for TestMode is
removed. You must remove the connection’s action code from the
ACE by hand.

4.2.3.4. Using Other ACE Controls

The ACE includes four other push buttons for performing various
operations:

Figure 4.6.Action Control Editor
4-12

Using XVT-Design
Layout

Brings up the layout window for the context object. If the context is
a menubar, the menubar editor opens. (See section 4.7.2 on page
(4-50).)

Attributes

Opens the Attributes dialog for the context object.

Revert

May perform one of the three following actions (depending on what
code is in the Text Box):

Revert to Previous

• Discards any changes you have made in the text editing pane.
The pane reverts to the text that was present when the context
was last selected.

Revert to Default Code

• Reverts to default code. The pane reverts to the default code
(replaces the current content of ACE with default code).

Append Default Code

• Appends default code. XVT-Design supplies action code for
some object/tag combinations. This “generic” code suggests
what your application should do by default for the context.
This code appears in the text editing pane; you can edit it just
as you would edit code you create yourself. After editing the
code, you can restore the original generic code by clicking the
Default Code button. The default code is added at the end of
any existing text.

Connections

When you create a connection, XVT records the connection in the
project file. The action code is also added to the module’s source
code so that the connection will occur when the application is
generated.

4.2.3.5. Finding Text in Action Code

The Edit | Find command brings up a dialog box that allows you to
set options that control a search through action code for the first
match of a string that you specify. The search applies to the active
Action Code Editor (ACE).
4-13

XVT-Design Manual
When you click the Find button in the dialog, the Action Code Editor
is positioned to the tag containing the match, and the matching text
is selected. You may then edit the text, or perform any other XVT-
Design operations.

Use the Edit | Find Next command to find the next match; if you've
moved to another tag, it finds the next match after that tag. In other
words, it starts the search from the current position. Or, you can
issue the Edit | Find command again, using the same or different
options in the dialog box.

With both the Find and Find Next commands, the search doesn't go
beyond the scope (see below). If no match is found, the position of
the ACE is left undisturbed.

These are the controls in the Find dialog:

Search for

The text to be searched for.

Case Sensitive

If checked, the match is case sensitive; otherwise, it is case
insensitive.

Whole Words Only

If checked, the text in the "Search for" field must match complete
words. (That is, "break" will not match "breakfast".)

4.2.3.6. Controls in the Origin Groupbox

From Cursor

If selected, the match begins from the current caret position in the
current action code.

Entire Scope

If selected, the match begins at the start of the scope, which is set by
one of the following four radio buttons.

4.2.3.7. Controls in the Scope Groupbox

Project

If selected, the scope is the entire project. If Entire Scope is selected,
the search begins with the first tag for the Application module and
the "APP:Application" object; otherwise it begins with the current
4-14

Using XVT-Design
caret position. In both cases it ends with the last tag for the last object
for the last module.

Module

If selected, the scope is the entire module. If Entire Scope is selected,
the search begins with the first tag for the first object in the module;
otherwise it begins with the current caret position. In both cases it
ends with the last tag for the last object in the module.

Object

If selected, the scope is the entire object. If Entire Scope is selected,
the search begins with the first tag for the object; otherwise it begins
with the current caret position. In both cases it ends with the last tag
for the object.

Tag

If selected, the scope is the entire action code for the tag. If Entire
Scope is selected, the search begins at the start of the action code;
otherwise it begins with the current caret position. In both cases it
ends at the end of the action code.

Find

When this button is pressed, the dialog is dismissed and the search
begins.

Cancel

This button dismisses the dialog without starting a search.

4.2.3.8. Scanning a Project's Action Code

The Edit | Scan Tags command allows you to quickly review the
action code for part or all of a project.

4.3. Creating Windows, Dialogs, and Controls
XVT-Design provides tools for creating windows, dialogs, and
controls graphically and interactively. You create and adjust these
resources directly on your screen, and XVT-Design generates the
appropriate resource description files.

See Also: For more information on the differences between windows and
dialogs, see Project Files on page 4-1.
4-15

XVT-Design Manual
4.3.1. Creating Windows and Dialogs

Tip: To create a new window:

1. Choose New Window from the Window menu. XVT-Design
opens a new layout window.

2. Move and resize the window to suit your needs. The size and
location of the layout window represent the size and location of
the window resource you have created.

Tip: To create a new dialog:

1. Choose New Dialog from the Window menu. XVT-Design
opens a new layout window.

2. Move and resize the dialog to suit your needs. The size and
location of the layout window represent the size and location of
the dialog resource you have created.

Note: XVT-Design uses document-style layout windows to represent
windows and dialogs of all types. This lets you easily adjust the
position and size of these resources. In TestMode, and in your
compiled application, the windows and dialogs are rendered
appropriately for their type.

4.3.1.1. Modal Windows

XVT-Design supports the layout and generation of modal windows.
There is a Window Attributes radio button for Modal Window type.
And you can preview these windows in Test Mode.

The purpose of a modal window is to block the users’ interaction
with any other application window except the modal window itself.

Modal windows have a different look-and-feel on each platform,
because they conform with the required style of that platform’s
window manager.

A modal window prevents user interaction with any other window
of an application (including the parent window which may be
modal itself) until some user-initiated action causes the modal
window to be dismissed. When a user initiates a request for
dismissal, the application must destroy the modal window by calling
xvt_vobj_destroy. After a modal window is destroyed, focus returns to
the window which previously had focus.

Notes About Using Modal Windows

• Modal windows do not support menu bars.
4-16

Using XVT-Design
• When laying out a modal window, you must have a button
inside the window with a connection to close the object.

Why use Modal Windows?

Modal windows use several types of objects that are not available in
dialogs. Specifically, modal windows can contain custom controls,
text edits and child windows.

In addition, modal windows allow drawing operations (while
dialogs do not).

Tip: To create a modal window

1. Create a window.

2. Click on its Attributes button in the ACE or, in the Layout
Editor, double-click in the background of the window.

Figure 4.7.Window Attributes dialog box

3. Click on the Modal radio button.

Modal Window Look-and-Feel

Modal windows are implemented using the native object best suited
to providing modality on each platform. A W_MODAL window may
have characteristics of a top-level window, a child window, or a
dialog. Moreover, the look-and-feel of this object is platform-
specific—it will have the physical appearance most appropriate for
modality on a particular platform. Modal windows follow native
look-and-feel guidelines for decorations (borders, system menus,
etc.) and stacking order.
4-17

XVT-Design Manual
See Also: For further information about Modal Windows, see the XVT
Portability Toolkit Guide, chapter 6.

4.3.2. Creating Controls

Tip: To create one or more controls:

1. From the Controls menu, choose the control type.
(The custom control menu item has a hierarchical menu that
lists all of the installed custom controls.)

2. Position the cursor in the upper left corner of the desired
location.

3. Either click or drag the control into the desired size.
If you click to create the control, it will be of the standard size
for this type of control.

4. Click and/or drag to create additional controls of this type.

5. To exit from this mode, choose Pointer (or another control)
from the Controls menu.

Tip: To move a control:

Click and drag it with the pointer.

Tip: To change the size of a control:

1. Click the control once to select it.

2. Drag the small black rectangle near the lower-right corner of the
control.

4.3.3. The Object Palette

Layout windows contain a palette of graphical toggle buttons which
represent the various controls you can put in a window or dialog.
4-18

Using XVT-Design
Figure 4.8.The Object Palette

You can use these toggle buttons to create controls, instead of using
the commands on the Controls menu. Clicking once on a toggle
button in the palette is the same as choosing the corresponding
control from the Controls menu. Once you click the toggle button, it
remains active until you click a different button. This allows you to
create a number of controls of the same type after clicking the toggle
button once.

Tip: To create a control using the object palette:

1. Click the button of the desired control in the object palette.

2. Position the cursor in the upper left corner of the desired
location.

3. Either click or drag the control into the desired size.
If you click to create the control, it will be of the standard size
for this type of control.

The custom control toggle button behaves slightly differently than
the other buttons.

Tip: To create a custom control using the object palette:

1. Click the custom control button in the object palette.
When you click the custom control button, a menu containing

Pointer

Check Box

Horizontal
Scroll Bar

Static Text

Text Edit

List Button

Group Box

Push Button

Radio Button

Vertical
Scroll Bar

Edit Control

List Box

List Edit

Custom
Control
4-19

XVT-Design Manual
the names of all of the currently installed custom controls drops
down next to the button.

2. Click the appropriate name on the menu to choose a custom
control.
Once you have chosen the control from the drop-down menu,
you can create one or more of these controls just as you would
create standard controls.

4.3.3.1. Hiding the Object Palette

By default, all layout windows contain an object palette when first
opened. You can hide the object palette if you desire. For example,
you may want to hide the palette after you have created all of the
controls in the container, since you no longer need the palette.

Tip: To hide the object palette:

Choose Hide Object Palette from the Layout menu.

Tip: To show a hidden palette:

Choose Show Object Palette from the Layout menu.

The object palette is hidden on a per-window basis; i.e. you can
show the palette in one window and hide it in another.

Note: The presence or absence of the object palette does not affect your
container’s appearance at runtime—it is part of the layout window,
not of your container itself.

4.4. Layout Windows
A layout window in XVT-Design represents the actual window or
dialog in your generated application.

The Layout menu includes various alignment and spacing
commands to help you position controls in dialog boxes and
windows. When you first create controls, you can position and/or
size them manually by using the mouse or entering position and/or
size values. Then you can fine-tune them using the layout
commands.

4.4.1. Alignment

All alignment operations use the position of the first selected control
as a reference point for lining up the other controls. For example, if
you select push buttons 3, 2, and 1 (in that order), and then select
Align Left from the Layout menu, push buttons 2 and 1 line up along
4-20

Using XVT-Design
the left border of push button 3, because it was the first control
selected.

Align Left

Aligns the selected controls along their left border. The position of
the first control selected is the reference point for lining up the other
controls.

Align Center

Aligns the selected controls along their horizontal center by moving
them left or right.

Align Right

Aligns the selected controls along their right border.

Align Top

Aligns the selected controls along their top border.

Align Middle

Aligns the selected controls along their vertical middle by moving
them up or down.

Align Bottom

Aligns the selected controls along their bottom border.

4.4.2. Spacing

Even Horizontal Spacing

Equalizes the horizontal spacing between the right-most and left-
most boundaries of the selected controls. If the controls would
overlap, XVT-Design places them adjacent to each other
horizontally, which increases the total distance between the right-
most and left-most boundaries of the selected controls.

Even Vertical Spacing

Equalizes the vertical spacing between the top-most and bottom-
most boundaries of the selected controls. If the controls would
overlap, XVT-Design places them adjacent to each other vertically,
4-21

XVT-Design Manual
which increases the total distance between the top-most and bottom-
most boundaries of the selected controls.

Make Same Size

Makes all selected controls the same size as the first control selected.
Controls with the Standard Size attribute set may not be affected by
this command, or may be affected in only one dimension.

4.4.3. Grid

The Grid command lets you superimpose a grid on a selected
window or dialog box, to help you position controls. You can
determine the spacing of the grid, and choose whether controls snap
to it.

Grid Spacing

Sets the horizontal and vertical spacing of the grid in pixels (default
setting: 8 x 8) or in characters. You can use any size pixel-based
grid, depending on how you like to lay out your controls. Or, for
greater portability, you can use a character-based grid. (See “Tip,”
later in this section.)

Snap To Grid

Determines whether controls you create, move, or resize are
automatically aligned to the layout grid. As you move a control, its
position will jump to the nearest grid line intersection. As you
change the size of a control, its right and bottom edges will jump to
the nearest grid lines. This option is independent of the Display Grid
option; controls can snap to a grid even if it is not displayed.

Note: Controls that you have already placed in the layout window are not
affected when you select this command, until you move or resize
them.

Display Grid

Determines whether the grid is displayed in the selected window or
dialog box. This option is independent of the Snap To Grid option;
you can display the grid without forcing controls to snap to the grid.

Tip: To ensure that your resources look good when you move your
application to other platforms, we recommend that you use the
character-based grid. When you move your project from one
platform to another, this grid changes size, but the grid spacing is
4-22

Using XVT-Design
always the size of a character of average width and height in the
system font (the default font used to draw labels in native controls).
If you use a character-based grid, your controls will map cleanly to
coordinate systems on other platforms, and thus be properly aligned
and spaced.

4.4.4. The Toolbar

Layout windows have a toolbar, with picture buttons corresponding
to the most frequently used commands for creating and editing
controls. Clicking a button on the toolbar has exactly the same effect
as choosing the corresponding command from the menu.

4.4.4.1. Hiding the Toolbar

By default, all layout windows contain a toolbar when first opened.
You can hide the toolbar if you desire.

Tip: To hide the toolbar:

1. Choose Hide Toolbar from the Layout menu.

Tip: To show a hidden toolbar:

1. Choose Show Toolbar from the Layout menu.

The toolbar is hidden on a per-window basis; i.e. you can show the
toolbar in one window and hide it in another.

Note: The presence or absence of the toolbar does not affect your
container’s appearance at runtime—it is part of the layout window,
not of your container itself.

4.5. Setting Object Attributes
In XVT-Design, the attributes for your application’s windows,
dialog boxes, and controls are set with dialog boxes.

Tip: To invoke the attributes dialog box for an object:

1. Select the object (dialog box, window, or control).

2. From the Edit menu, choose Attributes.
-OR-

Double-click the object.
4-23

XVT-Design Manual
4.5.1. Common Attributes

The specific attributes that can be set vary depending on the type of
object. The attributes that are common to all objects are described in
this section. Object-specific attributes are described in the following
sections, according to the type of object.

Title

Allows you to specify a particular title or name for an object. Each
object’s title field is automatically filled in with a system-defined
default name.

Symbolic Identifier

Specifies a symbolic name for the resource ID of an object. These
names for resource IDs are placed in a header file that is created
when you invoke the Generate Application command. This header
file is then included in the .url resource files and the .c source code
files that need access to the resources.

A symbolic identifier lets you symbolically refer to a particular
resource within your application code. This field is automatically
filled in with a system-defined default name.

Caution: The default symbolic identifiers that XVT-Design creates are unique
within a project. If you edit the symbolic identifier field, you must
be sure that all symbolic identifiers are unique. You cannot have two
objects with identical symbolic identifiers within a project.

X and Y coordinate locations

Specifies the position of an object. The X and Y (horizontal and
vertical) coordinate values are specified in pixel units and refer to
the position of the upper left-hand corner of the object. For controls,
these values are set when you move the object in a layout window.
For windows and dialogs, these values are set when you move the
layout window itself. You can also type them in edit fields in an
attributes dialog.

Height and Width fields

Defines height and width values, in pixels, for a particular object.
For controls, these values are set when you changes the size of the
object in a layout window. For windows and dialogs, these values
are set when you change the size of the layout window itself. You
can also type them in edit fields in an attributes dialog.
4-24

Using XVT-Design
Help Topic

Associates a help topic with the object. A list button shows all of the
help topics in the current help text source file. To associate a topic
with the object, select its name on the list button.

Note: Once you have written a help text source file for your application,
you must load it into XVT-Design before you can associate topics
with objects.

Tip: To load a help text source file into XVT-Design:

1. Open the attributes dialog for any window, dialog, control, or
menu item.

2. Choose the “<Load Help File>” item from the Help Topic list
button in the attributes dialog. This invokes a standard open file
dialog.

3. Open your help text source file in the open file dialog.

After you open the help text source file, XVT-Design scans the file,
extracts all of the help topic titles in the file, and places them in the
Help Topic list button shown in the attributes dialogs.

See Also: For more information on XVT’s hypertext on-line help system, see
the “Hypertext On-line Help” chapter of the XVT Portability Toolkit
Guide.
4-25

XVT-Design Manual
4.5.1.1. Fonts and Colors

You can set the control font and the control colors for the entire
application, a individual container, or a particular control.

Figure 4.9.Window Attributes Dialog (Macintosh platform)

Set Fonts

Tip: To set a font for a particular control,

1. Open the Attributes window.

2. Click on the Own Font box.

3. The Set Font button will be activated.

4. Click on the Set Font button.

The dialog box shown below will appear.

Set Color

Set Font
4-26

Using XVT-Design
Figure 4.10.Set Fonts Dialog (Win32 platform)

5. To select a portable font, click on any (or all) of the family, size
or style options.
4-27

XVT-Design Manual
To select a platform-specific native font, click on the Use Native
Attributes button.

Figure 4.11.Native Fonts Dialog (Win32 platform)

4.5.1.2. Set Colors

Tip: To set a color for a particular control,

1. Open the Attributes window.

2. Click on the Own Color box.
4-28

Using XVT-Design
3. Click on the Set Color button.

Figure 4.12.Set Colors Dialog (Macintosh platform)

Note: In the diagram above, the Highlight, Border, Trough and Select
components do not have a color swatch visible to the right of the
option. No swatch signifies that the component inherits its color
from its parent.

4. Click on the component whose color you want to change.

5. Then click on the Own Color radio button.

6. Then click on the Predefined list box and choose the color you
want.

To create your own color,

7. Once you have chosen the predefined color, move the scroll
bars or enter numbers for the values that comprise the color.

Note: Most systems cannot display all possible colors. XVT recommends
the use of predefined colors whenever possible for greatest
portability.
4-29

XVT-Design Manual
4.5.2. Control Attributes

Figure 4.13.Attributes Dialog for Controls (Motif Platform)

Standard Size

Sets a control to be the standard height, which is predefined for this
type of control on this platform. On each platform, standard size is
the native or “natural” size for a control of a certain type.

If the standard size attribute is set, you can change only the width of
a control, since the height is predefined. The exception to this is the
vertical scrollbar control, where the width is predefined and you can
change only the height.

To change the size in both dimensions, turn off standard size.
Standard size for a control is set if you simply click to create the new
control. If you drag off the Tool Palette to create the control, the
standard size attribute is not set. The standard size attribute applies
to all controls except list boxes, group boxes, and custom controls.

Default

Sets a push button control to respond to the default choice. The
default button is automatically activated when the user presses
Return; it is typically titled “OK”.

Only one push button can be the default. If you have set the default
attribute for one push button, then attempt to set the default attribute
for a second push button, the first push button’s default attribute will
be set to Normal. Setting the default attribute also affects the
creation order for controls, as explained later in this chapter. The
default attribute applies to push button controls in dialog boxes only.
4-30

Using XVT-Design
Cancel

Sets a push button control to respond to the cancel choice. This is the
control that is automatically activated (on many platforms) when the
user presses Esc; it is typically titled “Cancel”.

If you have set the cancel attribute for one push button, and then
attempt to set the cancel attribute for a second push button, the first
push button’s cancel attribute will be set to Normal. The cancel
attribute applies to push button controls in dialog boxes and modal
windows.

Initial State

These checkboxes determine the state of the control when it is
created at application runtime.

Invisible
Sets a control to be initially invisible.

Selected
Sets a check box or radio button to be initially selected, or
checked. This attribute applies to check box and radio
button controls only.

Disabled
Sets a control to be initially disabled. The control is grayed
out so that it is unselectable.

See Also: The xvt_vobj_set_* functions, described in the XVT Portability Toolkit
Guide, are useful for changing the state of controls at application
runtime.

Selection

These radio buttons determine whether the application user can
make single or multiple selections in a list box, or whether the list
box is read-only (i.e. no selections can be made). This attribute
applies to list box controls only.

Justification

Sets whether a control’s text label will be left-, center-, or right-
justified (when possible for a particular toolkit). This attribute
defaults to native justification, which tells XVT to use whatever
justification is used by default by the native platform. The
justification attribute applies to all controls except scrollbars, list
boxes, and custom controls.
4-31

XVT-Design Manual
Note: The conventions and capabilities for control label justification vary
from platform to platform. Individual platforms may or may not
adhere to this attribute’s setting.

4.5.3. Custom Controls

Custom controls do not have a fixed set of attributes. To
distinguish them from the standard XVT controls, the attributes of a
custom control are referred to as properties. Each type of custom
control has its own set of properties, although some properties are
common to most types of custom controls (such as size and
location).

Properties are displayed and changed in the custom controls dialog:

Figure 4.14.Custom Controls Dialog

Tip: To set a property’s value:

1. Select the name of the property in the list box.
The current value of the property is displayed in the list edit
above the list box.

2. Type the new value for the property in the list edit
OR
Choose a new value from the list edit’s pull-down list.
Not all properties of all custom controls have values in the pull-
down list. For instance, a size attribute would be unlikely to
have a pull-down list of values, since all integers from one to the
maximum size of the control would have to be listed.
4-32

Using XVT-Design
Tip: To restore the previous value of the property:

1. Click Undo.

Tip: To dismiss the dialog:

1. Click OK to save your changes and dismiss the dialog
OR
Click Cancel to dismiss the dialog and discard all of your
changes.

At startup time, XVT-Design loads the properties for each custom
control from Control Description Files.

4.5.3.1. Control Description Files (CDF)

A CDF file describes the properties that may be set in XVT-Design
for a custom control that is created in a window. See Creating
Controls on page 4-18 for information on how a custom control is
created.

File Names

For a custom control named ccname, the CDF file must be named
ccname.cdf. The ccname part of the name becomes the class name.
When referring to the custom control name internally, XVT-Design
converts it to lower-case. We recommend that you use an entirely
lower-case file name on case-sensitive systems like UNIX.

The custom control can also have an image (bitmap) that is used by
XVT-Design to render it, at design-time only (not runtime); it must
have the name ccname.bmp and be in the same directory as the CDF.
Again, the file name should be all lower-case on case-sensitive
systems.

File Location

When it starts up, XVT-Design builds a list of all available custom
controls by scanning for file names with a .cdf extension. The
following directories are scanned:

1. The current directory.

2. The directory containing the configuration (design.cfg) file.

3. The directory defined by the XVTCDF attribute, if the
configuration file, design.cfg, contains such a definition.

4. The directory defined by the XVTCDF environment variable, if
the environment contains such a definition.
4-33

XVT-Design Manual
If duplicate file names are found (using a case-insensitive
comparison), the first occurrence is taken.

Custom Controls Without CDF Files

To create a custom control in a window, you are not required to have
a CDF file. (This maintains compatibility with earlier versions of
XVT-Design.) If you do not have a CDF file, choose "Other..." from
the custom control menu. (See Creating Controls on page 4-18.)

You will be prompted to enter the class name before you can drag
out the custom control in the window. Once a class name is entered
in this way, and you place a custom control of that class in a window,
it will appear on the custom control menu, although it still won't
have a CDF file. You will be able to set values for standard
properties (e.g., TITLE and HEIGHT) via the Custom Control
Attributes dialog.

To set control-specific attributes for the control, type into the ACE
for the tag "SPCL:Instance Data," following the rules for that
particular control. If you subsequently provide a CDF file for the
control, XVT-Design automatically moves properties defined for
the control from the action code for the "SPCL:Instance Data" tag to
the Custom Control Attributes dialog when you bring up the Custom
Control Attributes dialog. Any properties not defined in the CDF file
are left in the action code.

Forming the Attributes for the Custom Control

At runtime, XVT-Design automatically generates appropriate data
and code to pass properties and values to the custom control when it
is created. From the custom control's perspective, properties and
their values are stored in attributes.

The application developer may specify properties in the Custom
Control Attributes dialog (those defined in a CDF), as action code
for the "SPCL:Instance Data" tag, or in both places. One reason that
both places might be used is that some properties may have values
(e.g., running text) that do not fit the property/value model used by
CDF files.

XVT-Design always places properties and values from the Custom
Control Attributes dialog first in attributes, followed by text
supplied as action code.

Text entered as action code is not reformatted, and appears exactly
as entered, one line of instance data per line of action code
(following any CDF properties).
4-34

Using XVT-Design
The following standard properties that always appear in the Custom
Control Attributes dialog are not also set as instance data, although
they are available to the custom control via other means (see XVT
Technical Note #148):

Title

Control_ID

X

Y

Width

Height

Format of a CDF File

A CDF file consists of property descriptions, one per property. One
property description is separated from the next by one or more blank
lines. Comment lines start with a # (in column one) and can appear
anywhere.

A property description consists of up to four fields. The first three
(Name, Type, and Default) are one per line. The fourth (Description)
can be on multiple lines. The fields must be in the order Name, Type,
Default, and Description. All but the Name are optional.

Here are details on the fields:

Name

The name of the property, limited to letters (case insensitive), digits,
and the underscore.

Type

One of the following: boolean, color, enum, int, or string.

Default

The default value, used when initially populating the Custom
Control Attribute dialog.

Description

One or more lines of descriptive text, up to 500 characters in length,
that could be displayed when the property is selected in the Custom
Control Attributes dialog. (This feature is not currently
implemented, so no Description text is displayed and the field may
be entirely omitted.)
4-35

XVT-Design Manual
The type (e.g., string) can be optionally followed by a colon and a
comma-separated list of values used to populate a drop-down list;
from this list you can select a value. Or, you can enter the value in
the edit control. With the exception of the enum type, an entered
value need not match a value in the drop-down list, as long as the
value is legal for the type (see next section).

Spaces are ignored within a CDF line, except within a Default value
or Description text.

Property Types

The type of a property determines the values that you can enter in the
edit field within the Custom Control Attributes dialog. Validation of
the value occurs when the value is accepted in the dialog, not while
the value is typed, (i.e., when another property is selected or the
dialog's OK button is clicked). These types and their allowed values
are:

boolean

A Boolean value, which must be TRUE, FALSE, T, or F (case
insensitive).

color

A color value, either three decimal numbers (0 through 255)
separated by commas that give values for the red, green, and blue
components, or one of the following symbols (case insensitive):
RED, GREEN, BLUE, CYAN, MAGENTA, YELLOW, BLACK,
DKGRAY, GRAY, LTGRAY, or WHITE.

enum

An enumerated value, which behaves like a string value, except that
the value must match one of those listed after the type in the property
description (e.g., "enum: TOP, LEFT, BOTTOM, RIGHT")

int

An integer value, which consists of a string of digits (0 - 9)
optionally preceded by a sign (+ or -).

string

A string value, which consists of up to 255 arbitrary characters.
4-36

Using XVT-Design
4.5.3.2. Example CDF

CDF for Calendar custom control.
#
VIEW
enum: DAILY, WEEKLY, MONTHLY
MONTHLY

BACK_COLOR
color
GRAY

TEXT_COLOR
color
BLACK

RULE_COLOR
color
BLUE

START_YEAR
int
1980

END_YEAR
int
2010

HEADING
string
LANG

enum: English, French, Spanish, German
English
MSG

string: Choose date, Pick date, Select date, Click on choice
Choose date

4.5.4. Text Edit Attributes

The following attributes apply to text edit objects only. For more
information regarding text edit objects, see the XVT Portability
Toolkit Guide.
4-37

XVT-Design Manual
Figure 4.15.Attributes Dialog for Text Edit Objects (Win32 Platform)

Initial Text

The text shown in the text edit object when it is first displayed at
application runtime. (This attribute is the same as the Title attribute
for other objects.)

Autohscroll

Enables automatic horizontal scrolling of the text edit object when
the user drags the mouse outside of the view rectangle.

Autovscroll

Enables automatic vertical scrolling of the text edit object when the
user drags the mouse outside of the view rectangle.

One Paragraph

Limits the entered text to one paragraph. A paragraph is terminated
with a carriage return. When this attribute is set, the paragraph is
limited to the number of characters entered in the Char Limit field.

Word Wrap

Keeps words together and wraps them to the next line when there is
not enough room on the first line (as determined by the number of
pixels specified in the Margin field).
4-38

Using XVT-Design
Overtype

Determines whether the text edit object is initially in overtype mode.
In this mode, typed characters overwrite existing text. If this
attribute is not set, the text edit object defaults to insert mode.

Border

Places a border around the text edit object.

Cut

Allows users to cut text from the text edit object.

Copy

Allows users to copy text from the text edit object.

Paste

Allows users to paste text into the text edit object.

Enable Menu

Determines whether the text edit system will enable and disable the
commands on the Edit menu of the window that contains the text
edit object. Do not check this attribute if the window’s menubar does
not have an Edit menu.

Enable Clear

Causes the Clear menu item to be always enabled when the text edit
object is active.

Read-only

Sets the text in the text edit object to be read-only (unselectable).

Margin

Sets the maximum number of pixels allowed per line when Word
Wrap is enabled, thereby determining the right margin.

Char Limit

Sets the limit for the number of characters that can be entered in the
text edit object, if the One Paragraph attribute has been set.
4-39

XVT-Design Manual
4.5.5. Dialog Box Attributes

Type: Modal/Modeless

This control sets the type of the dialog box being created as either
modal or modeless.

Invisible

Sets the dialog to be initially invisible. It can be made visible in the
application by calling the XVT function xvt_vobj_set_visible.

Disabled

Sets the dialog to be initially disabled. It can be enabled in the
application by calling the XVT function xvt_vobj_set_enabled.

Callback Class

Specifies the class name for a dialog. If you enter a name in a
dialog’s callback class edit field, or select a name from the callback
class list, XVT-Design generates function calls for all of the dialog’s
tags, with names based on the class name. This lets you easily use
classes of functions defined in external files.

The function calls are inserted in each tag’s action code, unless you
have already entered code for that tag. XVT-Design will not
overwrite code that you have entered before you set the callback
class of a dialog.

Own Color

Allows you to change the colors of the dialog.

Own Font

Allows you to change the fonts of the text in the dialog.

Example: Suppose you set the callback class attribute of a dialog to be
“MyCl”. In the action code for the dialog’s Create event tag,
XVT-Design puts the following function call:

xd_dlg_MyCl_Create(xdWindow, xdEvent, 0L);
4-40

Using XVT-Design
4.5.6. Window Attributes

Figure 4.16.Attributes Dialog for Windows (Win32 Platform)

Callback Class

Specifies the callback class name for a window. If you enter a name
in a window’s callback class edit field, or select a name from the
callback class list, XVT-Design generates function calls for all of the
window’s tags, with names based on the class name. This lets you
easily use classes of functions defined in external files.

The function calls are inserted in each tag’s action code, unless you
have already entered code for that tag. XVT-Design will not
overwrite code that you have entered before you set the callback
class of a window.

Example: Suppose you set the callback class attribute of a window to be
“MyCl”. In the action code for the window’s Update event tag,
XVT-Design puts the following function call:

xd_win_MyCl_Update(xdWindow, xdEvent, 0L);

Initial State:

Invisible

Sets a window to be initially invisible. It can be made visible in the
application by calling the XVT function xvt_vobj_set_visible.
4-41

XVT-Design Manual
Disabled

Sets a window to be initially disabled. It can be enabled by the
application by calling the XVT function xvt_vobj_set_enabled.

Maximized

Sets a window to be initially maximized.

Type

Sets the window’s type. There are three types of borders available:
Document, Double Border, and Plain border.

Modal

Modal windows are windows that force the user to address an issue
raised in the window before continuing.

Place Exact

If the Modal radio button is clicked, the Place Exact box becomes
available. The Place Exact button sets the WSF_PLACE_EXACT flag in
the attribute flag of a window creation call. This function allows you
to overwrite default window behavior that a particular platform
might enforce.

Colors/Fonts

Control colors and fonts can be specified at the window level.

See Also: For details on how to specify a color or font, see Fonts and Colors
on page 4-26.

4.5.6.1. Attributes that Affect Only Document-Type Windows

The following attributes affect only windows with their type
attribute set to Document.

Close Box

Determines whether a window’s decoration includes a close box.

Iconized

Sets a window to be initially iconized (minimized). This affects only
applications that run on the Win, PM, and Motif platforms.
4-42

Using XVT-Design
Maximized

Sets a window to be initially maximized. Motif platforms ignore this
setting.

Note: The Iconized and Maximized attributes are mutually exclusive—
setting one clears the other.

Capabilities

These checkboxes affect the border controls on the window.
Checking the attribute’s box indicates that the control is present.

Iconizable

Determines whether a window can be iconized. This affects
only the Win, PM, and Motif platforms.

Sizeable

Determines whether a window’s decoration includes size
controls.

Vertical Scrollbar

Determines whether a window includes a vertical scrollbar. XVT-
Design knows that scrollbars are included in windows; activating
this button allows you to attach HScroll attribute to the window.

Horizontal Scrollbar

Determines whether a window includes a horizontal scrollbar. XVT-
Design knows that scrollbars are included in windows; activating
this button allows you to attach VScroll attribute to the window

4.6. Specifying Creation Order
On the Edit menu, the Creation Order command lets you specify the
creation order for controls within the currently active dialog box or
window. When a user navigates an application by pressing keys, the
creation order for controls determines the order in which the controls
are traversed. Also, the creation order determines which of one or
more overlapping controls will be drawn “in front” of the others.

Tip: To view or edit the creation order for controls:

1. Select a window or dialog box.
4-43

XVT-Design Manual
2. From the Edit menu, choose Creation Order.
A dialog box shows the control names and their current
traversal order.

Figure 4.17.The Creation Order Dialog (Windows Platform)

The current traversal order reflects the order in which you created
the controls, except for two cases:

• Any push button control with the Default attribute
automatically appears in the first position

• Any push button with the Cancel attribute automatically
appears in the second position.

Tip: To rearrange the current order:

1. Select the name of the control to be moved.

2. Click the Up, Down, Top, or Bottom button to move the control
to a new position.

Up, Down
Moves the selected control name one position up or down.

Top, Bottom
Moves the selected control name to the top or bottom of the list.

Note: If any push buttons have the Default or Cancel attribute set, another
control cannot move to the top of the list.

Tip: Selecting a control in the Creation Order dialog also selects the
control in the layout window. This is useful for finding controls that
have been obscured by other controls. Also, double-clicking on a
control’s name in the Creation Order dialog opens the control’s
attributes dialog.
4-44

Using XVT-Design
4.6.1. Keyboard Navigation in Windows

Keyboard navigation is the use of keyboard input instead of mouse
pointing and clicking to interact with GUI objects. Generally, native
look-and-feel for keyboard navigation includes using the Tab key
and Shift-Tab key (back-tab) to traverse through controls in a
window or dialog. Alternatively, the user may type character keys
(associated with mnemonic characters) to select an object directly.
A mnemonic character is preceded by a tilde (~) in the title text and
displayed with an underline to users. (“Title text” refers to the title
field of the control attribute dialog.) Groups of controls (such as
radio buttons) may be traversed with Arrow keys.

Unlike XVT dialogs which automatically provide keyboard
navigation to users, XVT windows require special handling to
implement keyboard navigation. The XVT_NAV navigation object
encapsulates the navigation list of controls, child windows, and
custom controls for a particular window. The navigation object
allows you to specify the navigation order for your application’s
windows. Any control mnemonic character set in the control’s title
will be processed automatically on the XVT/Win32 platform where
control mnemonics are supported in native look-and-feel.

Navigation is provided by checking the “Navigation” checkbox in
the window attribute editor. You do not need to create the XVT_NAV
navigation object.

See Also: For detailed information about the xvt_nav_* functions, refer to their
descriptions in the XVT Portability Toolkit Guide.

4.6.1.1. Add Keyboard Navigation to a Window

To add keyboard navigation to a window,

1. Open the window’s Attributes dialog.

2. Click on the Keyboard Navigation button.
4-45

XVT-Design Manual
Figure 4.18.Keyboard Navigation box

4.6.2. Radio Button Groups

Radio buttons, by definition, are combined into groups. Only one
radio button in a group can be checked at a time, allowing the
application user to choose one of several alternatives. XVT-Design
automatically generates code to handle radio button groups.

A group of radio buttons consists of two or more radio buttons with
consecutive creation order within a container (window or dialog). If
one container has two or more groups, the groups must be separated
in the creation order list by at least one control of any type other than
a radio button.

The position of the radio buttons within a container has no effect on
their grouping. The position of other controls in the container,
including group boxes, does not affect radio button groups either.
Only the creation order of the controls dictates the grouping of radio
buttons. This allows you to lay out the controls without restriction.

4.6.2.1. Creating and Using Radio Button Groups

Since radio button groups are determined only by creation order, you
can lay out your controls with XVT-Design first, then determine
their grouping later. Of course, you should group radio buttons
visually as well as functionally, so that your application user
understands how to operate the controls.

Group boxes and static text controls are useful for separating radio
button groups because either the group box title, or the static text,
can describe the radio button group to the user. At the same time,

Keyboard
Navigation
4-46

Using XVT-Design
you can use the group box or static text to programmatically separate
the group from other groups, by placing it after the radio group in the
creation order of the controls. Use the Creation Order command on
the Edit menu to adjust the creation order of the controls.

Example: The following figure shows a dialog box, with two radio button
groups, as it would appear in an executing application:

Figure 4.19.Dialog with Radio Button Groups (Macintosh Platform)

The first group contains two radio buttons, while the second contains
three. The user can choose one of two kinds of containers, and one
of three flavors. Unlike the radio buttons, the Toppings check boxes
do not operate as a group—one, both, or neither can be checked.

The next illustration shows the creation order for the controls in this
dialog:

Figure 4.20.Creation Order for Radio Buttons (Macintosh Platform)
4-47

XVT-Design Manual
Notice that the group boxes (Container and Flavor), which visually
surround and delimit the radio button groups, follow the radio
buttons in the creation order list. Because of their position in the
creation order of the dialog’s controls, they functionally separate the
two radio button groups.

4.6.2.2. Responding to Radio Button Events

XVT-Design creates code for radio button groups when you
generate source files for your application. When the application user
clicks a radio button in a group, this code checks that button and
unchecks the previously checked button. You do not have to write
any code to implement this behavior.

Although XVT-Design generates code that implements the visual
behavior appropriate for radio button groups, you must write the
code that responds to the E_CONTROL events generated by the
application when the user manipulates the radio buttons.

4.7. Using the Menu Editor
With XVT-Design, you can design multiple menubars for your
application. Each menubar can have hierarchical menus that
descend from it. To help you understand menus in XVT, here are
some basic definitions:

Menubar
A menubar is the “root” of the menu hierarchy tree. To design
menus, you must start with a menubar. A menubar, which
consists of a list of menus, is visually represented by a row of
names across the top of a screen or window.

Menu (also called a pull-down menu)
Menus appear horizontally across a menubar. When you click
on a menu (or select it via a keyboard mnemonic), it “pulls
down” a vertical list of items for you to choose from. A menu
can contain submenus.

Menu item
Menu items appear on a menu or submenu. A menu item can be
a “leaf” of the menu tree, in which case it causes an
E_COMMAND event to be delivered to the application. Or, it can
be another submenu whose contents are displayed when the
user drags the mouse to this item.

Hierarchical menu
A hierarchical menu has one or more submenus. Such a menu/
4-48

Using XVT-Design
submenu arrangement is hierarchical because it can contain
several nested levels of menus.

Submenu
A submenu is just like a menu, except that it can appear
anywhere in your menu hierarchy. When a submenu appears as
an item on a menu (or submenu), some graphical indication—
such as an arrow—is used to show that the menu hierarchy
extends below this item. When the user pulls down a menu and
moves the mouse to a submenu, the list of menu items for that
submenu appears.

Figure 4.21.Hierarchical Menu with Submenu (Macintosh Platform)

In the illustration above, the menubar consists of the File, Edit,
Choices, Font, and Style menus. The Choices menu is a hierarchical
menu; its submenu is titled “From Menu”. The From Menu submenu
has two menu items, titled “Hello” and Goodbye”.

4.7.1. Menubar Editor

You can create new menubars and edit their menu hierarchies by
using the Menubar Editor.

Tip: To invoke the Menubar Editor:

From the Tools menu, select Menubar Editor.
The Menubar Editor dialog appears.

Figure 4.22.The Menubar Editor (Macintosh Platform)
4-49

XVT-Design Manual
The Menubar Editor consists of a dialog containing a list box, an edit
control, and several push buttons. The list box shows the names of
all menubars in your project. To select a menubar, click on its name.
The push buttons apply different actions to the selected menubar.

The Menubar Editor dialog contains the following controls:

Rename

Changes a menubar’s symbolic identifier. To do this, select the
menubar in the list box and type the new name in the edit control.
Then click the Rename button.

New

Creates a new menubar. The name of the new menubar is added to
the list.

Clear

Deletes the selected menubar. The menubar is permanently removed
from the project, and it is not copied to the clipboard.

Edit

Invokes the Menu Editor for this menubar (see “Menu Editor”
below).

Done

Dismisses the Menubar Editor.

4.7.2. Menu Editor

When you invoke the Menu Editor for a new menubar, a list box
appears containing the four standard menus: File, Edit, Font, and
Help. The menus are listed in left-to-right order.
4-50

Using XVT-Design
Figure 4.23.The Menubar Editor (Macintosh Platform)

Cut

Deletes the selected menu or menu item and puts it on the clipboard.

Copy

Copies the selected menu or menu item to the clipboard.

Paste

Inserts the contents of the clipboard after the selected menu or menu
item.

Clear

Deletes the selected menu item without putting it on the clipboard,
thereby permanently deleting it.

Attributes

Invokes the Menu Attributes dialog, where you can set various
attributes for a menu, menu item, or submenu (see “Menu
Attributes”).

Userdata

Invokes the Userdata Editor, where you can associate up to six
strings of arbitrary text with a menu, menu item, or submenu.
4-51

XVT-Design Manual
Add Menu/Edit Menu

Invokes the Menu Editor again, so you can descend to the next level
below the selected menu item. This button reads “Edit Menu” if the
object selected in the list box has a submenu, and reads “Add Menu”
otherwise.

Up/Down

Moves the selected menu or menu item either one position up, or one
position down in the current menu. (If you are editing a menubar,
moving a menu up corresponds to moving it left on the menubar.)
Note that you cannot position any items in front of the Standard File
or Standard Edit menus, and you cannot position any items after the
Standard Font or Standard Help menus.

New

Creates a new menu or menu item, inserting it after the currently
selected menu item.

Figure 4.24.Menu Editor Showing a New Menu (Macintosh Platform)

Separator

Inserts a separator bar after the currently selected menu item. You
can insert separators only into menus and submenus; you cannot
insert them on the menubar.
4-52

Using XVT-Design
Std (Standard) Menus

Brings up a dialog from where you can select which standard menus
you want. The standard menus (File, Edit, Font, Help) can be
selected only for a menubar, not its submenus.

Figure 4.25.Dialog for Selecting Standard menus (Macintosh
Platform)

Done

Dismisses the Menu Editor dialog. You can also dismiss the dialog
by clicking its close box.

4.7.3. Menu Attributes

When you click Attributes for a menu or menu item, the Menu
Attributes dialog is displayed.
4-53

XVT-Design Manual
Figure 4.26.The Menu Attributes Dialog (Macintosh Platform)

The controls in the Menu Attributes dialog are described below.
When you invoke the dialog for a menu (rather than a menu item),
all of the controls except Title, Menu ID, Mnemonic, and Help
Topic are disabled.

Title

The text for this menu or menu item.

Menu ID

The symbolic identifier for this menu or menu item.

Mnemonic

Specifies the one-character mnemonic you wish to associate with
this menu or menu item. At run-time, the mnemonic can be used on
those platforms that support keyboard navigation of menus. The
mnemonic character must be one of the characters in the title of the
menu or menu item.

Accelerator

Specifies the one-character accelerator key that you wish to
associate with this menu item. At run-time, the accelerator can be
used as a substitute for selecting the menu item with the mouse.
4-54

Using XVT-Design
Keys

Brings up the Accelerator Keys dialog, where you can specify a
function key as the accelerator for this menu item. When you choose
one of the keys, its full name is inserted in the Accelerator edit field.

Alt/Control/Shift

If you have selected an accelerator for this menu item, you can
specify the modifier keys (Alt, Control, or Shift) to be used with the
accelerator key.

Checkable

Specifies that this menu item can be checked.

Checked

Specifies that this menu item should initially be checked.

Disabled

Specifies that this menu or menu item should initially be disabled.
The item can be enabled by the application with the XVT API
function xvt_menu_set_item_enabled.

4.8. String Resources

4.8.1. Strings

In XVT-Design, you can create and manipulate strings and string
lists, to be used as resources from within an XVT program. The
advantage of string resources is that you can maintain strings outside
your executable program. As a result, you can modify them without
having to recompile the program.

Strings and string lists are useful for adding text to your application
that would not otherwise be in its resources. For instance, you could
use a string list to initialize a list box or list button. String resources
are also useful for holding text that may change when the application
runs. As an example, you could have a button with the title “Find”,
that changes to “Find Again” at some point during execution. The
second string, “Find Again”, could be stored as a string resource.

Tip: To create a string:
4-55

XVT-Design Manual
1. From the Tools menu, choose Strings Editor.
The Strings dialog box appears.

Figure 4.27.The Strings Dialog (Windows Platform)

2. Click New String.
A new string is created, whose contents are initially “New
String”. The String Edit dialog box appears, in which you can
change both the string and the symbolic identifier.

3. Change the string and/or its symbolic identifier, and click OK.

Figure 4.28.The String Edit Dialog (Windows Platform)

In your application, add a call to xvt_res_get_str to retrieve the string at
run time. The function prototype for xvt_res_get_str is:

char *xvt_res_get_str(int rid, char *s, int sz_s)

For the first argument, simply use the symbolic identifier for the
string you want (in the above example, you would use
STR_ALIGNRT). You must allocate a buffer large enough to hold the
string and pass the address of the buffer, as well as the buffer’s size,
as the second and third arguments.

4.8.2. String Lists

String lists are useful if you have a list of names or labels that you
would like to enumerate outside of your application. Let’s say you
4-56

Using XVT-Design
had a list containing the names of all the states in the United States.
In your application, you could then retrieve the list as a whole, and
populate a list box with the resulting list.

Tip: To create a string list:

1. From the Tools menu, choose Strings Editor.

2. In the Strings dialog, click the New List button.
A new string list is created, and the String List dialog appears.

Example: In the String List dialog box, the symbolic identifier, which you can
change, appears at the top. For example, you might change this to be
“SL_USA”).

When you click the New String button, a new entry with the contents
“New String” is created, and the String List Edit dialog appears.
Change the contents of the string (perhaps to something like
“Arizona”), and click OK.

Click New String again (which creates another “New String”), and
change it to “Alabama”. Clicking New one more time creates
another string that you could change to “Georgia”.

To arrange your strings in ascending alphabetical order, you can
reorder your string list. To reorder an item, select the one you would
like to reorder (in our example, “Alabama”), and click Up. Alabama
is now in the first position, and Arizona in the second. You could
have selected any item and used the Up and Down buttons to change
its position in the string list.

The result is a string list whose symbolic identifier is “SL_USA”, and
whose contents are the three strings “Alabama”, “Arizona”, and
“Georgia”. To retrieve the entire string list into your application
program, call xvt_res_get_str_list, whose function prototype is the
following:

SLIST xvt_res_get_str_list(int rid_first,
int rid_last)

The two arguments to xvt_res_get_str_list are the symbolic identifiers
for the list (“SL_USA”); “_FIRST” and “_LAST” are appended
respectively. Your call to xvt_res_get_str_list would therefore look
something like this:

SLIST x;
x = xvt_res_get_str_list(SL_USA_FIRST, SL_USA_LAST);

Following the call to xvt_res_get_str_list, the contents of the SLIST x
will be the strings you created using XVT-Design.
4-57

XVT-Design Manual
4.9. Userdata Strings
XVT-Design’s Userdata feature lets you associate arbitrary data (up
to six text strings) with any control, dialog box, window, or menu
you create. For instance, you could associate textual data with a
dialog box control.

Example: Imagine an application in which a user could perform various
queries on a separate database program by pressing buttons in a
dialog box. With XVT-Design’s Userdata feature, you could
associate the query commands needed for the database with a
particular control in the dialog box. Then you could write C code
that would send the associated userdata strings (the query
commands) to the database, whenever the control was selected.

Userdata is stored in the application’s URL file. As a result, you can
change the userdata for an application without recompiling the
application.

XVT-Design lets you create and edit userdata to be associated with
an object. You can also change the labels that are associated with the
userdata items themselves.

The XVT API provides three functions for accessing the userdata
you have created with XVT-Design:

• xvt_res_get_dlg_data

• xvt_res_get_win_data

• xvt_res_get_menu_data

See Also: See the XVT Portability Toolkit Guide for more details.

4.9.1. Creating Userdata

There are two ways to invoke the Userdata window for creating and
editing userdata strings:

• Select an object (window, dialog, or control) in a layout
window, and choose Userdata from the Edit menu

• Select a menu or menu item in the Menu Editor, and click the
Userdata button

In the Userdata window, you can create or modify six different
userdata strings. These are the userdata strings that will be
associated with the object you have selected.

Note: Before using the Userdata command on a window or dialog box,
make sure that no controls are currently selected within the window
or dialog box.
4-58

Using XVT-Design
Figure 4.29.The Edit Userdata Window (Macintosh Platform)

4.9.2. Editing Userdata

The Userdata window contains a list button and a scrollable text edit
pane. The list button contains the labels of the six userdata strings
(see below). To choose one of the six userdata strings for editing,
select the appropriate label from the list button.

The text edit pane contains the text of the userdata string indicated
by the list button. You can enter an unlimited number of lines of
userdata for each userdata string. Userdata can include newlines,
which show up as “\n\” in the URL file.

4.9.3. Userdata Labels

In the Edit Userdata window, userdata labels are associated with
userdata strings. Userdata labels are simply titles or descriptions of
each of the six userdata strings that can be associated with objects.
The default userdata labels are “Userdata 0”, “Userdata 1”, ...
“Userdata 5”.

Userdata labels only appear in XVT-Design’s Edit Userdata
window. They are not placed in the generated source code or URL
files. The labels are just to remind you what a particular userdata
string means.

You can create labels before you have created a window, dialog box,
menu, or control. You can also change the userdata labels even if
you have not created any of these objects. You can edit userdata
labels without having to edit the userdata itself.

Tip: To edit userdata labels:

1. From the Edit menu, choose Userdata Labels.
The Edit Userdata Labels dialog box appears.
4-59

XVT-Design Manual
Figure 4.30.Edit Userdata Labels Dialog (Macintosh Platform)

2. In the Edit Userdata Labels dialog, select a label in the list box.

3. Click Edit (or double-click the label).
The label appears in the edit field.

4. Edit the label, then click Replace to change the label.

Edit

Puts the selected label into the edit field.

Replace

Replaces the existing label with your new label.

OK

Accepts the changes that you have made to the labels and removes
the dialog box. After you click OK, any future Edit Userdata
window that you bring up displays the new userdata labels above
each of the six userdata strings.

Cancel

Removes the dialog box without applying the changes you have
made to the userdata labels.

4.9.4. Generating Code with Userdata

When you generate an application, the userdata is written to the
project URL file as a userdata statement in a dialog, window,
or menu definition. If the userdata is associated with a control, the
4-60

Using XVT-Design
userdata URL statement follows the control definition in the
URL file.

4.10. TestMode
XVT-Design’s TestMode lets you verify the appearance of your
application’s user interface without compiling or linking. TestMode
emulates your application’s appearance at runtime, as if you had
compiled, linked, and executed it.

During TestMode, XVT-Design’s user interface is replaced with
your application’s. Instead of seeing XVT-Design’s windows and
dialogs, you’ll see those of your project.

In TestMode, your project’s menus, windows, dialogs, and controls
behave as if your application were actually running. If you induce
any events for which you have defined connections (for example,
choosing menu items or manipulating controls), the actions for those
connections are executed. You can open windows by choosing menu
items, create or destroy dialogs by clicking push button controls, and
so forth.

If you use XVT-Design on more than one platform, you can use
TestMode to check your application’s appearance on each platform.
XVT-Design’s project files are portable across all supported
platforms.

Note: Keep in mind that XVT-Design only keeps track of connections in
TestMode. It does not interpret or execute your program’s code.
TestMode ignores any code you have entered with the ACE. You do
not need to generate any source files before using TestMode. The
presence or absence of generated files has no effect.

4.10.1. Entering TestMode

Tip: To test your project:

1. From the Tools menu, choose Enter TestMode.XVT-Design
hides its menubar and any open windows and dialogs. The task
window and its menubar are replaced with your project’s task
window and menubar. A special “TestMode” menu is appended
to the right of your application’s menubar.

2. Test any menus, windows, dialogs, and controls in your project
for which you have defined connections.

When you enter TestMode, your application receives a Create event.
If you want a window or dialog to appear as soon as your application
4-61

XVT-Design Manual
starts, create a connection for the application’s Create event tag to
create the window or dialog.

The special TestMode menu appears on all of your application’s
menubars while you use TestMode, to provide a way for you to exit
TestMode. It does not appear in your compiled, stand-alone
application.

Note: If you haven’t created any connections in your project, TestMode is
not very interesting. You will see only your application’s task
window (on platforms that have a task window) and its menubar.
Choosing menu items won’t have any effect, except choosing Quit
from the File menu, which will cause XVT-Design to leave
TestMode.

4.10.2. Leaving TestMode

Tip: To leave TestMode:

1. From the TestMode menu in your application’s task window,
choose End TestMode.
-OR-
From your application’s File menu, choose Quit or Exit.
-OR-
Close your application’s task window, if the native window
system provides a way to do this.

Note: If you have defined a connection for the Quit item on a File menu,
choosing this item will not terminate TestMode.

When you leave TestMode, XVT-Design redraws its menubar and
reopens any windows that were open before you entered TestMode.

4.10.3. Special Considerations for TestMode

Although XVT-Design emulates your application’s runtime
appearance and behavior as accurately as possible, there are a few
limitations.

4.10.3.1. About Box

In TestMode, you will not see your application’s About dialog box.
A dummy dialog box is displayed in its place.

4.10.3.2. External Connections

If you have any connections to objects outside of the current project,
XVT-Design will not be able to invoke these objects during
4-62

Using XVT-Design
TestMode operation. If your application attempts to execute such a
connection during TestMode, you will see a dialog like the
following one:

Figure 4.31.External Connections in TestMode (Macintosh Platform)

To resolve connections to objects external to your current project,
you must merge your project file with the project file that contains
the external objects.

See Also: Refer to the “Project File Management” chapter of this manual for
more information on external objects and merging project files.

4.11. Generating Source Code
Once you’ve created the windows, dialog boxes, menus, and other
resources for your project with XVT-Design, the next step is to
generate the source code for your application. XVT-Design
automatically generates Universal Resource Language (URL) files
for your resources, and C source code files to handle these resources
in your final application.

4.11.1. Setting the Destination Directory

By default, XVT-Design puts the files it generates in the directory
where the project file was opened from or the current directory.

Tip: To change the destination directory:

1. From the File menu, choose Generate Application.
The Generate Application dialog appears.
4-63

XVT-Design Manual
Figure 4.32.The Generate Application Dialog
(Macintosh Platform)

The current destination directory is displayed at the top of the dialog.

2. Click the Change button. A standard save-file dialog appears.

3. Navigate to the directory in which you want XVT-Design to
place your application’s source code files.

4. Click the OK button.

Note: This procedure does not actually create any files; it simply sets the
destination directory for when the files are generated.

4.11.1.1. The Application Name

The name of your application is distinct from the name of its project
file. For instance, the name of your project file might be
“MDB30.DPR”, but the application it generates could be named
“MegaDB_3.0”.

You set the name of your application when you set the destination
directory, as described in the previous section. Before clicking the
Save button in the save-file dialog, type the name of your application
in the filename edit control in that dialog.

4.11.2. Filenames

XVT-Design creates names for the files it generates, based on
several pieces of information:

• the name of the application (which you supply)

• the type of the file
4-64

Using XVT-Design
• the resource associated with the file

In most cases, the first three characters of each file’s name will be
the same as those of the application’s name.

In the filenames given in the following sections, we indicate these
first three characters as “<xxx>”, and the complete application name
as “<appname>“. For example, if your application is named
“hello”, the filename described as “<xxx>appl.c” would actually be
“helappl.c”.

You can change these names as you desire. See “Choosing Files,”
later in this chapter.

4.11.3. Types of Generated Files

XVT-Design generates several different kinds of files for your
application: C source code files, a header file, a resource file, a help
text file, and a makefile. The following sections describe these files
and their naming conventions.

4.11.3.1. C Source Code Files

XVT-Design creates a separate .c file for each module in your
project (including the application itself). These files contain event
handlers for the module, and any code fragments that you created
with the Action Code Editor.

The names for these files have the following format:

<xxx><r><nnn>.c

where “<xxx>” is the first three characters of the application’s
name. “<r>” is a character indicating the type of the associated
resource, which is interpreted as follows:

d - dialog box

m - menu

w - window

“<nnn>” is the ID number of the resource (three digits). Resources
are numbered consecutively, in order of their creation.

The main function and the Task window’s event handler are placed
in a file called <appname>.c, where <appname> is the name of
your application.
4-65

XVT-Design Manual
Example: Suppose your application’s name is “hello”, and it has one window
and one dialog. The source code file for the window will be named
helw101.c, the file for the dialog will be named held102.c, and the
main file for the application will be named hello.c.

4.11.3.2. Header File

XVT-Design creates one header file, named <appname>.h.
It contains function prototypes and resource ID definitions.

4.11.3.3. Resource File

XVT-Design generates one XVT Universal Resource Language
(URL) file, named <appname>.url. It contains resource
descriptions for all of the user-interface objects in your application.

4.11.3.4. Help Text File

XVT-Design puts all text you enter in the SPCL:Help tag in a file
named <appname>.csh.

Tip: This feature is provided primarily for compatibility with
XVT-Design Release 2. For convenience, XVT recommends that
you do not use this feature to enter and edit help source text. Instead,
use an external text editor or authoring tool.

4.11.3.5. Makefile

XVT-Design creates a complete makefile for compiling and linking
your application’s source files. It is named makefile.<xxx>.

4.11.4. Choosing Files to Generate

The first time you generate source files for a given project, you will
probably want to generate all of these files. Later, when you modify
the project (for instance, to change the items in a menu, or add a new
dialog box) you may not need to regenerate all the files.

Tip: To choose which files to generate:

1. From the File menu, choose Generate Application.
The list box in the dialog lists all the files that are part of your
application, and whether or not they are to be generated. If an
asterisk (“*”) precedes the filename, XVT-Design will generate
a new copy of that file. If no asterisk precedes the filename,
XVT-Design will not generate a new copy of that file.

2. To turn a file’s asterisk off or on, double-click the filename.
4-66

Using XVT-Design
3. To enable generation of all of the files, choose Select All. To
disable generation of all of the files, choose Select None.

Tip: To change the name of a generated file:

1. In the list box, click on the file’s name.
The name appears in the edit control at the bottom.

2. In the edit control, change the file’s name.

3. Click the Rename button.

4.11.5. Makefiles

XVT-Design creates makefiles by using pre-defined template files
for each compiler and operating system configuration supported by
XVT, adding information about the particular files for your project
when it generates the makefile.

If there are no pre-defined templates that suit your system
configuration, you can modify the templates using any text editor.

Note: To change the template ID, you can modify an existing template file.
To create a new template file, modify an existing one.

Tip: To choose a makefile template for your project:

1. From the File menu, choose Generate Application.
The Makefile Template list button lists all of the available
templates.

2. Choose the appropriate template from the list button.

You can generate a makefile using any available template,
regardless of the platform on which you run XVT-Design.

If none of the templates supplied with XVT-Design suit your
development environment, create your own templates by editing
copies of the most-suitable supplied templates. Make sure you
modify the name of the template in the TPL file so that you can
identify your template in the XVT_Design list of makefiles.

4.11.5.1. How XVT-Design Finds Makefile Templates

XVT-Design locates makefile templates by searching for files with
the filename extension .tpl. It searches for makefile templates in the
following directories, in the order they are listed here:

• The current directory

• The directory that contains the design.cfg configuration file
4-67

XVT-Design Manual
• The value of XVTTPL, if XVTTPL is a macro defined in
design.cfg, and is defined as a valid directory.

• The value of XVTTPL, if XVTTPL is a variable defined in your
environment, and is defined as a valid directory.

4.11.5.2. External Files

Source-code files that are part of your application’s code, but not
generated by XVT-Design, are called external files. External files
are usually used for portions of your program other than the user-
interface code.

You can add external file references to your XVT-Design project.
When XVT-Design generates the makefile for your application, it
inserts dependency information for your external files.

Tip: To add external file references:

1. From the File menu, choose External Files. The External Files
dialog appears.

2. Type the names of your external files in the dialog. Place each
filename on a separate line. Each file can depend on one or more
other files. Dependencies are described as follows:

<dependent_filename>: <filename1> <filename2> ...

Example: In the following illustration, mycode.c and dsp.c are external files:
mycode.c depends on mycode.h, and dsp.c depends on dsp.h.

Figure 4.33.Dependent External Files (Windows Platform)

4.12. Code Recovery
With XVT-Design you can edit the generated files using a text editor
and later recover code from inside of XVT-Design.
4-68

Using XVT-Design
If you enabled Code Recover, then code fragments were wrapped
with special comments during the code generation process. You can
edit the files using a standard text editor; then click on a “Recover
Code” button to recover all the changes you have made to the
generated files.

Note: Code Recovery is an optional feature. You must click on the Code
Recovery button in the Project Attributes dialog (which activates the
feature for the entire application) before the files are generated in
order to recover code afterwards.

The code recovery dialog is similar to the code generation dialog; it
allows you to select which files you want to recover.

4.12.1. Edit and Recover Code

The following example illustrates how a simple code fragment can
be recovered.

Example:

1. Assume the following ACE code fragment:

Figure 4.34.ACE window with sample code

2. The ACE code is framed with special comments during the code
generation process:

...
task_eh(WINDOW xdWindow, EVENT *xdEvent)
...

case E_CREATE:
...

/*RECOVERABLE CODE BEGIN Create */
if (!xvt_win_create_res(WIN_101,

TASK_WIN,EM_ALL, WIN_101_eh, 0L)
 xvt_dm_post_error("Can't open window");

/*RECOVERABLE CODE END Create */
break;

...
4-69

XVT-Design Manual
3. Edit the generated files using a text editor. (In this example, we
have added an additional piece of code calledmyutils_init(). You
can modify as well as add code.)

...
task_eh(WINDOW xdWindow, EVENT *xdEvent)
...

case E_CREATE:
...

/*RECOVERABLE CODE BEGIN Create */
if (!xvt_win_create_res(WIN_101,

TASK_WIN,EM_ALL, WIN_101_eh, 0L)
 xvt_dm_post_error("Can't open window");

myutils_init();
/*RECOVERABLE CODE END Create */

break;
...

4. When you select the Recover Code option from the File menu
in the ACE, XVT-Design will recover all of the changes you
have made to all the generated files:

Figure 4.35.ACE window with modified code

4.12.2. Important Notes About Recovering Code
• Only code between the Begin and End comments is

recovered.

• Do not modify the Begin or End comments in the generated
files.

• Remember: this is an optional feature. You must click on the
Recover Code checkbox in the Project Attributes dialog box
before you generate the application in order to recover code
later.
4-70

Using XVT-Design
• Unlike ACE code, you can edit the generated files with a text
editor and you see exactly where your code is in the generated
files, which helps fix regular errors detected when you
compile.

4.12.3. Special Caution When Using the Code Recovery
Feature

If you have previously generated code with Code Recovery enabled,
you must recover code before you modify your project with XVT-
Design. The reason for this requirement is that the code recovery
algorithm depends on the current state of the project. For example,
if a control is added to a window, then an additional tag will be
expected during code recovery.

Caution: XVT-Design will not recover any code if the project and
generated files get out of sync.

If you inadvertently modify your project prior to recovering code,
you must get your project in sync with the generated files.

• The best way to get your project in sync is to undo whatever
changes you made to the project.

• A second method is to duplicate any edits you made to the
generated files in the ACE.

• A third way is to manually modify the tags in the generated
files to reflect the current state of your project.

In general, follow these steps:

1. Modify your project using XVT-Design

2. Generate code

3. Edit tags in generated files

4. Recover code

5. Repeat the process
4-71

XVT-Design Manual
4-72

Internationalizing Your Application
5
INTERNATIONALIZING YOUR APPLICATION

5.1. Introduction

5.1.1. About Internationalization and Localization

This section highlights some of the general issues involved in
adapting applications for international language and locale support.

5.1.1.1. Why and When to Adapt an Application

Adapting an application for a specific locale, or localization,
involves several issues. You must evaluate the differences in locales
to determine which, if any, locale categories are relevant to the
application. For example, written language (and character codesets)
may be a minor issue to some localization efforts. An application
developed for American users will have only slight differences for
British citizens (date formatting, monetary formatting and minor
variations in spelling). In other cases, all locale categories may be
affected by a localization effort. An Asian language-based
application will have significantly different needs than the same
English-based application including such categories as character
codesets, layout, collation, and monetary formatting. Localization,
and to what degree localization is performed, are strongly dependent
on the target locales of the application.

Several important tasks are involved in the localization of an
application. Often, the most daunting task is the translation of string
literals from English (or another original language; this guide
assumes that English is the base language) to the local language.
Often this task is outside the scope of the application developer and
will require you to obtain specialized expertise. Secondary to this
5-1

XVT-Design Manual
task is proper processing of those strings whether that be sorting,
concatenating, parsing, or simply formatting strings for screen
layout. Other related tasks include creating locale-specific resource
files and setting the environment configuration appropriate to the
locale.

Internationalization (I18N) involves modifying application code
and resource files so they can be easily localized. Ideally, the result
of I18N is that localization efforts can be accomplished without
changing application source code and without requiring code
recompilation. Applications that target a significant variety of
locales are candidates for internationalization. In deciding whether
to internationalize your application or not, you must evaluate the
pros and cons that arise from supporting several versions of an
application, each for a specific locale, or even a single version which
contains code for multiple locales. Also, it is important to consider
which locales you may need to support in the future.

There are several things you need to consider before you
internationalize an application. In addition to handling single-byte
character strings, your application code must be able to process
multibyte or wide character strings depending upon the locales you
must support. This includes general processing for collation,
parsing, formatting and layout. String literals and other locale-
sensitive items should be made external to the application source
code so they can be translated and substituted as needed.

5.2. Internationalization Support In XVT PTK
The XVT PTK has been engineered for internationalization. All of
the XVT PTK functions support both single-byte and multibyte
character sets, and XVT utilities such as curl accept multibyte input.
All internal PTK strings and resources are externalized for easy
localization, and XVT now provides the localized resources for
French, German, Italian and Japanese.

See Also: For detailed information on internationalization features of the PTK,
see Chapter 19 of the XVT Portability Toolkit Guide.

5.3. Internationalization Support in XVT-Design
XVT-Design can generate internationalized applications. When the
project Internationalize attribute is selected, Design will generate
all locale-specific information in internationalized form, and all
string processing code emitted by Design will be multibyte ready.
5-2

Internationalizing Your Application
Attribute strings passed to Custom Controls will also be
internationalized.

The internationalization scheme used to extract locale-specific
strings for XVT-Design generated code can also be used to
internationalize user code. Specific information on using this
capability follows.

XVT-Design itself has not been internationalized. XVT-Design
does not accept multibyte input, and cannot be used to directly
generate a multibyte application. It can, however, generate an
internationalized application that can be efficiently localized to a
multibyte language outside of XVT-Design.

5.4. The LOCAL_C_STRING Macro
Note: Note: for a step-by-step summary of how to use this feature, see A

Step-by-Step Guide to Internationalization on page 5-8 below.

XVT-Design defines a family of macros designed to allow
flexibility and user configurability in generating internationalized
code. It generates all local-specific information in the form of calls
to these macros. For example, where in non-international mode
XVT-Design would generate the call:

xvt_dm_post_note("Can't open file");

in international mode it will generate the call:

xvt_dm_post_note(LOCAL_C_STR(xd_LS_cant_open_file,
"Can't open file", xdStrBuf1, xdBUFSZ));

Note that the arguments to LOCAL_C_STR include both the
original literal string (the one XVT-Design would generate in non-
international mode) and a symbolic name that can be used to identify
the locale-specific translation of the string that will appear in the
final internationalized application (In this case the identifier name
resembles the English string that XVT-Design knows of, but this
need not always be true.)

XVT-Design will generate the following definition for
LOCAL_C_STR:

#define LOCAL_C_STR(id, literal, buf, bufsz) \
xvt_res_get_str(id, buf, bufsz)

Note that the literal string passed to LOCAL_C_STR is ignored, and
the symbolic identifier is used as a string resource ID. The reason
for including the literal string in the LOCAL_C_STR macro
arguments is discussed in the next section.
5-3

XVT-Design Manual
There are several advantages to this style of code generation:

• You can use the LOCAL_C_STR macro to internationalize
your own code.

• XVT-Design can use the LOCAL_C_STR macro in the
default ACE code written for connections, for example.

• You can redefine the LOCAL_C_STR macro and implement
a different internationalization scheme than the one XVT-
Design uses by default. LOCAL_C_STR can also be used to
temporarily disable internationalization during application
development. (See discussion of XVT_LOCALIZABLE
below.)

Note: Note: In most cases XVT-Design uses the ID of a menu, window or
control as a base to form the symbolic identifier argument to the
LOCAL_* macros. When using international mode, you should
make sure your menu, window and control ID's are no more than 26
characters long.

5.5. Using LOCAL_C_STR in User Code
The LOCAL_C_STR macro can be used anywhere in C code where
function calls are allowed. The LOCAL_C_STR macro will
evaluate to a character pointer.

When writing a LOCAL_C_STR macro invocation, you will need to
choose a symbolic identifier for the macro's first argument. XVT
recommends using a name that corresponds closely to the literal
string in the second argument. This will aid in the localization task
later.

The second argument, a string literal, is used when
internationalization is turned off (See discussion of
XVT_LOCALIZABLE below) and by strscan to create a file of
locale-specific information to be translated (See strscan below). It
should be in the same single-byte language you do your primary
XVT-Design development work in.

The third and fourth arguments are a pointer to a buffer that will hold
the string as it is fetched from resources and the size of the buffer in
bytes. XVT-Design generates definitions for four buffers,
xdStrBuf1 through xdStrBuf4, all of size xdBUFSZ, that can be used
for this purpose, but remember that XVT-Design will also generate
code that uses the same buffers. In general, if you want the string to
persist past other calls to LOCAL_C_STR, you should allocate your
own buffer and pass it to LOCAL_C_STR.
5-4

Internationalizing Your Application
Note: Note: You may use the same symbolic identifier more than once as
long as the corresponding literals are identical. Since strscan ignores
#if and #ifdef preprocessor commands, do not use the same
symbolic identifier with different literals in opposite branches of
these conditionals.

5.6. Other LOCAL_* Macros
XVT-Design defines and uses several other LOCAL_* macros, all
of which address different internationalization problems. They are
not generally as useful in user code as LOCAL_C_STR.

The LOCAL_URL_STR and LOCAL_URL_RECT macros allow
XVT-Design to extract locale-specific information from the
generated application URL file. XVT-Design will generate calls to
these macros for you.

LOCAL_URL_STR and LOCAL_URL_RECT are different from
LOCAL_C_STR in that there is no need to extract the locale-
specific information to resources - these calls occur in resources. It
is still helpful, however to textually separate the locale-specific
information in the URL so it may be maintained separately

The LOCAL_C_STR_INIT macro is used by XVT-Design to
internationalize the property lists passed to Custom Controls. It is
also generated automatically where appropriate and its use in user
code is not recommended.

5.6.1. LOCAL_* Macro Definitions

To see how XVT-Design actually defines the LOCAL_* macros,
select Internationalize in your application's Project Attributes
dialog and generate your application. The LOCAL_* macros will be
defined in your Design-generated application header file.

5.7. The XVT_LOCALIZABLE Compile-Time Flag
You may want to do initial application development concentrating
on basic functionality, and internationalize only when your
application is nearly complete. Or you may want to turn
internationalization off while debugging or adding functionality to a
mature internationalized application. To allow for these needs
XVT-Design defines the XVT_LOCALIZABLE compile-time flag.
5-5

XVT-Design Manual
With XVT_LOCALIZABLE turned off, the LOCAL_* macros are
defined to return their literal arguments, and internationalization is
effectively disabled. You should select the Internationalize project
attribute as early as possible in your development cycle, and keep
XVT_LOCALIZABLE turned off until you are ready to deal with
internationalization issues. In the meantime, XVT-Design will
know to generate LOCAL_C_STR macros in your default
connection code.

5.8. The strscan Utility
Note: Note: for a step-by-step summary of how to use this feature, see A

Step-by-Step Guide to Internationalization on page 5-8 below.

The LOCAL_* macros effectively remove the locale-specific
information from your code. The next task is to provide the locale-
specific information elsewhere so the application is complete.

Ideally, all the locale-specific information for you application would
be isolated in one text file. It would be then be possible to give just
this one file to a translator. It should also be possible to maintain this
translation separately from the XVT-Design project file and the
application external C files without having to redo all the translation
work when minor changes are made to the application user interface.

Fortunately, the design of the LOCAL_* macros makes this
possible, and XVT provides a utility, strscan, that automates much
of the process.

strscan scans C and URL files for LOCAL_* macros, and writes an
URL file that contains all the locale-specific information from the
macros and can easily be translated. For example, when strscan
encounters the example code from above:

xvt_dm_post_note(LOCAL_C_STR(xd_LS_cant_open_file,

"Can't open file", xdStrBuf1, xdBUFSZ));

It writes the following URL code:

STRING xd_LS_cant_open_file "Can't open file"

When this URL statement is translated, compiled and loaded in your
application, the LOCAL_C_STR macro definition will cause the
translated string to be loaded from resources.

Note: Note: Actually, strscan writes two output files. One, named strres.h
by default, contains the locale-specific information as described
above and is designed to be included in your application's Design-
generated URL file. The other, named strdef.h by default, contains
5-6

Internationalizing Your Application
defines that give the STRING resources of strres.h numerical
resource ID values; it should be included in your application's
header. strdef.h contains no locale-specific information and need
not be translated.

5.8.1. Using strscan

To create definitions for all your locale-specific information, run
strscan on all your C files (both XVT-Design generated and
external) and your XVT-Design generated application URL file.

5.8.1.1. strscan Options

-f filename option file (defaults to strscan.opt)

-r filename output resource file (defaults to
strres.h)

-d filename output definition file (defaults to
strdef.h)

-n start starting number for RID's (defaults to
29999)

-i increment increment for RID's (defaults to -1)

-e newname macroname
define synonym for macro

filename ... files to process

These options are valid for both command line and GUI interface
versions of strscan.

5.9. Localization
Localization is accomplished by maintaining a translated version of
strres.h for each locale you wish to support.

After translating your locale-specific strings and recompiling your
resources, you will probably find that many of your controls need to
be resized to accommodate translated strings of different length than
the originals. XVT-Design generates most URL rectangles through
the LOCAL_URL_RECT macro for this reason, and you can see the
rectangle definitions in strres.h.

It will be necessary to identify the rectangles you need to modify in
your translated version of strres.h and manually adjust them. You
5-7

XVT-Design Manual
will need to recompile your resources and run your application to
check your work.

5.10. A Step-by-Step Guide to Internationalization

5.10.1. General Steps To Internationalize Your XVT
Application

1. In the Project Attributes dialog, select Internationalization. This
selection causes SPCL:I18N_Header, SPCL:I18N_URL, and
SPCL:I18N_Main tags to be created (as described below), as well
as inserting special localization macros.

2. In the SPCL:I18N_URL tag in the ACE, you now see code similar
to the following:

#ifdef XVT_LOCALIZABLE
#include “strres.h”
#endif

The URL include file strres.h contains locale-specific strings;
it is generated in step 1 (on page 5-9 below) when you run the
strscan utility program.

3. In the SPCL:I18N_Header tag in the ACE, you now see code
similar to the following:

#ifdef XVT_LOCALIZABLE
#include “strdef.h”
#endif

The include file strdef.h will be generated in step 1 (on page
5-9 below). strdef.h contains #defines for resource IDs used in
strres.h.

4. Still in the ACE, replace string literals in your code with calls to
the LOCAL_C_STR macro. Use the XVT-Design Find command
to help you locate string literals.

5. Using the SPCL:User_Header tag in the ACE, add the following
code:

#define XVT_LOCALIZABLE

Alternatively, you may modify your makefile or makefile
template to define this flag.

6. Use the XVT-Design Generate Application command to generate
all files.
5-8

Internationalizing Your Application
Now, working outside of XVT-Design, complete these two
additional steps:

7. In your external files (those not generated by XVT-Design),
replace string literals with calls to the LOCAL_C_STR macro.

Once you have completed the steps presented in the preceding
list (steps 1 through 7), your C application is modified to use the
LOCAL_C_STR macro and your application is “internationalized.”
In other words, your application’s displayable strings have been
processed in a manner that allows them to be easily “localized,”
that is to say, modified for a specific locale.

5.10.2. General Steps To Localize Your XVT
Application

1. Execute the strscan utility on all of your *.c and *.url files to
generate the include files strres.h and strdef.h. If you have
carefully followed steps 4 through 7 (on page 5-8), strres.h now
contains all your locale-specific strings. View both files after
running the utility.

2. Make copies of strres.h and give them names that co-workers
will recognize as locale-specific resource files, such as
engres.h and gerres.h. You will want to adopt a file naming
convention for your different versions of strres.h. Renaming
the files protects you in the future when you run strscan, since
strres.h is consistently and predictably overwritten when it
already exists.

3. Using the SPCL:I18N_URL tag in the ACE, replace the reference
to strres.h with references to a file of strings translated into
German (for example), gerres.h, and another file of English
strings, engres.h. When the editing in your application resource
file is complete, this section of code will resemble the
following:
5-9

XVT-Design Manual
#ifdef XVT_LOCALIZABLE
#ifdef LANG_GER_W52

#include “gerres.h”
#else /* English */

#include “engres.h”
#endif
#endif

If you are supporting multiple languages in other localized files,
modify the above code as needed to reference these files, as
well.

For a list of standard locale names (e.g., LANG_GER_W52),
see Chapter 19 of the XVT Portability Toolkit Guide.

4. Translate the strings in the locale-specific resource files, such as
gerres.h, for the locales you need to support.

5. Consider redefining the way dates or money variables are
displayed (to match local practices). Likewise, in your external
files (those not generated by XVT-Design), search for all sprintfs
that you wish to format for locale-specific display. For more
details and an example, refer to Chapter 19 of the XVT
Portability Toolkit Guide.

6. Compile your resources and check the translation of text and the
size and position of GUI objects.

7. Adjust the size and positions defined by creation rectangles in
strres.h to accommodate the increased or decreased lengths of
the translated strings.

You do not need to re-translate your entire strres.h file when you
make changes to your application. Usually it is only necessary to
regenerate strres.h and strdef.h using strscan, then identify the
strings that have been added or changed and add their translated
equivalents to your translated versions of strres.h.

Building the locale-specific executable requires the setting of one or
more specific #defines. XVT source code files are “localized” when
XVT_LOCALIZABLE is defined, and switch to a specific language
based upon other #defines, as well. To build the locale-specific
executable, follow these additional steps:

8. Modify your makefile or makefile templates to build localized
versions of your resources. If you wish to build, for example, a
German version, you would also define LANG_GER_W52.

Refer to the example at the end of this section for an example of
how to modify a UNIX makefile. Different programmers or
5-10

Internationalizing Your Application
organizations have their own personal preferences and different
platforms will require slightly different syntax.

On some platforms, you may need to run curl manually from
the command line, as shown in the following curl compile
statement:

curl -r rcwin -i..\..\ include -dLANG_GER_W52
-dLIBDIR=.\..\..\lib app.url

Although the command line shown above is printed on two
lines, you should enter a command line as a single line.

You now have a resource file—if you view it, you will see, in
this case, that all strings are now in German.

9. If your makefile did not completely finish the build, you should
now complete any unfinished steps in your build process.

Example: This example shows a UNIX makefile that builds a German version
of an XVT application:

Define localized options.
Start a German build.

LOCALIZE_OPTS = -dLANG_GER_W52
CC_OPTS = -c $(INC_PATH)
CURL = $(XVT_DSC_DIR)/bin/curl
...

#
Include the defines in all source code compilations
.c.o

$(CC) $(CC_OPTS) $(LOCALIZE_OPTS) $<
Also pass them to curl
app.uil: app.url

$(CURL) $(CURL_OPTS) $ (LOCALIZE_OPTS) app.url
...

5.11. Advanced Internationalized Topics
You may wish to instrument your application to load the appropriate
locale-specific resources at startup time based on an environment
variable or options file. This will likely involve some platform-
specific code, and you may want do the locale determination in a
platform-specific manner.

You will also want to build with the appropriate localized PTK
resources and help text. XVT provides these for US English,
French, German, Italian and Japanese, and you can translate them to
other locales yourself.
5-11

XVT-Design Manual
For information on these topics, and for an in-depth discussion of
issues you will want to consider when internationalizing and
localizing your user code, see Chapter 19 of the XVT Portability
Toolkit Guide.
5-12

Project File Management
6
PROJECT FILE MANAGEMENT

If you are working with other developers on the same XVT-based
application, you might find it useful to break your XVT-Design
project file into several parts.

Working with separate project files allows individual members of
the development team to work on their project components in their
own files, independently of the other members. Later, you can merge
the separate parts back into one file.

The XVT Development Solution for C package provides a utility
program for splitting and joining project files called pfm. On all
platforms (except the Macintosh), this program will run both as a
GUI and from the command line.

6.1. Using pfm at the Command-Line
pfm is the project-file splitting and merging utility. You might use
pfm in scripts you write to help manage concurrent development
efforts.

6.1.1. Splitting Project Files

pfm can create several project files, each with only one container,
from one project file.

Tip: To split one or more project files into several project files:

Use a command of the following form:

pfm -s <source-pf> <basename>

where <source-pf> is the original project file to split and
<abasename> is used to create names for the new project files.
One file is created for the strings, string lists, and menubars, and
one file is created for each container in the file <source-pf>.
6-1

XVT-Design Manual
When pfm splits one project file into several, the first new project
file contains all of the strings, string lists, and menubars present in
the original file, but no containers. Each succeeding new project file
contains a single container and only the menubar associated with the
container.

6.1.2. Merging Project Files

Tip: To merge several project files into one project file:

Use a command of the following form:

pfm -m <output><file0> ... <fileN> >

<output> is the name of the new project file that contains all of
the containers in files <file1> through <fileN>. <file1> through
<fileN> are the project files to be merged.

When pfm merges several project files into one, it copies the strings
and menubars from the first project file on the command line to the
output file. Any strings and menubars in the succeeding project files
are not copied to the output file.

Caution: Since only the strings and menubars in the first project file are
copied to the output file, any changes you make to the strings or
menubars in the other project files will not be reflected in the output
file. Hence you should edit the strings and menubars only in the first
project file.

6.2. Using the GUI Version of pfm
The interactive version of pfm allows you to create new project files
and copy and paste containers between project files. Also, you can
split one file into several single-container files with one command.

Each open project file appears in a separate window. A scrolling list
box in the window lists all of windows and dialogs in the project file,
by resource identifier and name.

Creating Project Files with pfm

Tip: To create a new project file with no resources:

Choose New from the File menu.

Copying and Moving Containers

Tip: To copy or move one container from one project file to another:
6-2

Project File Management
1. Open the source and destination project files.

2. Choose the container by clicking its name in the project
window.

3. Choose Copy from the Edit menu to copy the container, or
choose Cut to move the container.

4. Click the destination project file’s window to bring it to the
front.

5. Choose Paste from the Edit menu.

Copying and pasting a container between project files also copies
the menubar associated with the container (if there is one).

You can also copy and paste several containers at once. Shift-click
to select more than one container in the container list, before
copying and pasting.

Splitting and Merging Project Files

Tip: To split a project file into several single-container project files:

1. Open the project file.

2. Choose Split from the Project menu. A dialog box prompts you
for the base name of the new files.

3. Type the base name of the new files and click OK. The project
files are created with sequentially numbered names. The files
are named <obase>1.dpr, <obase>2.dpr, and so on, where <obase> is
the base name you supplied in the previous step.

Tip: To merge several project files into one file:

1. When launching pfm, add the names of the project files to the
command line, for example:
pfm proj000.dpr proj002.dpr newdlg.dpr

2. pfm opens and presents a dialog asking you to confirm that the
files should be merged. Click the Merge button. (If you click the
Open button, the files are opened normally, each in a separate
window.) A new project is created, which contains the windows
and dialogs from the project files named on the command line.
The menubars and strings from the file listed first on the
command line are also added to the new project.

3. Choose Save As from the File menu to save the new project file.
6-3

XVT-Design Manual
Note: This merging method is not available on the Macintosh. Use copying
and pasting to create one project file from several other files.

6.2.1. Listing the Project File Containers

Tip: To list the containers located in the project files, use a command of
the following form:

pfm -l <pf0>...<pfN>

6.3. Working with Multiple Projects
Splitting a project file into several smaller project files allows the
individual members of a development team to work independently
on the same application. Here is a general outline for creating an
application with multiple project files:

Create the prototype
Using XVT-Design, one or more developers create a prototype
of the application, which contains all of the resources for the
application’s user interface—the windows, dialogs, menubars,
etc. The prototype application is stored in one project file.

Split the project file
Using pfm, the prototype’s project file is split into several
smaller project files.The first such project file contains all of the
“shared” resources in the application; i.e., the menubars and
strings. The remaining small project files each contain one or
more of the windows or dialogs of the prototype.

Distribute and work on the smaller project files
The smaller project files are distributed among the members of
the development team. Using XVT-Design, each member
refines the layout of the container in their project file(s), and
writes code to implement its behavior and interaction with the
rest of the application. (As described previously, the strings and
menubars should not be modified in the smaller files, but only
in the first project file.)

Merge the project files
Again using pfm, the separate project files are merged back into
one project file, along with the shared-resource project file.

Open the prototype
The merged project file is opened with XVT-Design.
XVT-Design generates the source code and resource files for
the complete application.
6-4

Project File Management
Using Source-Control Systems

You may find it useful to use a source-control system to facilitate
shared access to the project files during development. However,
such a system must be able to manage binary (i.e., non-text) files,
since XVT-Design’s project files are not purely ASCII text.
(Alternatively, you could use a text-encoding utility such as
uuencode to convert XVT-Design’s project files into text-only files
that can be accepted by a source-control system.)

6.3.1. External Connections

If you split your application’s project file into several files, you can
create connections between objects in different files by using
external connections. External connections can be made to objects
that are still under development (in other project files), or not yet
even created.

External connections are replaced with equivalent regular
connections when you merge the project files together with pfm.

6.3.2. Name and Identifier Conflicts

If you merge two or more project files that have containers with the
same resource identifiers and/or names, the resulting project file will
contain conflicting identifiers and/or names. If you generate code
from XVT-Design using this project file, your compiler will produce
duplicate-symbol errors. Neither pfm nor XVT-Design attempts to
detect or correct duplicate name conflicts.

Tip: To avoid duplicate names and resource identifiers, adopt some sort
of team-wide protocol and conventions for naming new resources.

6.3.3. Merging Unrelated Projects

The pfm may also be used to merge project files which have not been
previously split.

Tip: When merging unrelated projects, follow these steps:

1. Create unique menubar names. Rename the conflicting
menubars (such as TASK_WIN) in the project files that will be
merged.

2. Create unique window IDs. Rename the conflicting windows
(i.e. Win_101) in project files that will be merged.

3. Merge projects with pfm.
6-5

XVT-Design Manual
4. Use XVT-Design to modify the merged project file keeping in
mind the following questions:

• Is the About box set properly?

• Are all the required external files listed?

• Are all the required Application:User_Header lines listed?

• Are all the required Application:User_URL lines listed?

5. Create connections to merged dialogs/windows.

6. Generate code and compile.
6-6

Reference
7
REFERENCE

7.1. Menu Commands
This section contains brief descriptions of all the commands on
XVT-Design’s menus. For more detailed descriptions of the dialogs
and operations described in this section, see the “Usage” chapter of
this manual.

7.1.1. File Menu

The File menu contains commands for manipulating project files,
and for generating your application’s source code and resource files.

7.1.1.1. New Project

Creates a new project. This project becomes XVT-Design’s active
project. If other projects are open when you choose this command,
XVT-Design hides their windows. See Project Files on page 4-1.

7.1.1.2. Open Project

Presents a standard open-file dialog, so you can open a previously
saved project file. When you open a project, it becomes
XVT-Design’s active project. If other projects are open when you
choose this command, XVT-Design hides their windows. (A list of
open projects is found at the bottom of the Edit menu.) See Project
Files on page 4-1.

7.1.1.3. Close Project

Closes the active project. If you have made any changes to the
project since it was last saved, XVT-Design asks whether you want
to save the project before it is closed. See Project Files on page 4-1.
7-1

XVT-Design Manual
7.1.1.4. Save Project

Saves the active project file. The first time you use this command for
a new project, a standard save-file dialog appears. You can choose
the directory in which to save the file, and enter the project’s name.
See Project Files on page 4-1.

7.1.1.5. Save Project As

Opens a standard save-file dialog, allowing you to choose a new
filename and directory for the active project.

Note: If you save your project in a different directory, you should also
change the Code Directory setting in the Generate Application
dialog.

See Project Files on page 4-1.

7.1.1.6. Specify External Files

Opens the External Files dialog, which allows you to add references
to source code files not generated by XVT-Design to your project
file. See External Files on page 4-68.

7.1.1.7. Generate Application

Opens the Generate Application dialog, where you can change
several things:

• The name of your application, and the directory where
XVT-Design places the source code files it generates

• The template file used to create a makefile for building your
application

• The names of the source code files and resource files for your
application

See Generating Source Code on page 4-63.

7.1.1.8. Recover Code

Allows you to recover code even after an application has been
generated. There are several steps you must take before performing
this action.

See Code Recovery on page 4-68.
7-2

Reference
7.1.1.9. Quit (or Exit)

Closes all open projects and terminates execution of XVT-Design.
If any open projects have been changed since they were last saved,
XVT-Design asks if you want to save them before they are closed.

7.1.2. Edit Menu

The Edit menu contains commands for editing text and objects, and
invoking XVT-Design’s various editor windows.

Tip: The toolbar in the layout windows has graphical buttons for rapid
access to the Cut, Copy, Paste, and Clear commands on the Edit
menu.

7.1.2.1. Cut

Removes the selected text or object and places it on the system
clipboard.

7.1.2.2. Copy

Places a copy of the selected text or object on the system clipboard.

7.1.2.3. Paste

Copies the contents of the system clipboard to the window, text edit
pane, or edit control that has focus.

7.1.2.4. Clear

Permanently removes the selected text or object.

7.1.2.5. Find

Search through code for specifc text.

7.1.2.6. Find Next

Repeat last text search.

7.1.2.7. Scan Tags

Allows you to quickly review the action code for a portion or the
entire project.
7-3

XVT-Design Manual
7.1.2.8. Select All

Selects all text or objects in the window, text edit pane, or edit
control that has focus.

7.1.2.9. Userdata Labels

Opens the dialog for editing userdata label strings. See Userdata
Labels on page 4-59.

7.1.2.10. Project Attributes

Opens the dialog for setting the project attributes: the About dialog,
the task window’s menubar, the task and document window titles,
and the API name-generation convention. See Project Files on page
4-1.

7.1.2.11. Attributes

Opens the attributes dialog for the selected object, or the layout
window that has focus. See Setting Object Attributes on page 4-23.

7.1.2.12. Code

Opens an Action Code Editor window for the selected object, or the
layout window that has focus. See Using the Action Code Editor
(ACE) on page 4-4.

7.1.2.13. Userdata

Opens a userdata editor window for the selected object, or the layout
window that has focus. See Userdata Strings on page 4-58.

7.1.2.14. Menu

Invokes the Menu Editor for the menubar associated with a window.
If no menu is associated with a window, or if no window is currently
active, this menu item is disabled. See Using the Menu Editor on
page 4-48.

7.1.2.15. Creation Order

Opens the Creation Order dialog, which lets you set the order in
which controls in a dialog receive focus during keyboard navigation.
See section 4.6 on page 4-43.
7-4

Reference
7.1.3. Tools Menu

This menu contains commands for opening XVT-Design’s various
editor dialogs, and for starting TestMode.

7.1.3.1. Action Code Editor

Opens an Action Code Editor dialog. If a layout window has focus,
the Action Code Editor’s context list buttons will be set to the
container, or the selected control. Otherwise, the context list buttons
will be set to the application See section 4.2 on page 4-4.

7.1.3.2. Menubar Editor

Invokes the Menubar Editor, for creating and modifying menubars
and menus. If the Menubar Editor’s dialog is already open, choosing
this command brings it to the front. See section 4.7.1 on page 4-49.

7.1.3.3. Strings Editor

Invokes the String and Stringlist Editor, for creating and modifying
string resources. See section 7.1.3.3 on page 7-5.

7.1.3.4. External Tool

You can configure this menu item to launch the Image Editor
application, for creating and modifying portable image files. See
Appendix A: The Image Editor.

7.1.3.5. Begin TestMode

Starts XVT-Design’s TestMode, so you can examine and
demonstrate your application’s resources as they will appear at
runtime. To leave Test Mode, choose End TestMode from the
TestMode menu. See section 4.10 on page 4-61.

7.1.4. Controls Menu

The Controls menu includes commands for creating the various
types of controls available in windows and dialog boxes: push
buttons, check boxes, radio buttons, scrollbars, static text, edit
controls, text edit objects, list boxes, list buttons, list edits, and group
boxes. Commands for creating custom controls are located on a
submenu of the Controls menu. This menu is available only in layout
windows.
7-5

XVT-Design Manual
Note: Text Edit objects and custom controls cannot be placed in dialogs,
so the corresponding commands on the Controls menu are disabled
when a dialog’s layout window is active.

Tip: To create one or more controls:

1. From the Controls menu, choose the control type.

2. Position the cursor in the upper left corner of the desired
location.

3. Either click or drag the control into the desired size.
If you click to create the control, it will be of the standard size
for this type of control.

4. Click and/or drag to create additional controls of this type.

5. To exit from this mode, choose Pointer (or another control)
from the Controls menu.

When the Pointer tool is selected, you can select, resize, or move
existing controls.

Tip: The palette in the layout windows has graphical buttons for rapid
access to all of the controls available on the Controls menu.

7.1.4.1. Custom

This submenu contains the names of all of the custom controls
currently available in XVT-Design.

7.1.5. Layout Menu

The Layout menu contains commands for adjusting the position of
controls in window and dialog layout windows. This menu is
available only in layout windows. If no controls are selected, some
of the commands are disabled.

The order in which you select controls determines how the
alignment commands will affect the controls. The first control
selected is the reference point used to align the other controls.

For example, if you select controls A, B, and C (in that order), and
then choose Align Left from the Layout menu, controls B and C will
be lined up along the left boundary of control A, because A was the
first one selected.

Tip: The toolbar in the layout windows has graphical buttons for rapid
access to most commands on the Layout menu.
7-6

Reference
7.1.5.1. Align Left

Aligns the selected controls along the left boundary of the first
selected control.

7.1.5.2. Align Center

Aligns the selected controls along the horizontal center of the first
selected control without changing their vertical positions.

7.1.5.3. Align Right

Aligns the selected controls along the right boundary of the first
selected control.

7.1.5.4. Align Top

Aligns the selected controls along the top boundary of the first
selected control.

7.1.5.5. Align Middle

Aligns the selected controls along the vertical center of the first
selected control without changing their horizontal positions.

7.1.5.6. Align Bottom

Aligns the selected controls along the bottom boundary of the first
selected control.

7.1.5.7. Even Horizontal Spacing

Adjusts the horizontal position of the selected controls so that they
are separated horizontally by the same distance.

7.1.5.8. Even Vertical Spacing

Adjusts the vertical position of the selected controls so that they are
separated vertically by the same distance.

7.1.5.9. Make Same Size

Makes all selected controls the same width as the control first
selected.
7-7

XVT-Design Manual
7.1.5.10. Grid

Opens the Grid dialog, where you can set the grid spacing interval,
and choose whether the grid is displayed.

7.1.5.11. Hide Toolbar

Hides the toolbar in the front-most layout window, if the toolbar is
visible. If the toolbar is already hidden, this command changes to
Show Toolbar.

7.1.5.12. Hide Object Palette

Hides the object palette in the front-most layout window, if the
palette is visible. If the palette is already hidden, this command
changes to Show Object Palette.

7.1.6. Window Menu

The Window menu includes commands for creating new windows
and dialogs. When you create a new container, XVT-Design opens
a layout window for it. The Window menu also lists all the currently
open windows. This menu is updated as you open and close layout
windows. Choosing an item from the menu brings the corresponding
window to the front. On the menu, any open Action Code Editor
windows are listed before the layout windows.

7.1.6.1. New Window

Creates a new window resource in the active project.

7.1.6.2. New Dialog

Creates a new dialog resource in the active project.

7.1.7. Help Menu

The Help menu displays the online Help for XVT-Design. It also
give you to access to the online PTK Reference file.

7.2. The Configuration File
XVT-Design uses a configuration file to determine default settings
for many user-changeable options. You can edit the configuration
file to change these default values, so they suit the characteristics of
your development environment and your preferences.
7-8

Reference
XVT-Design only examines the contents of the configuration file
when it starts up. Any changes you make to the file while
XVT-Design is running have no effect.

7.2.1. Name and Location

The configuration file is named design.cfg. The configuration file
can be placed in the same directory as the XVT-Design application
or in another directory, depending on the operating system. This
section describes these directories, by operating system.

7.2.1.1. Macintosh

On the Macintosh, when XVT-Design is launched, it looks for its
configuration file in the folder that contains the XVT-Design
application itself.

7.2.1.2. UNIX

Under UNIX, when XVT-Design is launched, it first looks for its
configuration file in the current directory. If it does not find the
configuration file there, it looks in the user’s HOME directory.

7.2.1.3. Windows

Under Windows, when XVT-Design is launched, it first looks for its
configuration file in the current directory. If it does not find the
configuration file there, it looks in the root directory of the volume
that contains XVT-Design.

7.2.2. Format

The configuration file is a plain text file. You can use any text editor
to create, examine, or change it.

7.2.2.1. Configuration File Options

Commands in the configuration file are placed on separate lines, one
entry per line. Entries must be in the following format:

<attribute>: <value>

where <attribute> is one of the attribute names listed in the “Available
Options” section (below), and <value> is an integer, string, or
Boolean constant. Booleans are denoted as follows:

FALSE:false, f, no, off, 0
7-9

XVT-Design Manual
TRUE:(anything not defined as FALSE)

Uppercase and lowercase are not distinguished in Boolean values.

7.2.2.2. Comments

You can add comments to the configuration file by placing a pound
sign, #, at the beginning of the line. All subsequent information on
the line is ignored. For example:

This is a comment.

7.2.3. Available Options

This section lists all the attributes that can be specified in the
configuration file, organized by category.

7.2.3.1. Default Grid Settings

These attributes set the default values for the alignment grids in
layout windows. When you create a new window or dialog, its
layout window initially has these grid settings. You can change these
settings in individual layout windows by using the Grid command
on the Layout menu.

gridDisplay

Desc:Shows the layout grid in each layout window

Type:BOOLEAN

Default:FALSE

gridNative

Desc:Use a pixel-based grid (TRUE) or a char-based grid
(FALSE)

Type:BOOLEAN

Default:FALSE

gridSnap

Desc:Enables snap-to-grid in layout windows

Type:BOOLEAN

Default:FALSE

gridX, gridY

Desc:Pixel width and height of layout grid
7-10

Reference
Type:integer

Default:8 (for both)

7.2.3.2. Makefile Template Macros

These options let you create string-substitution macros for your
makefile templates.

userMacros

Desc:Allows the user to supply additional information to the
makefile generator

Type:string

Default:None
Use this option to declare the names of your macros. You
must declare each macro before defining it.

7.2.3.3. File Defaults

backupFileExtension

Desc:Set this macro to “FALSE” to disable the creation of a
initial Layout window in a new project.

Type:string

Default:dpb

macCreatorCode

Desc:Configures the file type for generated code

Type:enum (KAHL if ThinkC, MPS if MPW)

Default:MPS

macFileType

Desc:Configures the creator code for generated code

Type:string

Default:TEXT

Default:TRUE

projectFileExtension

Desc:Default project file extension

Type:string
7-11

XVT-Design Manual
Default:dpr

7.2.3.4. ACE Text Defaults

These options set text characteristics for the Action Code Editor’s
text pane.
aceFontFamily

Desc:Used to get something other than "System" font in the
ACE

Type:enum (FF_FIXED, FF_HELVETICA, FF_TIMES)

Default:None
This option sets the font. The value must be one of the
following:

FF_FIXED: a fixed-width (monospaced) font, such as Courier

FF_SANS_SERIF: a plain, sans-serif font, such as Helvetica

FF_SERIF: a serif font, such as Times

The actual font used depends on your platform. If no font is
specified, the system font is used.

aceFontSize

Desc:Used to change the point size of the font in the ACE

Type:integer

Default:None

appXDefaultFont

Desc:For XM only. When set to a valid X fontname or alias,
assigns the font for controls in XVT-Design layout
windows and controls in the generated application. This
font becomes the default font for the application and is
independent of the font the application uses to draw text
in windows. See Exceptions below.

Type:string

Default:None

Exceptions

The default font is not used in the "ghost window" in the
generated application or in the emergency output
message box displayed with xvt_dm_post_message. If
you want to set the default font for the ghost window and
7-12

Reference
emergency output message, then add the file xxinit.c to
your application and set the font in the fallback resources
in that file. xxinit.c is found in ptk/contrib.

7.2.3.5. Miscellaneous Options

charHeight

charWidth

Desc:Specifies what size character Design should use when it
does scaling of windows/controls/dialogs when a Design
project file is moved between platforms. If these are not
specified, Design chooses a platform-specific character
size by which to scale.

Type:integer

Default:None

cfgLogfile

Desc:File into which everything is logged that XVT-Design
looks for in the configuration (*.cfg) file

Type:string

Default:None
This option lets you explore how XVT-Design uses the
configuration file. If this attribute is set to a filename that
can be opened for writing with fopen, XVT-Design
creates a text file that lists all inquiries made concerning
user-configurable options:

• If an inquiry is made for an option that is specified in the
configuration file, an entry of the form “<attribute>:<value>” is
added to the log file.

• If the option is not specified in the configuration file, an entry
of the form “#<attribute>:” is added. Both of these entries are in
the same format as entries for the configuration file itself.
You can add options to your configuration file by copying
them from the log file.

Note: The log file may contain redundant entries, since XVT-Design
makes an entry for each query to a given option.

compileURL (Boolean)
If this attribute is TRUE, XVT-Design will automatically run
the curl resource compiler to compile your project’s resource
file when you generate your application’s source files.
7-13

XVT-Design Manual
initialAboutBox (Boolean)
If this attribute is FALSE, XVT-Design does not display its
version and copyright dialog box when starting up.

enablePlaceWindowExact

Desc:Enables/disables generation of code that sets
ATTR_X_PLACE_WINDOW_EXACT

Type:BOOLEAN

Default:FALSE

enableProjectBackup

Desc:Enables/disables automatic backup of project files.

Type:BOOLEAN

Default:TRUE

externalTool

Desc:Path to external tool invoked by "External Tool..." menu
item

Type:string

Default:None

externalToolMenuItem

Desc:Customizes the text of the "External Tool..." menu item

Type:string

Default:External Tool...

initialAboutBox

Desc:Enables/disables splash window

Type:BOOLEAN

Default:FALSE

initialLayoutWindow

Desc:Enable/disables creation of initial layout window in a new
project

Type:BOOLEAN

Default:TRUE

migrateEventHandler
7-14

Reference
Desc:Enables generation of the #define's that map old event
handler names to new ones

Type:BOOLEAN

Default:TRUE

objectScaling

Desc:Turns scaling on (TRUE) or off (FALSE). If scaling is
turned off, then Design makes no attempt to scale the
windows/controls/dialogs when a Design project file is
moved between platforms.

Type:BOOLEAN

showObjectPalette

Desc:Initial visibility of the object palette in each layout
window

Type:BOOLEAN

Default:TRUE

showToolbar

Desc:Initial visibility of the toolbar in each layout window

Type:BOOLEAN

Default:TRUE

tabStop

Desc:Sets the tab stops in the ACE

Type:integer

Default:None

XVTCDF

Desc:Path to the CDF directory

Type:string

Default:Platform-specific

XVTDIR

Desc:Path to the top of XVT installation

Type:string

Default:Platform-specific
7-15

XVT-Design Manual
XVTTPL

Desc:Path to the makefile template directory

Type:string

Default:Platform-specific

7.2.4. Configuration File Example

Here is an example of a configuration file:

#Example design.cfg file
#Turn off the splash screen:
initialAboutBox: false
#Set a 16x16 pixel alignment grid:
gridX: 16
gridY: 16
gridNative: false
aceFontFamily: FF_FIXED
aceFontSize: 10

7.3. Objects and Tags
This section describes all the tags available for the standard XVT
Portability Toolkit user interface objects. To see which tags are
available for each object, refer to the table at the end of this section.

7.3.1. Tag Descriptions

This section describes all the tags available in XVT-Design. There
are two types of tags:

• Event tags correspond to the events in the XVT API: events
that are generated by user actions (for example, mouse clicks)
or by the window system (for example, update events).

• Special tags do not correspond to events but rather serve as
convenient places to add functions and variable declarations
to the framework code.

7.3.1.1. Event Tags

The following tags correspond directly to XVT Portability Toolkit
E_* events. In the Action Code Editor’s Tag list button, event tags
appear with an “EVNT:” prefix.

See Also: For more detailed descriptions of these events, refer to the XVT
Portability Toolkit Reference.
7-16

Reference
Char
The user pressed a key on the keyboard.

Close
The user operated the close control or close menu item on a
window or dialog.

Command
Text for this tag is inserted in the window’s event handler
immediately before the invocation of the window’s menubar
event handler.

Control
The user operated a control.

Create
A window or dialog has been created. This is the first event that
a window or dialog receives; the first event sent to the
application is a Create event for the Task window.

Destroy
A window or dialog has been closed. This is the last event
received by a window or dialog.

Focus
A window or dialog has gained or lost keyboard focus.

Font
The user has chosen an item from the standard Font menu, or
selected a font and style from the font selection dialog.

HScroll
The user has manipulated the horizontal scrollbar on the frame
of a document window.

Mouse_Dbl
The mouse button was double-clicked in a window.

Mouse_Down
The mouse button was pressed in a window.

Mouse_Move
The mouse pointer was moved in a window.

Mouse_Up
The mouse button was released in a window.

Quit
The window system is shutting down (not available on all
platforms).

Select
The user has selected an item on a menu. Only menu items have
the select tag.
7-17

XVT-Design Manual
Size
The size of a window or dialog has been set or changed.

Timer
The timer associated with a window or dialog has gone off.

Update
The contents of a window require redrawing.

User
An application-defined event has been initiated.

VScroll
The user has manipulated the vertical scrollbar on the frame of
a document window.

7.3.1.2. Special Tags

The following tags give you convenient places in the framework
code for declaring variables and functions. In the Action Code
Editor’s Tag list button, special tags appear with an “SPCL:” prefix.

Bottom
Text for this tag is inserted at the end of the object’s event-
handling function, immediately before a return statement. Use
this tag for any “clean-up” you need to perform after the event
handler.

Control_Decl
Text for this tag is inserted in the container’s event handler,
immediately before the code that handles events for controls in
the container.

Default
Text for this tag is inserted in the default clause of the switch(tag)
statement in the event handler for a menubar.

Help
Text for this tag is placed in your application’s help-text file.
(By default, this file has a .csh extension.)

Caution: The Help tag is provided only for compatibility with existing
XVT-Design project files. You should not use it in new projects.

Is_Quit_OK
This tag lets you define an xvt_app_allow_quit function. This
function is called in three cases:

• An M_FILE_QUIT menu tag is delivered to the task menu event
handler (meaning that the user chose Quit (or Exit) from the
File menu).
7-18

Reference
• An E_CLOSE event is delivered to the application.

• An E_QUIT event is delivered to the application. If this
function returns TRUE, then the user’s application is
terminated.

Main_Code
Text for this tag is inserted in the main function of your
application, immediately before calling xvt_app_create.

Obj_Decl (object-wide declarations)
Use this tag for declarations and definitions that are common to
all of an object’s code (that is, external variables and functions).
Text for this tag is inserted at the beginning of the object’s
source code file, following the #include statements.

User_Header
Text for this tag is placed at the beginning of the header file for
your application. Use this tag to declare application-wide type
definitions, function prototypes, and so on.

User_URL
Text for this tag is inserted in your application’s URL file. The
text is placed before the resource statements for your
application’s resources.

Var_Decl (Variable declarations)
Text for this tag is inserted at the beginning of the object’s
event-handling function. Define local variables for the event
handler here. Any code associated with this tag is executed
before the event handler processes each event.

I18N_Header
This tag appears only when Internationalize is selected. Text for
this tag is inserted following User_Header. Use this tag to
include defines for locale-specific resources. See Chapter 6 of
this manual.

I18N_URL
This tag appears only when Internationalize is selected. Text for
this tag is inserted following locale-specific resource
information. See Chapter 6 of this manual.

Pre_Header
Text for this tag is inserted just before the include for xvt.h. Use
this tag to set defines that must be set before platform-specific
include files are processed.

I18N_Main
This tag appears only when Internationalize is selected. Text for
this tag is inserted following Main-Code. Use this tag for
7-19

XVT-Design Manual
internationalization-specific code. See Chapter 6 of this
manual.

7.3.2. Object/Tag Pairs

The following table describes which tags are available for each type
of user-interface object: the application itself, windows, dialogs,
controls, menubars, and menu items.

Event Tags Application Windows Dialogs Controls Menubars Menu Items

Char l l

Close l l l

Command l l

Control l

Create l l l

Destroy l l l

Focus l l

Font l l

HScroll, VScroll l

Mouse Dbl,
Mouse Down,
Mouse Move,

Mouse Up

l

Quit l

Select l

Size l l l

Timer l l l

Update l

User l l l

Special Tags Application Windows Dialogs Controls Menubars Menu Items

Bottom l l l l

Control Decl l l

Default l

Help l

Is Quit OK l

Main Code l

Obj Decl l l l l

User Header l

User URL l
7-20

Reference
Note: PreHeader is not I18N-specific. I18N Main, I18N Header, and I18N
URL are I18N-specific.

7.4. Variables and Constants in Action Code
This section describes the predefined variables and constants that
you can use within Action Code.

See Also: For more information about these variable types, see the XVT
Portability Toolkit Reference.

7.4.1. Variables

The following variables are available in Action Code for window
and dialog tags:
WINDOW xdWindow

The WINDOW variable for the module. For control object tags,
this variable is the object’s container. If you are familiar with
XVT Portability Toolkit programming, this variable is
traditionally named win in event handlers.

EVENT *xdEvent
The EVENT structure pointer for the module. You can use this
structure within Action Code to obtain more detailed
information about the event that corresponds to the Action
Code’s tag. If you are familiar with XVT Portability Toolkit
programming, this variable is traditionally named *ep in event
handlers.

XVTCM_CONTROL_INFO xdInfo
This variable has information on custom control user events.

7.4.2. Constants

The constants in the following two sections are available in Action
Code for window and dialog tags.

7.4.2.1. Dialog Constants
DLG_RES_ID

The resource ID number for the dialog.

Var Decl l l l l

Pre Header l l l l

I18N Main l

I18N Header l

I18N URL l
7-21

XVT-Design Manual
DLG_FLAGS
The DLG_FLAG_* option flags that were passed to
xvt_dlg_create_def when the dialog was created.

DLG_CLASS
The class name for the dialog. If no class name was specified,
this string is empty.

DLG_MODE
The dialog’s WIN_TYPE, which is either WD_MODAL or
WD_MODELESS.

7.4.2.2. Window Constants
WIN_RES_ID

The resource ID number for the window.
WIN_FLAGS

The WSF_* option flags that were passed to xvt_win_create_def
when the window was created.

WIN_CLASS
The class name for the window. If no class name was specified,
this string is empty.

WIN_BORDER
The window’s WIN_TYPE, which is either W_DOC, W_DBL,
W_MODAL, or W_PLAIN.
7-22

Appendix: The Image Editor
A
APPENDIX A: THE IMAGE EDITOR

The image editor is an XVT application that lets you create and
modify XVT Portability Toolkit portable image files. The image
editor has the following features:

• A variety of drawing tools for creating and modifying images

• A text tool for adding text to an image, in any installed font

• A color selector for choosing different foreground,
background, and text colors

• A pattern selector for choosing different patterns for the
drawing tools

• Several commands for manipulating some or all of the image

• A clipping region, for constraining the area affected by
drawing operations

You can use the image editor to create images for use in your XVT-
based user interfaces, and for creating preview bitmaps for your
custom controls.

A.1. Running the Image Editor
You can either invoke the image editor from within XVT-Design, or
by running it as you would any other application.

Tip: To invoke the image editor from within XVT-Design:

Choose Image Editor from the Tools menu.

Tip: To run the image editor from outside of XVT-Design:

Run the imagedit application as usual for your development
platform, e.g. by double-clicking its icon, or typing imagedit on
the command line.
A-1

XVT-Design Manual
Figure A.1.The Image Editor (Motif Platform)

A.2. Color Selector
The color selector lets you choose the foreground and background
colors for the drawing tools.

The foreground color is the color that the drawing tools use to draw
the patterns within the objects, and text. The background color is the
color that the drawing tools use to fill the spaces between the the
patterns in objects.

The current foreground and background colors are indicated by a
border around the corresponding colors in the selector.
A-2

Appendix: The Image Editor
Figure A.2.The Color Selector (Motif Platform)

Tip: To choose the foreground color:

Click the desired color in the column of colors labeled “For” in
the color selector.

Tip: To choose the background color:

Click the desired color in the column of colors labeled “Bak” in
the color selector.

Note: Choosing a foreground or background color does not affect any
existing colors in the image. Only subsequent drawing operations
are affected by choosing a new color.

A.3. Pattern Selector
The pattern selector lets you choose the pattern used to fill shapes
drawn with the drawing tools.

The patterns in the selector are always drawn in the current
foreground and background colors, to show how the patterns will
appear in the image.
A-3

XVT-Design Manual
Figure A.3.The Pattern Selector (Motif Platform)

Tip: To choose a pattern:

Click the desired pattern in the pattern selector.

Note: Choosing a pattern color does not immediately affect the image.
Only subsequent drawing operations are affected by choosing a new
pattern.

A.4. Pen Color Selector
The pen color selector lets you choose the color used to draw single
pixels and lines with the drawing tools. The pen color also is used to
draw the borders of shapes.

Figure A.4.The Pen Color Selector (Motif Platform)

You can choose either the current foreground or background color

Tip: To set the pen color:

Click the desired color in the pen color selector.
A-4

Appendix: The Image Editor
You can choose either the current foreground or background color,
or “None”. If you choose None, the drawing tools will draw shapes
without borders.

Note: Choosing a pen color does not immediately affect the image. Only
subsequent drawing operations are affected by changing pen color.

A.5. The Clipping Region
The clipping region is a user-defined rectangular region of pixels.
All drawing operations are truncated, or clipped, such that pixels
outside of the clipping region are unaffected by the operation.

By default, the clipping region is set to encompass the entire image,
so that drawing operations are not clipped (except by the boundaries
of the image). The current clipping region is indicated by a rectangle
drawn with a thin, dashed line.

Tip: To set the clipping region:

1. Click the Set Clip Region tool icon.

2. Click and hold the mouse button on the pixel where you want to
place one corner of the clipping region.

3. While holding the mouse button, drag the pointer. As you move
the pointer, a rectangle will stretch from the corner pixel,
following the pointer, indicating the size and shape of the
clipping region.

4. To finish the clipping region, release the mouse button.

Tip: To remove the clipping region:

Set the clipping region to enclose the entire image, following
the steps above
OR
Double-click the Set Clip Region button.

A.6. Drawing Tools
imagedit has a number of drawing tools for creating new images, or
modifying existing images. Each tool is described in this section.

A.6.1. Point

Draws single pixels, or a series of pixels, in the current pen color.

Tip: To draw a single pixel:
A-5

XVT-Design Manual
1. Click the Point tool icon.

2. Click the desired pixel in the image pane.

Tip: To draw a series of pixels:

1. Click the Point tool icon.

2. Click and hold the mouse button on the first desired pixel in the
image pane.

3. While holding the mouse button, drag the pointer across more
pixels. Each pixel will be colored with the current pen color.

4. Release the mouse button to stop drawing pixels.

A.6.2. Line

Draws a line between two pixels in the current pen color.

Tip: To draw a line:

1. Click the Line tool icon.

2. Click and hold the mouse button on the pixel where you want
the line to being.

3. While holding the mouse button, drag the pointer to where you
want the line to end. As you move the pointer, a thin line will
stretch from the first pixel, following the pointer, indicating
where the line will be placed.

4. Release the mouse button to draw the line.

A.6.3. Poly Line (Polyln)

Draws a series of connected line segments in the current pen color.

Tip: To draw a series of line segments:

1. Click the Polyln tool icon.

2. Click the pixel where you want the first line segment to begin.

3. Move the pointer to where you want the segment to end. As you
move the pointer, a thin line will stretch from the first pixel,
following the pointer, indicating where the line will be placed.

4. Click the pixel where you want the first line segment to end.

5. Move the pointer to where you want the next segment to end, as
in step 3.
A-6

Appendix: The Image Editor
6. Click the pixel where you want the next segment to end, as in
step 4.

7. Repeat steps 5 and 6 to draw additional segments.

8. To finish the last segment, double-click where you want the
segment to end.

A.6.4. Polygon (Polygn)

Draws a filled shape with an arbitrary number of sides, such as a
triangle or trapezoid. The edges of the shape are drawn in the current
pen color, and the shape is filled with the current pattern and
foreground/background colors.

Tip: To draw a polygon:

1. Click the Polygn tool icon.

2. Click the pixel where you want to place the first corner of the
polygon.

3. Move the pointer to where you want to place the next corner of
the polygon. As you move the pointer, a thin line will stretch
from the previous corner pixel, following the pointer, indicating
where the side of the polygon will be placed.

4. Click the pixel where you want to place the corner of the
polygon.

5. Repeat steps 3 and 4 to draw all of the sides of the polygon.

6. To finish the polygon, double-click where you want to place the
last corner.

A.6.5. Rectangle (Rect)

Draws a rectangle. The edges of the rectangle are drawn in the
current pen color, and the rectangle is filled with the current pattern
and foreground/background colors.

Tip: To draw a rectangle:

1. Click the Rect tool icon.

2. Click and hold the mouse button on the pixel where you want to
place one corner of the rectangle.

3. While holding the mouse button, drag the pointer. As you move
the pointer, a rectangle will stretch from the corner pixel,
A-7

XVT-Design Manual
following the pointer, indicating the size and shape of the
rectangle.

4. To finish the rectangle, release the mouse button.

A.6.6. Rounded Rectangle (RndRct)

Draws a rectangle with rounded corners. The edges of the rectangle
are drawn in the current pen color, and the rectangle is filled with the
current pattern and foreground/background colors.

Tip: To draw a rounded rectangle:

1. Click the RndRect tool icon.

2. Click and hold the mouse button on the pixel where you want to
place one corner of the rectangle.

3. While holding the mouse button, drag the pointer. As you move
the pointer, a rectangle will stretch from the corner pixel,
following the pointer, indicating the size and shape of the
rectangle.

4. To finish the rectangle, release the mouse button.

A.6.7. Oval

Draws an oval. The edges of the oval are drawn in the current pen
color, and the oval is filled with the current pattern and foreground/
background colors.

Tip: To draw an oval:

1. Click the Oval tool icon.

2. Click and hold the mouse button near where you want to draw
the oval. (Imagine the oval placed within a rectangle, and click
and hold the mouse on one corner of the imaginary rectangle.)

3. While holding the mouse button, drag the pointer. As you move
the pointer, an oval will stretch from the corner pixel, following
the pointer, indicating the size and shape of the oval.

4. To finish the oval, release the mouse button.

A.6.8. Arc

Draws a curved line in the current pen color. You draw the arc as a
portion of the outline of an oval.
A-8

Appendix: The Image Editor
Tip: To draw an arc:

1. Click the Arc tool icon.

2. Click and hold the mouse button near where you want to draw
an oval to define the shape of the arc. (Imagine the oval placed
within a rectangle, and click and hold the mouse on one corner
of the imaginary rectangle.)

3. While holding the mouse button, drag the pointer. As you move
the pointer, an oval will stretch from the corner pixel, following
the pointer, indicating the size and shape of the oval.

4. Release the mouse button when the oval is the proper size and
shape to form the arc.

5. Click and hold the mouse button near the point on the oval
where you want the arc to begin.

6. Drag the mouse to indicate the portion of the oval’s outline that
the arc will cover. As you drag the mouse, the outline of the oval
will change to indicate the size and shape of the arc.
As you draw the arc, you can reverse the direction of drawing
(i.e. clockwise or counter-clockwise) by pressing the space bar
on your keyboard.

7. To finish the arc, release the mouse button.

A.6.9. Pie

Draws a pie-shaped portion of an oval. The edges of the shape are
drawn in the current pen color, and the shape is filled with the
current pattern and foreground/background colors.

Tip: To draw a pie-shaped portion of an oval:

1. Click the Pie tool icon.

2. Click and hold the mouse button near where you want to draw
the oval. (Imagine the oval placed within a rectangle, and click
and hold the mouse on one corner of the imaginary rectangle.)

3. While holding the mouse button, drag the pointer. As you move
the pointer, an oval will stretch from the corner pixel, following
the pointer, indicating the size and shape of the oval.

4. Release the mouse button when the oval is the proper size and
shape.

5. Click and hold the mouse button near the point on the oval
where you want the pie to begin.
A-9

XVT-Design Manual
6. Drag the mouse to indicate the portion of the oval that the pie-
shaped portion will cover. As you drag the mouse, the outline of
the oval will change to indicate the size and shape of the
portion.
As you draw the arc, you can reverse the direction of drawing
(i.e. clockwise or counter-clockwise) by pressing the space bar
on your keyboard.

7. To finish the shape, release the mouse button.

A.6.10. Text

Draws text in the current foreground color. Before drawing the text,
you must enter the text to be drawn, and choose the font and style for
the text.

Tip: To set the text for drawing:

1. Click in the Sample Text edit field.

2. Type the desired text.

Tip: To set the font for drawing text:

1. Choose the desired font from the Font menu(s).

2. Choose the font size and style from the Style menu.

Note: The Font and Style menus vary from platform to platform. On some
platforms, they are combined on one menu.

The text in the Sample Text edit field is shown in the selected font
and style.

Tip: To draw the text:

1. Click the Text tool icon.

2. Click and hold the mouse button where you want to place the
lower-left corner of the text. A thin rectangle shows the
boundaries of where the text will be drawn.

3. Drag the mouse to position the boundary rectangle.

4. Release the mouse button to draw the text.
A-10

Appendix: The Image Editor
A.7. Menu Commands
This section describes the menu commands available in the image
editor.

A.7.1. File Menu

The File menu contains commands for opening and saving image
files, creating new image files, and leaving the application.

A.7.1.1. New

Erases the image, so that a new image can be drawn. The size of the
image is set to 32x32 pixels, and the name of the previous image is
removed from the window’s title.

A.7.1.2. Open

Opens a file dialog, so that you can open a previously saved image.
In addition to XVT’s image format, BMP, XBM, and XPM can also
be opened. Macintosh PICT files can be opened with the Macintosh
version of imagedit.

A.7.1.3. Save

Saves the image. If the image has not been previously saved, this
command has the same effect as the Save As command (see below).

A.7.1.4. Save As

Opens a file dialog, so that you can specify a name and location to
save the image. The image is stored in the XVT Portability Toolkit
portable image format so that you can read it with the xvt_image_read
function.

A.7.1.5. Quit

Closes the image editor application.

A.7.2. Edit Menu

A.7.2.1. Undo

Removes the effects of the previously executed command or
drawing operation.
A-11

XVT-Design Manual
A.7.3. Image Menu

The Image menu contains commands for manipulating the image.

A.7.3.1. Change Size

Opens a dialog which allows you to change the size (in pixels) of the
image.

Tip: To change the size of the image:

1. Choose Change Size from the Image menu. This opens the
Change Image Size dialog.

2. The current size of the image, in pixels, is shown in the Width
and Height fields of the Change Image Size dialog. Enter the
new width and/or height by editing the the size fields.

3. Click OK to enter the new sizes and dismiss the dialog
OR
Click Cancel to dismiss the dialog without changing the size of
the image.

A.7.3.2. Crop to Clip Region

Discards all pixels outside of the current clipping region, and sets the
size of the image to equal the size of the clipping region.

A.7.3.3. Clear

Sets the color of all pixels inside the clipping region to black.

A.7.3.4. Flip Horizontal

Creates a mirror image of the clipping region by flipping the region
around its vertical axis. Pixels on the right of the region are moved
to the left, and vice versa. (See illustration below.)

A.7.3.5. Flip Vertical

Flips the clipping region around its horizontal axis. Pixels on the top
of the region are moved to the bottom, and vice versa. (See
illustration below.)

A.7.3.6. Rotate

Rotates the clipping region and the pixels it encompasses 90 degrees
clockwise.
A-12

Appendix: The Image Editor
The following illustration shows the effects of the Flip Horizontal,
Flip Vertical, and Rotate commands:

Figure A.5.Flip and Rotate Commands

A.7.3.7. Shift Left

Moves the clipping region, and the pixels it contains, one pixel to the
left.

A.7.3.8. Shift Right

Moves the clipping region, and the pixels it contains, one pixel to the
right.

A.7.3.9. Shift Up

Moves the clipping region, and the pixels it contains, one pixel
towards the top of the image.

A.7.3.10. Shift Down

Moves the clipping region, and the pixels it contains, one pixel
towards the bottom of the image.

A.7.4. Options Menu

The Options menu contains commands that affect how the image is
displayed in the editor.

A.7.4.1. Show Drawing Grid

Draws a grid of thin lines in the image editing pane, indicating the
divisions between pixels.

If the grid is already shown, choosing this command removes the
grid. If the grid is currently shown, a check mark appears next to this
menu item.
A-13

XVT-Design Manual
A.7.4.2. Show Image Window

Opens a small window which displays the image in its actual size
and color. All changes you make to the image are also shown in this
window. You can move this window to any convenient location, by
clicking and dragging in the content area of the window.

If the image window is already open, choosing this command closes
the window. If the window is open, a check mark appears next to this
menu item.

A.7.5. Font and Style Menus

Sets the font, font size, and style that the Text tool uses to draw text.
The Sample Text edit field draws the text according to current font
settings.

On some systems (for example, MS-Windows) the Font and Style
menus are combined into a single Font menu.
A-14

Symbols
%’s

resolving %’s 6
A
About Box 4, 62
About box 22, 23
accelerator keys 54
Accelerator Keys dialog 55
ACE, See Action Code Editor
aceFontFamily 12
aceFontSize 12
action code 4, 8, 40

and connections 27
attaching to tags 33
variables and constants 21

Action Code Editor 3, 4, 5
context 25, 7
in tutorial 2
invoking 5
Module button 7
Object button 8
Tag button 8
text defaults 12
using controls 7, 12
window 7

Align Bottom 21, 7
Align Center 21, 7
Align Left 21, 7
Align Middle 21, 7
Align Right 21, 7
Align Top 21, 7
aligning controls 20
alignment options 20
Alt/Control/Shift 55
application names 64
applications

building 42
filenames for 41
generating 40, 2

Hello 1
names 41

appXDefaultFont 12
Arc 8
Attributes 51, 4
attributes

application 23
dialogs 17, 40
for controls 30
menu items 53
object 2, 3, 23
text edit 37
windows 12, 41

Attributes button 13
attributes dialog

Tutorial 12
Autohscroll 38
Autovscroll 38
B
background color 2
backupFileExtension 11
Begin TestMode 5
Border 39
Bottom special tag 18
building applications 42
C
C source code files 65
Cancel button 20
Cancel control 31
ccname 33
CDF file

example 37
format 35

CDF files 33
cfgLogfile 13
Change Size 12
Char event tag 17
Char Limit 39

character codesets 1
charHeight 13
charWidth 13
check marks, menu 36
Checkable 55

Tutorial 9
Checked 55

Tutorial 9
Class 40
Clear 50, 51, 3, 12
clipping region 5
Close Box 42
Close event tag 17
Close Project 1
Code

edit 4
code

action 4, 8, 40
action in XVT-Design 4
C source 65
editing with ACE 8
external source and XVT-Design 5, 34
framework 18
generating with userdata 60
program 3
user interface 3

Code Recovery 3, 68
Code Recovery check box

Project Attributes dialog 23
color selector 2
Colors

setting 26
colors

setting 28
Colors/Fonts button 42
Command special tag 17
configuration file 8

commands 9
comments 10
example 16

exploring 13
options 10

connections 5, 25, 27
and action code 27
creating, editing 9
testing 31

Connections button 13
constants

declarations 2
in action code 21

containers 11
event handlers 18

context 7
context, in ACE 4, 25
control attributes

Standard Size 30
Control Description Files 33
Control event tag 17
Control_Decl special tag 18
controls

aligning text labels 31
creating 15, 18, 19, 6
creating multiple 18
Creation Order 43
custom 32
disabled 31
invisible 31
push buttons 15
spacing 21
standard size 30

Controls menu 5
conventions

for code 3
general manual 3

Copy 39, 51, 3
Create event tag 17
Create External Object button 11
creating

controls 15, 18, 19, 6
dialogs 17, 15
menubars 2

menus 2, 5
multiple controls 18
new projects 2
string lists 57
strings 55
submenus 8
userdata 58
windows 15

Creation Order 43, 4
Crop 12
curl 1, 2
custom controls 32

without CDF Files 34
Cut 39, 51, 3
cutom controls

forming attributes 34
D
declaring variables, functions 18
default control 30
Default special tag 18
dependencies, file 68
design.cfg 9
design.cft file 5
destination directory 63
Destroy event tag 17
dialogs

attributes 17, 40
class names 40
creating 17, 15
disabling 40
making invisible 40
modal, modeless 40
standard XVT 10

directories
tutorial 43

Disabled 31, 40, 42, 55
Display Grid 22
DLG_CLASS 22
DLG_FLAGS 22
DLG_MODE 22

DLG_RES_ID 21
document

prefix 23
Document Prefix 3
Done 50
drawing tools 5
E
E_CLOSE 19
E_QUIT 19
Edit 50
Edit | Find command 13
Edit | Scan Tags command 15
Edit Menu 11
Edit menu 43, 3
editing

action code 8
connections 9
userdata 59
userdata labels 59

emulation 61
Enable Clear 39
enablePlaceWindowExact 14
enableProjectBackup 14
Even Horizontal Spacing 21, 7
Even Vertical Spacing 21, 7
EVENT *xdEvent 21
event handlers 1, 2, 37
event tags 4, 8, 16
events 16

XVT-Design 1
EVNT prefix 16
External Connections

using pfm 5
external files 68
externalTool 14
externalToolMenuItem 14

F
File Menu 11
File menu 1
filenames 64

formats 65
files

application 41
binary 1
C source 65
changing names 67
choosing to generate 66
configuration 8
configuration example 16
external 68
header 6, 66, 19
help text 66
log 13
makefiles 66, 11
project 1, 6, 10, 1, 64
resource 66
source 2, 6, 42
strdef.h 8, 10
strres.h 8, 9, 10
types of generated 65
XVT-Design 6

Flip Horizontal 12
Flip Vertical 12
Focus event tag 17
Font 17
Fonts

setting 26
fonts

radio buttons 19
setting 26

Fonts and Colors 26
foreground color 2
function prototypes 2
functions, declaring 18
G
Generate Application 41, 2
generating

code 60, 63
files 63

generating source files 42
geometry 2
graphical

user interface 1
Grid 8
Grid command 22
Grid Spacing 22
gridDisplay 10
gridNative 10
grids 22

character-based 22
default settings 10
pixel-based 22

gridSnap 10
gridX 10
gridY 10
GUI objects

attributes 2
producing with XVT-Design 1

H
header files 6, 66, 19
height, of object 24
Hello application 1
hello.dpr file 1
help

on-line 3
text files 66

Help special tag 18
Horizontal Scrollbar 43
HScroll event tag 17
I
Iconizable 43
Iconized 42
image editor 1
Image Menu 12
include files, renaming 9

Initial State 41
Initial Text 38
initialAboutBox 14
initialLayoutWindow 14
Internationalization 3
internationalization

adapting an application 1
guidelines 2
step-bystep guide 8
strscan 9
support in XVT PTK 4.5 2
support in XVT-Design 4.5 2
why and when to adapt an application 1

Internationalization check box
Project Attributes dialog 23

Invisible 31, 40, 41
Is_Quit_OK special tag 18
J
Justification 31
K
keyboard navigation

in window 45
XVT_NAV 45

L
layout

commands 20
grids 22
options 20
window, for objects 13, 16

Layout menu 20, 6
layout window, XVT-Design 12
Line 6
LOCAL_C_STR macro 4

replace string literals 8
LOCAL_C_STRING Macro 3
locale

using XVT-Design macros 9
localization 1, 7

adapting an application 1

localize your XVT application
general steps 9

log file 13
look-and-feel

implications of 17
M
M_FILE_QUIT 18
macCreatorCode 11
macFileType 11
Macintosh

configuration file 9
macros, makefile template 11
main function 19
Main_Code special tag 19
make 43
Make Same Size 22, 7
makefile

example 11
makefiles 42, 66, 67

in XVT-Design 6
templates 11

manual, conventions used in 3
Margin 39
Maximized 43
Maximized button 42
Menu 4
menu

attributes 53
commands 1

Menu Attributes dialog 51
Menu Editor 4, 48, 50
menu items 48

adding 6
adding separator bar 52
checking 55
clearing 51
creating new 52
disabling 55

menubar

new (Tutorial) 4
Menubar Editor 3, 49, 5
menubars 48

clearing 50
creating 2

menus 48
changing title 5
Controls 5
creating 2, 5
Edit 3
File 1
Font/Style 40
hierarchical 48
Layout 6
standard 3, 53
Tools 5
Window 8

messages, storing 33
migrateEventHandler 14
mnemonic characters

in GUI 45
mnemonics 54
Modal button 42
modal window

discussion 16
look-and-feel 17

modal windows 16
Modal/Modeless 40
modifier keys 55
Module, in ACE 7
modules

header and source files 6
in ACE 4, 25

Mouse_Dbl event tag 17
Mouse_Down event tag 17
Mouse_Move event tag 17
Mouse_Up event tag 17
multiple projects

using pfm 4

N
names

application file 64
project file 64

New 50, 52, 11
New Dialog 8
New Project 1
New Window 8
O
Obj_Decl special tag 19
Obj_Decl tag 36
object attributes

setting 23
Object Palette

hiding 20
showing 20

object palette 14, 18
Object, in ACE 8
object/tag pairs 20
objects 16

ACE 4, 25
adjusting user-interface 33
attributes 2, 3
producing GUI with XVT-Design 1
size, position 2
symbolic identifier 3
text edit 37
title string 2
user-defined 10

objectScaling 15
object-wide declarations 19
OK button 20
One Paragraph 38
on-line Help 3
online Help 8
Open 11
Open Project 1
Options Menu 13
Oval 8

Own Color 4
Own Color button

Project Attributes dialog 24
Own Font 3
Own Font button

Project Attributes dialog 24
P
Paste 39, 51, 3
pattern selector 3
pen color 4
pen color selector 4
pfm 1

GUI version 2
Pie 9
Place Exact button 42
Point 5
Poly Line 6
Polygn 7
Polygon 7
Polyln 6
positioning

GUI objects 2
proj1.dpr 10
project

definition 1
Project Attributes 4
project attributes 2
project files 6, 1

splitting 1
projectFileExtension 11
projects

closing 1
creating new 2, 1
default filenames 10
multiple 2
opening 1
saving 10, 16, 2
testing 61
working with multiple projects 4

pull-down menu 48
push buttons 15

cancel 31
default 30

Q
Quit 3, 11
Quit event tag 17
R
radio button

fonts 19
radio button events 48
Radio Button Groups 46
radio buttons 18
Recover Code button 3
Rect 7
Rectangle 7
rectangles 2
Rename 50
renaming include files 9
resource

files 66
IDs 24

resources 15, 55
ID numbers 8
identifier string 3
portable 1
window 28

Revery button 13
RndRct 8
Rotate 12
Rounded Rectangle 8
S
Save 11
Save As 11
Save Project 2
Save Project As 2
saving

projects 10, 16

scrollbars 43
scrolling 38
Select 17
Select All 4
Separator 52
separator bar 52
setting object attributes 23
Shift Down 13
Shift Left 13
Shift Right 13
Shift Up 13
Show Drawing Grid 13
Show Image Window 14
showObjectPalette 15
showToolbar 15
Size event tag 18
sizing

GUI objects 2
Snap To Grid 22
source files 2, 6

generating XVT-Design 42
spacing options 21
SPCL prefix 18
special tags 4, 8, 18
standard menus 3, 53
Std Menus 53
strdef.h file 8, 10
string lists 55, 56

creating 57
reordering 57

string literals
internationalization and localization 1

string resources 55
string variables 6
strings 55

creating 55
Strings Editor 5

string-substitution macro 11
strres.h file 8, 9, 10
strscan

rename include files before using 9
using 9

strscan utility 6
submenus 8, 49
switch(tag) statement 18
symbolic identifier 24, 50, 54
symbolic identifiers 3, 9
T
tabStop 15
Tag, in ACE 8
tags 16

ACE 5, 25
and action code 33
descriptions 16
event 4, 8, 16
special 4, 8, 18
XVT-Design 4

task menubar 23, 2
task window 23
task window title 3
TASK_MENUBAR 4
templates, makefile 6
testing applications, in XVT-Design 31
testing projects 61
TestMode 5, 31

leaving 62
menu 62
special considerations 62

text edit objects 37
attributes 37
borders 39
Enable Menu 39
overtyping 39
paragraphs 38
Read-only 39
scrolling 38
word wrap 38

text, defaults in ACE 12
text-editing pane 25, 8
tilde (~)

meaning of in menu 45
Timer event tag 18
Title attribute 24
titles 2

menu 5
menu items 54
radio button 19

toolbar, XVT-Design 21
Tools menu 5
translation

internationalization 1
Tutorial

hello.dpr file 1
tutorial 1
tutorial directory 43
Type button 42
U
Undo 11
UNIX

configuration file 9
makefile example 11

Up/Down 52
Update event tag 18
URL 1

XVT-Design, and 6
URL files 2, 59, 60, 63, 19
user

interface code 3
User event tag 18
User_Header special tag 19
User_URL special tag 19
Userdata 51, 4
userdata

creating 58
editing 59

generating code 60
labels 59
labels, editing 59
statements 60
strings 58

Userdata Labels 4
userMacros 11
V
Var Decl tag 4
Var_Decl special tag 19
variable declarations 19
variables

action code 21
declaring 18

variables, temporary string 37
Vertical Scrollbar 43
VScroll event tag 18
W
width, of object 24
WIN_101 13
WIN_BORDER 22
WIN_CLASS 22
WIN_FLAGS 22
WIN_RES_ID 22
window atributes 41
window attributes

Class 41
Colors/Fonts 42
Initial State 41
Maximized 42
Modal 42
Place Exact 42
Type 42

Window menu 8
WINDOW xdWindow 21
Windows

configuration file 9
windows

attributes 12, 41

creating 15
disabling 42
event handlers 17
iconizing 43
keyboard navigation 45
layout 12, 16
making invisible 41
maximizing 43
modal 16
resources 28
scrolling 43

Word Wrap 38
WYSIWYG 1
X
X, Y coordinate locations 24
XVT 5
XVT Portability Toolkit 2, 16
XVT/Win32

keyboard navigation 45
XVT_LOCALIZABLE Compile-Time Flag 5
XVT_NAV navigation object 45
xvt_vobj_destroy 16
XVTCDF 15
XVT-Design

ACE 3
events 1
external source code 5
files 6
framework code 3
generating URL 1
laying out GUI objects 1
object attributes 2
sizing and positioning objects 2
tags 4
tutorial 1

XVT-Design
installing 2
overview 1
usage 1
userdata feature 58

XVTDIR 15

XVTTPL 16

	Chapter 1: INTRODUCTION 1-1
	Chapter 2: XVT-DESIGN CONCEPTS 2-1
	Chapter 3: TUTORIAL 3-1
	Chapter 4: Using XVT-Design 4-1
	Chapter 5: Internationalizing Your Application 5-1
	Chapter 6: PROJECT FILE MANAGEMENT 6-1
	Chapter 7: REFERENCE 7-1
	1
	INTRODUCTION
	1.1. What is XVT-Design?
	1.2. Using This Manual
	1.2.1. On-line Help

	1.3. Conventions Used in This Manual

	2
	XVT-DESIGN CONCEPTS
	2.1. GUI Objects
	2.2. Portable Resources
	2.3. Events
	2.4. Event Handlers
	2.5. GUI Object Attributes
	2.5.1. Geometry
	2.5.2. Title
	2.5.3. Symbolic Identifier
	2.5.4. Other Attributes

	2.6. User Interface Code
	2.6.1. Integrated Code Editing
	2.6.2. Structural Code
	2.6.3. Tags
	2.6.4. Action Code
	2.6.5. Context

	2.7. TestMode
	2.8. Connections
	2.9. External Source Code
	1. Write functions in external files to hold any large blocks of action coder.
	2. In the Action Code Editor, place calls to the functions that you defined in external files.
	3. Then, using the External Files option from the File menu, tell XVT-Design to include the external files in the makefile.

	2.10. XVT-Design Files
	Figure 2.1. XVT-Design files

	3
	TUTORIAL
	3.1. The Hello Application
	3.2. Creating a New Project
	1. From the File menu, choose New Project.
	Figure 3.1. The Action Code Editor and a layout window (Macintosh platform)
	2. Close both windows by clicking their close boxes.

	3.3. Creating a Menubar and Menus
	Figure 3.2. The Menubar for the sample application
	3.3.1. The Menubar Editor
	1. From the Tools menu, choose Menubar Editor.
	Figure 3.3. The Menubar Editor
	3.3.1.1. Creating a New Menubar
	2. Click New
	3. Enter the name “WIN_MENUBAR” in the edit field at the top of the Menubar Editor.
	4. Click Rename.

	3.3.2. The Menu Editor
	1. In the list box, select your menubar, WIN_MENUBAR.
	2. Click Edit in the Menubar Editor to bring up the Menu Editor.
	Figure 3.4. The Menu Editor
	3.3.2.1. Creating a New Menu
	3. Select Standard Edit in the list box, and click New.

	3.3.2.2. Changing the Menu Title
	4. Click Attributes in the Menu Editor or double-click on Standard Edit in the listbox.
	5. Click in the edit control and change the title to “Choices.”
	Figure 3.5. The Menu Attributes dialog
	6. Click OK to save the title and close the attributes dialog.

	3.3.2.3. Adding Items to the Menu
	7. In the Menu Editor, click Add Menu.
	8. To create the first item, click New.
	Figure 3.6. The Menu Editor showing a new item
	9. Click Attributes to open the attributes dialog for the new item.
	10. In the title field, change the title to “From Menu.”

	Figure 3.7. Changing the menu title to “From Menu”
	11. Click OK to dismiss the attributes dialog.
	12. Create another menu item, using the same procedure you followed to create the first item.
	13. Give it the title “From Dialog…”

	3.3.2.4. Associating Help Topics with Menu Items
	3.3.2.5. Creating a Submenu
	14. In the Menu Editor’s list box, select the From Menu item.
	15. Click Add Menu to open another Menu Editor window.
	16. Add a new item, as before, by clicking New.
	Figure 3.8. Adding a submenu to the “From Menu” menu
	17. Next, click Attributes to bring up an attributes dialog box for the item.
	18. Enter “Hello” in the Title field and “M_HELLO” in the Menu ID (symbolic identifier) field.
	19. Also click Checkable and Checked so the item will be initially checked.

	Figure 3.9. Changing the menu item title to “Hello”
	20. Click OK to dismiss the attributes dialog.
	21. Create a second menu item called “Goodbye,” just as you created the Hello menu item.
	22. Set its Menu ID (symbolic identifier) string to “M_GOODBYE”.
	23. And then click Checkable.

	Figure 3.10. Changing the second menu item title to “Goodbye”
	24. Close all the Menu Editor windows by clicking Done in each of the three Menu Editor windows.
	25. In the initial Menubar Editor dialog, click Done again.

	3.4. Saving the Project
	1. Choose Save Project from the File menu.
	2. Change the default name to “hello.dpr.”
	3. Use the Save As dialog from the File menu to save the file to the directory you want.
	4. Click Save.
	Figure 3.11. Saving the “hello.dpr” project

	3.5. Creating Containers
	3.5.1. Creating the Message Window
	1. From the Tools menu, choose Action Code Editor.
	2. Select Window 101 from the Module list button
	3. Click Layout to open the window.
	4. Close the ACE window by clicking its close box.
	Figure 3.12. Layout window for Window 101
	3.5.1.1. Setting the Window’s Attributes
	5. Choose Attributes from the Edit menu to open the attributes dialog for the new window.
	Figure 3.13. Setting attributes for a new window
	6. Change it to “Message” by clicking in the Title edit control and editing the string.
	7. Change the Window ID (symbolic identifier) string from the default “WIN_101” to “WIN_MESSAGE.”
	8. Click the check boxes labeled Close Box and Sizeable.
	9. Click on Own Color check box.
	10. Click on Set Color push button.
	11. Click on Own Color radio button. A dialog will appear. See Figure 3.14. below.
	12. Click on the Select Component button.
	13. Choose Magenta from the Predefined color list.

	Figure 3.14. Setting control color components
	14. Click OK.

	3.5.1.2. Associating the Window’s Menubar
	15. Click on the list button located to the right of the label Menubar.
	16. To associate your previously created menubar with the message window, choose WIN_MENUBAR from the menubar list button.
	17. Click OK to close this attributes dialog.

	3.5.1.3. The Object Palette
	Figure 3.15. The object palette

	3.5.1.4. Adding a Push Button Control
	18. To create the button, click the push button toggle button in the object palette.
	19. Then click in the lower section of the Message window to place the button. (An alternate method is to choose Push Button from the Controls menu and click in the window.)
	20. Select the pointer toggle button from the object palette and double-click on the push button to open its attributes dialog.
	Figure 3.16. Setting attributes for a push button
	21. Change it to “Custom String...”
	22. Click OK to close the dialog.

	Figure 3.17. How the push button looks in the window

	3.5.1.5. Saving the Project
	1. Choose Save Project from the File menu.

	3.5.2. Creating the Other Choices Dialog
	3.5.2.1. Creating a New Dialog
	1. Choose New Dialog from the Window menu.

	3.5.2.2. Setting the Dialog’s Attributes
	2. Double-click in the dialog layout window to open its attributes dialog:
	Figure 3.18. Setting attributes for a dialog
	3. Change the dialog’s title to “Other Choices” and change its Dialog ID (symbolic identifier) string to “DLG_CHOICES.”
	4. Click Modal to make the Choices dialog modal.
	5. Click OK to close the attributes dialog.

	3.5.2.3. Adding Radio Buttons
	1. From the object palette on the left side of the dialog, select the desired control by its toggle button.
	2. Click in a layout window to create a control. Every time you click in the layout window, a control of this type is created.
	3. When you are done placing controls of this type, choose the pointer toggle button from the object palette.
	1. Before choosing the desired control from the Controls menu, press and hold the Shift key on your keyboard. Then choose the control.
	2. Click in a layout window to create a control. Every time you click in the layout window, a control of this type is created.
	3. When you’re done creating controls of this type, choose Pointer (or another control) from the Controls menu.
	Figure 3.19. Adding radio buttons to the dialog

	3.5.2.4. Changing the Radio Button Titles
	1. Double-click the first radio button (or choose Attributes from the Edit menu) to bring up its attributes dialog.
	2. Change its title to “Have a nice day!” and click OK to dismiss the attributes dialog.
	3. Change the titles of the remaining radio buttons to “See ya later, alligator!”, “Beam me up, Scotty!” and “Make it so!” (or whatever other messages strike your fancy).

	3.5.2.5. Change the Radio Button Fonts
	For each of the radio buttons, do the following:
	1. Double-click on the individual radio buttons to bring up the Attributes window.
	2. Click on the Own Font check box.
	3. Click on the Set Font button.
	4. Change the fonts and styles to ones of your own choosing.
	5. Click OK when you are done.
	6. Click OK to dismiss the Radio Button Attributes editor window.

	3.5.2.6. Adding Push Buttons
	1. Create a push button, and double-click it to open its attributes dialog.
	2. Change its title to “OK,” and click Default.
	3. Create a second push button, and double-click it to open its attributes dialog.
	4. Change its title to “Cancel,” and click the Cancel radio button. (You can change the font for the button at this point, too.)
	5. When you have finished setting the title of the control, click OK to quit the attributes dialog.
	Figure 3.20. How controls look in the new dialog

	3.5.2.7. Using Layout Options
	1. Select all four of the radio buttons by clicking in the upper-left corner of the window and holding the mouse button down as you drag a rectangle to enclose all four buttons.
	2. Align the left edge of the four radio buttons by using either the Align Left menu option or toggle button.
	3. While all buttons are still selected, choose the Even Vertical Spacing menu option or toggle button. You can also position the group of radio buttons and move them together within the window by clicking on any one of the radio buttons and holding ...
	4. Use the alignment functions (from the Layout menu or toolbar) to position the two push buttons in the dialog.
	5. Then, to get an accurate picture of what your dialog looks like, hide the toolbar and object palette (by selecting these items from the Layout menu).
	6. Do any final positioning of objects with the toolbar and object palette hidden.

	3.5.3. Creating an About Hello Dialog
	1. Choose New Dialog from the Window menu.
	2. Open its attributes dialog, change its title to “About Hello,” its Dialog ID (symbolic identifier) string to “DLG_ABOUT,” and click Modal. Click OK to dismiss the dialog.
	3. Next, add two static text controls and a push button to the About dialog.
	4. Change the title of the first static text control to “Hello version 1.0,” and the title of the second to “A simple application created with XVT-Design.” (Adjust the size of the control and the size of the dialog as needed so this entire st...
	5. Change the title of the push button to OK, and check its Default check box.
	Figure 3.21. An About box dialog
	6. Using the options from the Layout menu, turn off the toolbar and object palette.
	7. Do any final positioning of objects with the toolbar and object palette hidden.

	3.6. Setting Application Attributes
	1. Choose Project Attributes from the Edit menu to open the Project attributes dialog.
	2. For your Hello application, this should be TASK_MENUBAR.
	3. Click About Hello, the name of the dialog you created previously.
	4. Change it to “XVT-Design Tutorial.”
	5. Change the Document Prefix to “Hello.”
	6. The check box must remain selected to allow recovery of code after you have generated the application.
	Figure 3.22. The Project Attributes dialog
	7. Click OK to save these changes.

	3.7. Setting Connections Between Objects
	1. Close any layout windows that you have left open, and choose Action Code Editor from the Tools menu. (You can leave layout windows open if you want, but your screen may not match the following illustrations if you do so.)
	Figure 3.23. The Action Code Editor
	3.7.1. Task Menubar Connections
	2. First set the context of the Action Code Editor as follows:
	Figure 3.24. Setting the context of the ACE
	3. Click Connections ...to open the Connections dialog.
	4. Since this connection will open one of the containers you have constructed, click Create User-defined Object.
	5. Set this list button to Message, the title of the application’s window.

	Figure 3.25. The Connections dialog
	6. Click OK to dismiss the dialog.

	3.7.2. Message Window Menubar
	1. For the first connection, set the context in the Action Code Editor to:
	2. Click Connections, and set the connection in the dialog just as you did for the task window (see instructions on the previous page).
	3. For the second connection, set the context in the Action Code Editor to:
	4. Open the Connections dialog, click Create User-defined Object, and choose Other Choices from the list button.
	Figure 3.26. Connecting the “Other Choices” dialog to the Choices menu
	5. Click OK to dismiss the Connections dialog.

	3.7.3. Message Window Connections
	6. Set the context in the ACE to:
	7. Click Connections, and check Create XVT Dialog in the Connections dialog.
	8. Set the list button to “Note,” and click Dialog Strings.
	9. In the small dialog that opens, enter “Not Yet Implemented!” in the dialog’s edit control. This is the message that will be displayed when the button in the application’s window is clicked.
	10. Click OK to dismiss the string dialog, then click OK in the Connections dialog to dismiss it.

	3.7.4. Other Choices Dialog Connections
	11. Set the context to:
	12. Click Connections to open the Connections dialog.
	13. Click Close Object, then click OK to dismiss the dialog.
	Figure 3.27. Creating a “Close Object” connection
	14. Set the same connection for the Cancel button, using this context:

	3.7.5. About Hello Dialog Connection
	15. First set the context to:
	16. Then set the connection to Close Object, and click OK.

	3.8. Running TestMode
	1. Choose Begin TestMode from the Tools menu. XVT-Design hides any open layout and Action Code Editor windows, and replaces its menubar with your application’s task window menubar.
	2. Answer “Save” to the dialog box that appears in order to your project.
	3. Choose New from the File menu, and the Message window appears (as shown on the next page). Notice that it has the correct menubar—the one you named WIN_MENUBAR and associated with the Message window resource.
	Figure 3.28. Message window showing a menubar and button

	4. Try moving and resizing the window—it behaves as you would expect a GUI document window to behave.
	5. If you click Custom String, a dialog with the sample error message (“Not Yet Implemented”) appears. Recall that you didn’t have to define the dialog explicitly—you asked XVT-Design to use a pre-defined dialog, and gave it the string to dis...
	6. Try opening the Other Choices dialog, by choosing From Dialog from the Choices menu. At this stage, the radio buttons won’t do anything if you click them, but the OK and Cancel buttons do dismiss the dialog, as intended. Close the Other Choices ...
	7. Finally, choose End TestMode from the TestMode menu. XVT-Design added this menu to the application’s menubars to provide a way to leave TestMode. This menu is added only in TestMode. It will not appear in the final, compiled application. You can...

	3.9. Attaching Action Code to Tags
	3.9.1. Storing the Message
	1. Set the context of the Action Code Editor like this:
	2. and enter the following code into the ACE’s editing pane:
	3. Set the context of the ACE like this:
	4. and enter the following code:

	3.9.2. Displaying the Message
	5. Set the ACE’s context to:

	3.9.3. Changing the Message with Menu Commands
	6. Set the context like this:
	7. and enter the following code:

	3.9.4. Checking the Menu Items
	8. Set the context like this:
	9. and enter the following code:

	3.9.5. Changing the Message with the Choices Dialog
	10. Set the context like this:
	11. Enter the following code (the code previously generated by XVT-Design is shown in italics):
	12. Set the context to:
	13. And add the following code after the existing code in the edit pane:
	14. The OK button needs no additional code, but the Cancel button needs code to clear the application data string:
	15. Add this text before the existing code:

	3.9.6. Changing the Font and Style

	3.10. Generating the Application
	3.10.1. Setting the Application Name
	1. Choose Generate Application from the File menu.
	Figure 3.29. The Generated Files dialog
	2. Click Change, and a standard file save dialog appears.
	3. Navigate to the directory in which you want to place the generated code files, which might probably be the same one that contains your project file.
	4. In the Name field, enter the name of the finished application: “hello.”
	5. Click Save to dismiss the file save dialog.

	Figure 3.30. New names for the generated files
	6. Select the makefile for your compiler if it uses a makefile. Otherwise, double-click on hello.make to stop a makefile from being generated. (The asterisk next to hello.make will disappear.)

	3.10.2. Generating the Source Files
	7. When the dialog tells you that application generation was successful, click OK.

	3.11. Building and Running the Application
	8. Once you’ve compiled the application, run it and test the features constructed in this tutorial. Open several windows and set a different font and style in each. Try changing the messages, first by choosing Hello and Goodbye from the Choices men...

	3.12. XVT-Design and Beyond

	4
	Using XVT-Design
	4.1. Project Files
	4.1.1. Creating New Projects
	4.1.2. Project Attributes
	Figure 4.1. The Project Attributes dialog (Macintosh Platform)

	4.1.3. Working with Multiple Projects

	4.2. Using the Action Code Editor (ACE)
	4.2.1. Invoking the ACE
	4.2.2. ACE Code Fragment Templates
	4.2.2.1. Editing the Design.cft file
	Figure 4.2. Directory for the design.cft file

	4.2.2.2. Viewing the design.cft file
	Figure 4.3. A portion of the design.cft file

	4.2.2.3. Rules for Editing design.cft
	4.2.2.4. Resolving %s’s.

	4.2.3. ACE Controls
	Figure 4.4. Controls in the Action Code Editor (Macintosh Platform)
	4.2.3.1. The Editing Context
	4.2.3.2. The Text Editing Pane
	4.2.3.3. Creating and Editing Connections
	Figure 4.5. The Connection Dialog (Macintosh Platform)
	1. Click the Create External Object radio button.
	2. Type the symbolic identifier of the object in the edit field.
	3. Click the radio button that corresponds to the type of the external object—Modal Dialog, Modeless Dialog, Modal Window or Window.

	4.2.3.4. Using Other ACE Controls
	Figure 4.6. Action Control Editor

	4.2.3.5. Finding Text in Action Code
	4.2.3.6. Controls in the Origin Groupbox
	4.2.3.7. Controls in the Scope Groupbox
	4.2.3.8. Scanning a Project's Action Code

	4.3. Creating Windows, Dialogs, and Controls
	4.3.1. Creating Windows and Dialogs
	1. Choose New Window from the Window menu. XVT-Design opens a new layout window.
	2. Move and resize the window to suit your needs. The size and location of the layout window represent the size and location of the window resource you have created.
	1. Choose New Dialog from the Window menu. XVT-Design opens a new layout window.
	2. Move and resize the dialog to suit your needs. The size and location of the layout window represent the size and location of the dialog resource you have created.
	4.3.1.1. Modal Windows
	The purpose of a modal window is to block the users’ interaction with any other application window except the modal window itself.
	1. Create a window.
	2. Click on its Attributes button in the ACE or, in the Layout Editor, double-click in the background of the window.

	2. Click on its Attributes button in the ACE or, in the Layout Editor, double-click in the background of the window.
	Figure 4.7. Window Attributes dialog box
	3. Click on the Modal radio button.

	4.3.2. Creating Controls
	1. From the Controls menu, choose the control type. (The custom control menu item has a hierarchical menu that lists all of the installed custom controls.)
	2. Position the cursor in the upper left corner of the desired location.
	3. Either click or drag the control into the desired size. If you click to create the control, it will be of the standard size for this type of control.
	4. Click and/or drag to create additional controls of this type.
	5. To exit from this mode, choose Pointer (or another control) from the Controls menu.
	1. Click the control once to select it.
	2. Drag the small black rectangle near the lower-right corner of the control.

	4.3.3. The Object Palette
	Figure 4.8. The Object Palette
	1. Click the button of the desired control in the object palette.
	2. Position the cursor in the upper left corner of the desired location.
	3. Either click or drag the control into the desired size. If you click to create the control, it will be of the standard size for this type of control.
	1. Click the custom control button in the object palette. When you click the custom control button, a menu containing the names of all of the currently installed custom controls drops down next to the button.
	2. Click the appropriate name on the menu to choose a custom control. Once you have chosen the control from the drop-down menu, you can create one or more of these controls just as you would create standard controls.

	4.3.3.1. Hiding the Object Palette

	4.4. Layout Windows
	4.4.1. Alignment
	4.4.2. Spacing
	4.4.3. Grid
	4.4.4. The Toolbar
	4.4.4.1. Hiding the Toolbar
	1. Choose Hide Toolbar from the Layout menu.
	1. Choose Show Toolbar from the Layout menu.

	4.5. Setting Object Attributes
	1. Select the object (dialog box, window, or control).
	2. From the Edit menu, choose Attributes. -OR-
	4.5.1. Common Attributes
	1. Open the attributes dialog for any window, dialog, control, or menu item.
	2. Choose the “<Load Help File>” item from the Help Topic list button in the attributes dialog. This invokes a standard open file dialog.
	3. Open your help text source file in the open file dialog.
	4.5.1.1. Fonts and Colors
	Figure 4.9. Window Attributes Dialog (Macintosh platform)
	1. Open the Attributes window.
	2. Click on the Own Font box.
	3. The Set Font button will be activated.
	4. Click on the Set Font button.
	Figure 4.10. Set Fonts Dialog (Win32 platform)

	5. To select a portable font, click on any (or all) of the family, size or style options.
	Figure 4.11. Native Fonts Dialog (Win32 platform)

	4.5.1.2. Set Colors
	1. Open the Attributes window.
	2. Click on the Own Color box.
	3. Click on the Set Color button.
	Figure 4.12. Set Colors Dialog (Macintosh platform)

	4. Click on the component whose color you want to change.
	5. Then click on the Own Color radio button.
	6. Then click on the Predefined list box and choose the color you want.
	7. Once you have chosen the predefined color, move the scroll bars or enter numbers for the values that comprise the color.

	4.5.2. Control Attributes
	Figure 4.13. Attributes Dialog for Controls (Motif Platform)

	4.5.3. Custom Controls
	Figure 4.14. Custom Controls Dialog
	1. Select the name of the property in the list box. The current value of the property is displayed in the list edit above the list box.
	2. Type the new value for the property in the list edit OR Choose a new value from the list edit’s pull-down list. Not all properties of all custom controls have values in the pull- down list. For instance, a size attribute would be unlikely to hav...
	1. Click Undo.
	1. Click OK to save your changes and dismiss the dialog OR Click Cancel to dismiss the dialog and discard all of your changes.

	4.5.3.1. Control Description Files (CDF)
	1. The current directory.
	2. The directory containing the configuration (design.cfg) file.
	3. The directory defined by the XVTCDF attribute, if the configuration file, design.cfg, contains such a definition.
	4. The directory defined by the XVTCDF environment variable, if the environment contains such a definition.

	4.5.3.2. Example CDF

	4.5.4. Text Edit Attributes
	Figure 4.15. Attributes Dialog for Text Edit Objects (Win32 Platform)

	4.5.5. Dialog Box Attributes
	4.5.6. Window Attributes
	Figure 4.16. Attributes Dialog for Windows (Win32 Platform)
	Modal windows are windows that force the user to address an issue raised in the window before continuing.
	If the Modal radio button is clicked, the Place Exact box becomes available. The Place Exact button sets the WSF_PLACE_EXACT flag in the attribute flag of a window creation call. This function allows you to overwrite default window behavior that a pa...
	4.5.6.1. Attributes that Affect Only Document-Type Windows

	4.6. Specifying Creation Order
	1. Select a window or dialog box.
	2. From the Edit menu, choose Creation Order. A dialog box shows the control names and their current traversal order.
	Figure 4.17. The Creation Order Dialog (Windows Platform)
	1. Select the name of the control to be moved.
	2. Click the Up, Down, Top, or Bottom button to move the control to a new position.

	4.6.1. Keyboard Navigation in Windows
	Keyboard navigation is the use of keyboard input instead of mouse pointing and clicking to interact with GUI objects. Generally, native look-and-feel for keyboard navigation includes using the Tab key and Shift-Tab key (back-tab) to traverse through ...
	4.6.1.1. Add Keyboard Navigation to a Window
	To add keyboard navigation to a window,
	1. Open the window’s Attributes dialog.
	2. Click on the Keyboard Navigation button.
	Figure 4.18. Keyboard Navigation box

	4.6.2. Radio Button Groups
	4.6.2.1. Creating and Using Radio Button Groups
	Figure 4.19. Dialog with Radio Button Groups (Macintosh Platform)
	Figure 4.20. Creation Order for Radio Buttons (Macintosh Platform)

	4.6.2.2. Responding to Radio Button Events

	4.7. Using the Menu Editor
	Figure 4.21. Hierarchical Menu with Submenu (Macintosh Platform)
	4.7.1. Menubar Editor
	Figure 4.22. The Menubar Editor (Macintosh Platform)

	4.7.2. Menu Editor
	Figure 4.23. The Menubar Editor (Macintosh Platform)
	Figure 4.24. Menu Editor Showing a New Menu (Macintosh Platform)
	Figure 4.25. Dialog for Selecting Standard menus (Macintosh Platform)

	4.7.3. Menu Attributes
	Figure 4.26. The Menu Attributes Dialog (Macintosh Platform)

	4.8. String Resources
	4.8.1. Strings
	1. From the Tools menu, choose Strings Editor. The Strings dialog box appears.
	Figure 4.27. The Strings Dialog (Windows Platform)

	2. Click New String. A new string is created, whose contents are initially “New String”. The String Edit dialog box appears, in which you can change both the string and the symbolic identifier.
	3. Change the string and/or its symbolic identifier, and click OK.
	Figure 4.28. The String Edit Dialog (Windows Platform)

	4.8.2. String Lists
	1. From the Tools menu, choose Strings Editor.
	2. In the Strings dialog, click the New List button. A new string list is created, and the String List dialog appears.

	4.9. Userdata Strings
	4.9.1. Creating Userdata
	Figure 4.29. The Edit Userdata Window (Macintosh Platform)

	4.9.2. Editing Userdata
	4.9.3. Userdata Labels
	1. From the Edit menu, choose Userdata Labels. The Edit Userdata Labels dialog box appears.
	Figure 4.30. Edit Userdata Labels Dialog (Macintosh Platform)

	2. In the Edit Userdata Labels dialog, select a label in the list box.
	3. Click Edit (or double-click the label). The label appears in the edit field.
	4. Edit the label, then click Replace to change the label.

	4.9.4. Generating Code with Userdata

	4.10. TestMode
	4.10.1. Entering TestMode
	1. From the Tools menu, choose Enter TestMode.XVT-Design hides its menubar and any open windows and dialogs. The task window and its menubar are replaced with your project’s task window and menubar. A special “TestMode” menu is appended to the ...
	2. Test any menus, windows, dialogs, and controls in your project for which you have defined connections.

	4.10.2. Leaving TestMode
	1. From the TestMode menu in your application’s task window, choose End TestMode. -OR- From your application’s File menu, choose Quit or Exit. -OR- Close your application’s task window, if the native window system provides a way to do this.

	4.10.3. Special Considerations for TestMode
	4.10.3.1. About Box
	4.10.3.2. External Connections
	Figure 4.31. External Connections in TestMode (Macintosh Platform)

	4.11. Generating Source Code
	4.11.1. Setting the Destination Directory
	1. From the File menu, choose Generate Application. The Generate Application dialog appears.
	Figure 4.32. The Generate Application Dialog (Macintosh Platform)

	2. Click the Change button. A standard save-file dialog appears.
	3. Navigate to the directory in which you want XVT-Design to place your application’s source code files.
	4. Click the OK button.
	4.11.1.1. The Application Name

	4.11.2. Filenames
	4.11.3. Types of Generated Files
	4.11.3.1. C Source Code Files
	4.11.3.2. Header File
	4.11.3.3. Resource File
	4.11.3.4. Help Text File
	4.11.3.5. Makefile

	4.11.4. Choosing Files to Generate
	1. From the File menu, choose Generate Application. The list box in the dialog lists all the files that are part of your application, and whether or not they are to be generated. If an asterisk (“*”) precedes the filename, XVT-Design will generat...
	2. To turn a file’s asterisk off or on, double-click the filename.
	3. To enable generation of all of the files, choose Select All. To disable generation of all of the files, choose Select None.
	1. In the list box, click on the file’s name. The name appears in the edit control at the bottom.
	2. In the edit control, change the file’s name.
	3. Click the Rename button.

	4.11.5. Makefiles
	1. From the File menu, choose Generate Application. The Makefile Template list button lists all of the available templates.
	2. Choose the appropriate template from the list button.
	4.11.5.1. How XVT-Design Finds Makefile Templates
	4.11.5.2. External Files
	1. From the File menu, choose External Files. The External Files dialog appears.
	2. Type the names of your external files in the dialog. Place each filename on a separate line. Each file can depend on one or more other files. Dependencies are described as follows:
	Figure 4.33. Dependent External Files (Windows Platform)

	4.12. Code Recovery
	4.12.1. Edit and Recover Code
	The following example illustrates how a simple code fragment can be recovered.
	1. Assume the following ACE code fragment:
	Figure 4.34. ACE window with sample code
	2. The ACE code is framed with special comments during the code generation process:
	3. Edit the generated files using a text editor. (In this example, we have added an additional piece of code called myutils_init(). You can modify as well as add code.)
	4. When you select the Recover Code option from the File menu in the ACE, XVT-Design will recover all of the changes you have made to all the generated files:

	Figure 4.35. ACE window with modified code

	4.12.2. Important Notes About Recovering Code
	4.12.3. Special Caution When Using the Code Recovery Feature
	1. Modify your project using XVT-Design
	2. Generate code
	3. Edit tags in generated files
	4. Recover code
	5. Repeat the process

	5
	Internationalizing Your Application
	5.1. Introduction
	5.1.1. About Internationalization and Localization
	This section highlights some of the general issues involved in adapting applications for international language and locale support.
	5.1.1.1. Why and When to Adapt an Application

	5.2. Internationalization Support In XVT PTK
	5.3. Internationalization Support in XVT-Design
	5.4. The LOCAL_C_STRING Macro
	5.5. Using LOCAL_C_STR in User Code
	5.6. Other LOCAL_* Macros
	5.6.1. LOCAL_* Macro Definitions

	5.7. The XVT_LOCALIZABLE Compile-Time Flag
	5.8. The strscan Utility
	5.8.1. Using strscan
	5.8.1.1. strscan Options

	5.9. Localization
	5.10. A Step-by-Step Guide to Internationalization
	5.10.1. General Steps To Internationalize Your XVT Application
	1. In the Project Attributes dialog, select Internationalization. This selection causes SPCL:I18N_Header, SPCL:I18N_URL, and SPCL:I18N_Main tags to be created (as described below), as well as inserting special localization macros.
	2. In the SPCL:I18N_URL tag in the ACE, you now see code similar to the following:
	3. In the SPCL:I18N_Header tag in the ACE, you now see code similar to the following:
	4. Still in the ACE, replace string literals in your code with calls to the LOCAL_C_STR macro. Use the XVT-Design Find command to help you locate string literals.
	5. Using the SPCL:User_Header tag in the ACE, add the following code:
	6. Use the XVT-Design Generate Application command to generate all files.
	7. In your external files (those not generated by XVT-Design), replace string literals with calls to the LOCAL_C_STR macro.

	5.10.2. General Steps To Localize Your XVT Application
	1. Execute the strscan utility on all of your *.c and *.url files to generate the include files strres.h and strdef.h. If you have carefully followed steps 4 through 7 (on page 5-8), strres.h now contains all your locale-specific strings. View both f...
	2. Make copies of strres.h and give them names that co-workers will recognize as locale-specific resource files, such as engres.h and gerres.h. You will want to adopt a file naming convention for your different versions of strres.h. Renaming the file...
	3. Using the SPCL:I18N_URL tag in the ACE, replace the reference to strres.h with references to a file of strings translated into German (for example), gerres.h, and another file of English strings, engres.h. When the editing in your application reso...
	4. Translate the strings in the locale-specific resource files, such as gerres.h, for the locales you need to support.
	5. Consider redefining the way dates or money variables are displayed (to match local practices). Likewise, in your external files (those not generated by XVT-Design), search for all sprintfs that you wish to format for locale-specific display. For m...
	6. Compile your resources and check the translation of text and the size and position of GUI objects.
	7. Adjust the size and positions defined by creation rectangles in strres.h to accommodate the increased or decreased lengths of the translated strings.
	You do not need to re-translate your entire strres.h file when you make changes to your application. Usually it is only necessary to regenerate strres.h and strdef.h using strscan, then identify the strings that have been added or changed and add the...
	8. Modify your makefile or makefile templates to build localized versions of your resources. If you wish to build, for example, a German version, you would also define LANG_GER_W52.
	9. If your makefile did not completely finish the build, you should now complete any unfinished steps in your build process.

	5.11. Advanced Internationalized Topics

	6
	PROJECT FILE MANAGEMENT
	6.1. Using pfm at the Command-Line
	6.1.1. Splitting Project Files
	6.1.2. Merging Project Files

	6.2. Using the GUI Version of pfm
	1. Open the source and destination project files.
	2. Choose the container by clicking its name in the project window.
	3. Choose Copy from the Edit menu to copy the container, or choose Cut to move the container.
	4. Click the destination project file’s window to bring it to the front.
	5. Choose Paste from the Edit menu.
	1. Open the project file.
	2. Choose Split from the Project menu. A dialog box prompts you for the base name of the new files.
	3. Type the base name of the new files and click OK. The project files are created with sequentially numbered names. The files are named <obase>1.dpr, <obase>2.dpr, and so on, where <obase> is the base name you supplied in the previous step.
	1. When launching pfm, add the names of the project files to the command line, for example: pfm proj000.dpr proj002.dpr newdlg.dpr
	2. pfm opens and presents a dialog asking you to confirm that the files should be merged. Click the Merge button. (If you click the Open button, the files are opened normally, each in a separate window.) A new project is created, which contains the w...
	3. Choose Save As from the File menu to save the new project file.
	6.2.1. Listing the Project File Containers

	6.3. Working with Multiple Projects
	6.3.1. External Connections
	6.3.2. Name and Identifier Conflicts
	6.3.3. Merging Unrelated Projects
	1. Create unique menubar names. Rename the conflicting menubars (such as TASK_WIN) in the project files that will be merged.
	2. Create unique window IDs. Rename the conflicting windows (i.e. Win_101) in project files that will be merged.
	3. Merge projects with pfm.
	4. Use XVT-Design to modify the merged project file keeping in mind the following questions:
	5. Create connections to merged dialogs/windows.
	6. Generate code and compile.

	7
	REFERENCE
	7.1. Menu Commands
	7.1.1. File Menu
	7.1.1.1. New Project
	7.1.1.2. Open Project
	7.1.1.3. Close Project
	7.1.1.4. Save Project
	7.1.1.5. Save Project As
	7.1.1.6. Specify External Files
	7.1.1.7. Generate Application
	7.1.1.8. Recover Code
	7.1.1.9. Quit (or Exit)

	7.1.2. Edit Menu
	7.1.2.1. Cut
	7.1.2.2. Copy
	7.1.2.3. Paste
	7.1.2.4. Clear
	7.1.2.5. Find
	7.1.2.6. Find Next
	7.1.2.7. Scan Tags
	7.1.2.8. Select All
	7.1.2.9. Userdata Labels
	7.1.2.10. Project Attributes
	7.1.2.11. Attributes
	7.1.2.12. Code
	7.1.2.13. Userdata
	7.1.2.14. Menu
	7.1.2.15. Creation Order

	7.1.3. Tools Menu
	7.1.3.1. Action Code Editor
	7.1.3.2. Menubar Editor
	7.1.3.3. Strings Editor
	7.1.3.4. External Tool
	7.1.3.5. Begin TestMode

	7.1.4. Controls Menu
	1. From the Controls menu, choose the control type.
	2. Position the cursor in the upper left corner of the desired location.
	3. Either click or drag the control into the desired size. If you click to create the control, it will be of the standard size for this type of control.
	4. Click and/or drag to create additional controls of this type.
	5. To exit from this mode, choose Pointer (or another control) from the Controls menu.
	7.1.4.1. Custom

	7.1.5. Layout Menu
	7.1.5.1. Align Left
	7.1.5.2. Align Center
	7.1.5.3. Align Right
	7.1.5.4. Align Top
	7.1.5.5. Align Middle
	7.1.5.6. Align Bottom
	7.1.5.7. Even Horizontal Spacing
	7.1.5.8. Even Vertical Spacing
	7.1.5.9. Make Same Size
	7.1.5.10. Grid
	7.1.5.11. Hide Toolbar
	7.1.5.12. Hide Object Palette

	7.1.6. Window Menu
	7.1.6.1. New Window
	7.1.6.2. New Dialog

	7.1.7. Help Menu

	7.2. The Configuration File
	7.2.1. Name and Location
	7.2.1.1. Macintosh
	7.2.1.2. UNIX
	7.2.1.3. Windows

	7.2.2. Format
	7.2.2.1. Configuration File Options
	7.2.2.2. Comments

	7.2.3. Available Options
	7.2.3.1. Default Grid Settings
	7.2.3.2. Makefile Template Macros
	7.2.3.3. File Defaults
	7.2.3.4. ACE Text Defaults
	7.2.3.5. Miscellaneous Options

	7.2.4. Configuration File Example

	7.3. Objects and Tags
	7.3.1. Tag Descriptions
	7.3.1.1. Event Tags
	7.3.1.2. Special Tags

	7.3.2. Object/Tag Pairs

	Event Tags
	Application
	Windows
	Dialogs
	Controls
	Menubars
	Menu Items
	Char
	Close
	Command
	Control
	Create
	Destroy
	Focus
	Font
	HScroll, VScroll
	Mouse Dbl, Mouse Down, Mouse Move, Mouse Up
	Quit
	Select
	Size
	Timer
	Update
	User
	Special Tags
	Application
	Windows
	Dialogs
	Controls
	Menubars
	Menu Items

	Bottom
	Control Decl
	Default
	Help
	Is Quit OK
	Main Code
	Obj Decl
	User Header
	User URL
	Var Decl
	Pre Header
	I18N Main
	I18N Header
	I18N URL
	7.4. Variables and Constants in Action Code
	7.4.1. Variables
	7.4.2. Constants
	7.4.2.1. Dialog Constants
	7.4.2.2. Window Constants

	A
	APPENDIX A: THE IMAGE EDITOR
	A.1. Running the Image Editor
	Choose Image Editor from the Tools menu.
	Run the imagedit application as usual for your development platform, e.g. by double-clicking its icon, or typing imagedit on the command line.
	Figure A.1. The Image Editor (Motif Platform)

	A.2. Color Selector
	Figure A.2. The Color Selector (Motif Platform)
	Click the desired color in the column of colors labeled “For” in the color selector.
	Click the desired color in the column of colors labeled “Bak” in the color selector.

	A.3. Pattern Selector
	Figure A.3. The Pattern Selector (Motif Platform)
	Click the desired pattern in the pattern selector.

	A.4. Pen Color Selector
	Figure A.4. The Pen Color Selector (Motif Platform)
	Click the desired color in the pen color selector.

	A.5. The Clipping Region
	1. Click the Set Clip Region tool icon.
	2. Click and hold the mouse button on the pixel where you want to place one corner of the clipping region.
	3. While holding the mouse button, drag the pointer. As you move the pointer, a rectangle will stretch from the corner pixel, following the pointer, indicating the size and shape of the clipping region.
	4. To finish the clipping region, release the mouse button.
	Set the clipping region to enclose the entire image, following the steps above OR Double-click the Set Clip Region button.

	A.6. Drawing Tools
	A.6.1. Point
	1. Click the Point tool icon.
	2. Click the desired pixel in the image pane.
	1. Click the Point tool icon.
	2. Click and hold the mouse button on the first desired pixel in the image pane.
	3. While holding the mouse button, drag the pointer across more pixels. Each pixel will be colored with the current pen color.
	4. Release the mouse button to stop drawing pixels.

	A.6.2. Line
	1. Click the Line tool icon.
	2. Click and hold the mouse button on the pixel where you want the line to being.
	3. While holding the mouse button, drag the pointer to where you want the line to end. As you move the pointer, a thin line will stretch from the first pixel, following the pointer, indicating where the line will be placed.
	4. Release the mouse button to draw the line.

	A.6.3. Poly Line (Polyln)
	1. Click the Polyln tool icon.
	2. Click the pixel where you want the first line segment to begin.
	3. Move the pointer to where you want the segment to end. As you move the pointer, a thin line will stretch from the first pixel, following the pointer, indicating where the line will be placed.
	4. Click the pixel where you want the first line segment to end.
	5. Move the pointer to where you want the next segment to end, as in step 3.
	6. Click the pixel where you want the next segment to end, as in step 4.
	7. Repeat steps 5 and 6 to draw additional segments.
	8. To finish the last segment, double-click where you want the segment to end.

	A.6.4. Polygon (Polygn)
	1. Click the Polygn tool icon.
	2. Click the pixel where you want to place the first corner of the polygon.
	3. Move the pointer to where you want to place the next corner of the polygon. As you move the pointer, a thin line will stretch from the previous corner pixel, following the pointer, indicating where the side of the polygon will be placed.
	4. Click the pixel where you want to place the corner of the polygon.
	5. Repeat steps 3 and 4 to draw all of the sides of the polygon.
	6. To finish the polygon, double-click where you want to place the last corner.

	A.6.5. Rectangle (Rect)
	1. Click the Rect tool icon.
	2. Click and hold the mouse button on the pixel where you want to place one corner of the rectangle.
	3. While holding the mouse button, drag the pointer. As you move the pointer, a rectangle will stretch from the corner pixel, following the pointer, indicating the size and shape of the rectangle.
	4. To finish the rectangle, release the mouse button.

	A.6.6. Rounded Rectangle (RndRct)
	1. Click the RndRect tool icon.
	2. Click and hold the mouse button on the pixel where you want to place one corner of the rectangle.
	3. While holding the mouse button, drag the pointer. As you move the pointer, a rectangle will stretch from the corner pixel, following the pointer, indicating the size and shape of the rectangle.
	4. To finish the rectangle, release the mouse button.

	A.6.7. Oval
	1. Click the Oval tool icon.
	2. Click and hold the mouse button near where you want to draw the oval. (Imagine the oval placed within a rectangle, and click and hold the mouse on one corner of the imaginary rectangle.)
	3. While holding the mouse button, drag the pointer. As you move the pointer, an oval will stretch from the corner pixel, following the pointer, indicating the size and shape of the oval.
	4. To finish the oval, release the mouse button.

	A.6.8. Arc
	1. Click the Arc tool icon.
	2. Click and hold the mouse button near where you want to draw an oval to define the shape of the arc. (Imagine the oval placed within a rectangle, and click and hold the mouse on one corner of the imaginary rectangle.)
	3. While holding the mouse button, drag the pointer. As you move the pointer, an oval will stretch from the corner pixel, following the pointer, indicating the size and shape of the oval.
	4. Release the mouse button when the oval is the proper size and shape to form the arc.
	5. Click and hold the mouse button near the point on the oval where you want the arc to begin.
	6. Drag the mouse to indicate the portion of the oval’s outline that the arc will cover. As you drag the mouse, the outline of the oval will change to indicate the size and shape of the arc. As you draw the arc, you can reverse the direction of dra...
	7. To finish the arc, release the mouse button.

	A.6.9. Pie
	1. Click the Pie tool icon.
	2. Click and hold the mouse button near where you want to draw the oval. (Imagine the oval placed within a rectangle, and click and hold the mouse on one corner of the imaginary rectangle.)
	3. While holding the mouse button, drag the pointer. As you move the pointer, an oval will stretch from the corner pixel, following the pointer, indicating the size and shape of the oval.
	4. Release the mouse button when the oval is the proper size and shape.
	5. Click and hold the mouse button near the point on the oval where you want the pie to begin.
	6. Drag the mouse to indicate the portion of the oval that the pie- shaped portion will cover. As you drag the mouse, the outline of the oval will change to indicate the size and shape of the portion. As you draw the arc, you can reverse the directio...
	7. To finish the shape, release the mouse button.

	A.6.10. Text
	1. Click in the Sample Text edit field.
	2. Type the desired text.
	1. Choose the desired font from the Font menu(s).
	2. Choose the font size and style from the Style menu.
	1. Click the Text tool icon.
	2. Click and hold the mouse button where you want to place the lower-left corner of the text. A thin rectangle shows the boundaries of where the text will be drawn.
	3. Drag the mouse to position the boundary rectangle.
	4. Release the mouse button to draw the text.

	A.7. Menu Commands
	A.7.1. File Menu
	A.7.1.1. New
	A.7.1.2. Open
	A.7.1.3. Save
	A.7.1.4. Save As
	A.7.1.5. Quit

	A.7.2. Edit Menu
	A.7.2.1. Undo

	A.7.3. Image Menu
	A.7.3.1. Change Size
	1. Choose Change Size from the Image menu. This opens the Change Image Size dialog.
	2. The current size of the image, in pixels, is shown in the Width and Height fields of the Change Image Size dialog. Enter the new width and/or height by editing the the size fields.
	3. Click OK to enter the new sizes and dismiss the dialog OR Click Cancel to dismiss the dialog without changing the size of the image.

	A.7.3.2. Crop to Clip Region
	A.7.3.3. Clear
	A.7.3.4. Flip Horizontal
	A.7.3.5. Flip Vertical
	A.7.3.6. Rotate
	Figure A.5. Flip and Rotate Commands

	A.7.3.7. Shift Left
	A.7.3.8. Shift Right
	A.7.3.9. Shift Up
	A.7.3.10. Shift Down

	A.7.4. Options Menu
	A.7.4.1. Show Drawing Grid
	A.7.4.2. Show Image Window

	A.7.5. Font and Style Menus

	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

