

 © 2011 Providence Software, Inc. All rights reserved. Using XVT for Windows® and Mac OS

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished under license and may be used or copied
only in accordance with the terms of such license. Except as permitted by any such license, no part of this guide may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of Providence Software Incorporated. Please note that the content in
this guide is protected under copyright law even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Providence Software
Incorporated. Providence Software Incorporated assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this
guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The unauthorized incorporation of such
material into your new work could be a violation of the rights of the copyright owner. Please be sure to obtain any permission required from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any actual organization. XVT, the XVT logo, XVT DSP,
XVT DSC, and XVTnet are either registered trademarks or trademarks of Providence Software Incorporated in the United States and/or other countries.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Macintosh is a trademark of Apple Inc.
registered in the U.S. and other countries. All other trademarks are the property of their respective owners.

Table of Contents

XVT/MAC
CONTENTS
Preface .. 1-ix
About This Manual.. 1-ix

Conventions Used in This Manual 1-ix

Chapter 1: Introduction .. 1-1
1.1. Compilers Supported by XVT/Mac 1-1
1.2. XVT Implementations and Operating Systems...................... 1-2

Chapter 2: Using XVT/Mac .. 2-1
2.1. Introduction .. 2-1

2.1.1. Native Look-and-feel Development Issues................. 2-1
2.1.2. Sample Porting Restrictions — XVT/Mac 2-1

2.1.2.1. Multiple Monitors.. 1
2.1.2.2. Titlebars versus Menubars............................... 2

2.2. Extensibility ... 2-2
2.2.1. Conditional Compilation .. 2-2
2.2.2. Accessing Window Device Contexts

and Handles .. 2-3
2.2.3. Macintosh Toolbox Initialization 2-4
2.2.4. Accessing the Macintosh Toolbox File Manager 2-4

2.3. Invoking an Input Method Editor... 2-5
2.4. XVT/Mac Resource Specifics .. 2-5

2.4.1. Bundle Resources ... 2-6
2.4.2. SIZE Resources .. 2-9
2.4.3. Version Resources .. 2-11
2.4.4. Window Resources ... 2-12
2.4.5. Dialog Resources .. 2-12

2.4.5.1. Modal Dialogs ... 13
2.4.5.2. Movable Modal Dialogs................................ 15
2.4.5.3. Automatic Dialog Positioning 16
iii

XVT Platform-Specific Book for Macintosh
2.4.5.4. Color Dialogs... 17
2.4.6. Control Resources ...2-19

2.4.6.1. Control “Ground” Rules 19
2.4.6.2. Rez Definition of the CNTL Resource 20

2.4.7. Menu Resources..2-23
2.4.7.1. Creating Macintosh-specific Menus.............. 23
2.4.7.2. Menu Item Numbering 24
2.4.7.3. “Quit” Menu Item.. 24
2.4.7.4. Color Menus .. 24
2.4.7.5. Menu Accelerators... 26
2.4.7.6. Balloon Help Menu Access 26

2.4.8. Cursor Resources ..2-29
2.4.9. Control Icon Resources...2-29

2.4.10. Drawn Icons Resources...2-31
2.4.11. Finder Icon Resources...2-31
2.4.12. String Resources ...2-33

2.4.12.1. International Strings 33
2.4.12.2. String Resource IDs....................................... 34

2.5. XVT’s Encapsulated Font Model ...2-35
2.5.1. Font Terminology ...2-35
2.5.2. Native Font Descriptors ..2-35

2.5.2.1. XVT/Mac Font Descriptor Version Identifier35
2.5.2.2. XVT/Mac Font Fields.................................... 36

Chapter 3: Development Environment.. 3-1
3.1. Introduction ..3-1

3.1.1. Include Files..3-2
3.2. Metrowerks CodeWarrior C/C++

Development Environment...3-3
3.2.1. Environment Options:

Metrowerks CodeWarrior C/C++3-3
3.2.2. Link Libraries..3-5
3.2.3. For Source Customers Only:

XVT/Mac Development Environment........................3-6
3.2.3.1. Building the XVT/Mac Libraries 6
3.2.3.2. Building Utility Programs 6

3.3. Compiling Resources..3-8
3.3.1. Using the xrc Interactive Interface..............................3-8

3.3.1.1. Using Drag and Drop with xrc 9
3.3.2. Macintosh Resource Compilers3-9

3.3.2.1. Metrowerks CodeWarrior Rez Compiler 9
iv

Table of Contents
3.4. Building Your Application with the Help System 3-10
3.4.1. Portable Viewers... 3-10
3.4.2. Using the Helpc Interactive Interface 3-10

3.4.2.1. Bound Viewer.. 11
3.4.2.2. Standalone Viewer .. 12

Appendix A:
Non-portable Attributes and
Escape Codes.. A-1

A.1. Non-portable Attributes... A-1
ATTR_MAC_ALWAYS_UPDATE A-1
ATTR_MAC_BEHIND_WINDOW A-2
ATTR_MAC_CHAR_TO_TASK .. A-2
ATTR_MAC_CONTROL_HANDLE A-3
ATTR_MAC_CTL_DEFER_UPDATE A-3
ATTR_MAC_EVENT_TIME .. A-4
ATTR_MAC_FOREIGN_WIN .. A-4
ATTR_MAC_FRONT_WINDOW_FCN A-4
ATTR_MAC_HAVE_COLOR_QUICKDRAW A-5
ATTR_MAC_HILITE_MODE ... A-5
ATTR_MAC_LBOX_KEY_HOOK A-6
ATTR_MAC_LBOX_PROC_ID .. A-7
ATTR_MAC_LOW_MEMORY_THRESHOLD A-7
ATTR_MAC_MENU_HOOK .. A-8
ATTR_MAC_MOUSE_CONTROL_FOCUS A-9
ATTR_MAC_NATIVE_HTML_REFERENCE A-9
ATTR_MAC_NO_GRAY_DISABLED_EDIT A-10
ATTR_MAC_NO_GRAY_MAP_COLORS A-10
ATTR_MAC_NO_LBOX_FOCUS_BOX A-11
ATTR_MAC_NO_SELECT_WINDOW A-11
ATTR_MAC_NO_SET_CURSOR A-12
ATTR_MAC_NO_UPDATE_MENU_BAR A-12
ATTR_MAC_PAT_RES_ID .. A-13
ATTR_MAC_PAT_RES_INDEX .. A-13
ATTR_MAC_PIXMAP_GWORLD_DEPTH A-14
ATTR_MAC_PRINT_CLIPPING .. A-14
ATTR_MAC_PRINT_COPIES .. A-15
ATTR_MAC_PRINT_FIRST_PAGE A-15
ATTR_MAC_PRINT_LAST_PAGE A-16
ATTR_MAC_PROC_ID ... A-16
ATTR_MAC_ROUNDED_GROUPBOX A-17
v

XVT Platform-Specific Book for Macintosh
ATTR_MAC_SCROLL_THUMBTRACKA-17
ATTR_MAC_SET_TITLE_AUTO_SELECTA-18
ATTR_MAC_SHOW_JOB_DIALOGA-18
ATTR_MAC_STR_HELP ..A-19
ATTR_MAC_STR_STYLE_MENU1A-20
ATTR_MAC_STR_STYLE_MENU2A-20
ATTR_MAC_STR_STYLE_MENU3A-21
ATTR_MAC_SYSTEM_INITIALIZATIONA-22
ATTR_MAC_USE_COLOR_QUICKDRAWA-23
ATTR_MAC_USE_NATIVE_ORIGINA-23
ATTR_MAC_WIN_MAX_HEIGHT
ATTR_MAC_WIN_MAX_WIDTH
ATTR_MAC_WIN_MIN_HEIGHT
ATTR_MAC_WIN_MIN_WIDTH A-24
ATTR_MAC_WIN_USE_FIRST_CLICKA-24

A.2. Variations on Portable Attributes ..A-25
ATTR_EVENT_HOOK ..A-25
ATTR_HAVE_COLOR ..A-26
ATTR_HAVE_MOUSE ...A-26
ATTR_KEY_HOOK ...A-27
ATTR_NATIVE_GRAPHIC_CONTEXTA-29
ATTR_NATIVE_WINDOW ..A-30
ATTR_NUM_TIMERS ...A-30
ATTR_PRINTER_* ..A-31

A.3. Non-Portable Escape Codes ..A-31
XVT_ESC_MAC_DIALOG_POSITIONA-31
XVT_ESC_MAC_FONT_GET_RES_NAMEA-32
XVT_ESC_MAC_GET_DESKTOP_BOUNDSA-32
XVT_ESC_MAC_GET_DISPLAY_INFOA-32
XVT_ESC_MAC_GET_EDIT_HANDLEA-33
XVT_ESC_MAC_GET_LIST_HANDLEA-33
XVT_ESC_MAC_GET_PICT_ID ..A-34
XVT_ESC_MAC_MODAL_WINDOWA-34
XVT_ESC_MAC_PALET_GET_PALETTE_HANDLE A-35
XVT_ESC_MAC_PICT_READ_FROM_FILEA-35
XVT_ESC_MAC_PICTURE_COMMENTA-35
XVT_ESC_MAC_RES_GET_PICTA-36
XVT_ESC_MAC_SET_PICT_ID ..A-36
XVT_ESC_MAC_SET_WINDOW_COLORA-37

Appendix B:
vi

Table of Contents
Frequently Asked Questions..B-1

Index..I-1
vii

XVT Platform-Specific Book for Macintosh
viii

Preface
XVT/MAC
PREFACE

About This Manual
XVT takes pride in its documentation, and continually seeks to
improve it. If you find a documentation error, please contact
Customer Support. They will forward your suggestion to XVT’s
documentation team.

Conventions Used in This Manual

In this manual, the following typographic and code conventions
indicate different types of information.

General Conventions

code
This typestyle is used for code and code elements (names of
functions, data types and values, attributes, options, flags,
events, and so on). It also is used for environment variables and
commands.

code bold
This typestyle is used for elements that you see in the user
interface of applications, such as compilers and debuggers. An
arrow separates each successive level of selection that you need
to make through a series of menus, e.g., Edit=>Font=>Size.

bold
Bold type is used for filenames, directory names, and program
names (utilities, compilers, and other executables).

italics
Italics are used for emphasis and the names of documents.
ix

XVT Platform-Specific Book for Macintosh
Tip: This marks the beginning of a procedure having one or more steps.
Tips can help you quickly locate “how-to” information..

Note: An italic heading like this marks a standard kind of information:
a Note, Caution, Example, Tip, or See Also (cross-reference).

This symbol and typestyle highlight information specific to using

XVT-Design, XVT’s C visual programming tool and code generator.

This symbol and typestyle highlight information specific to using

XVT-Architect, XVT’s C++ visual programming tool

and code generator.

Code Conventions

<non-literal element> or non_literal_element
Angle brackets or italics indicate a non-literal element, for
which you would type a substitute.

[optional element]
Square brackets indicate an optional element.

...
Ellipses in data values and data types indicate that these values
and types are opaque. You should not depend upon the actual
values and data types that may be defined.

x

Introduction
1
INTRODUCTION

Welcome to XVT/Mac. This platform-specific book (PSB)
contains information about using the latest release of the XVT
Portability Toolkit (XVT/Mac) on your particular platform. If you
had an earlier version of XVT/Mac, this manual replaces the
previous platform-specific book.

Your release media will have instructions for installing XVT/Mac.
Once you have XVT/Mac installed, XVT recommends that you read
this book and try the sample programs that come with the product.

Note: Before writing your application, read the XVT Portability Toolkit
Guide. The Guide focuses on strategies for developing portable
applications.

See Also: For an alphabetical listing of all XVT functions and other API
elements, refer to the XVT Portability Toolkit Reference.
For additional information not documented in this platform-specific
book, see the readme file in the doc folder.

1.1. Compilers Supported by XVT/Mac
XVT/Mac supports one compiler, Metrowerks CodeWarrior C/C++.

See Also: Changes to compiler support may be listed in the readme file in the
doc folder.
1-1

XVT Platform-Specific Book for Macintosh
1.2. XVT Implementations and Operating Systems
The XVT library is currently available for several different window
systems and operating systems:

XVT Product: Window Systems: Operating Systems:
XVT/Mac Carbon MacOS 8.6 and above

with CarbonLib
installed, Mac OS X 10.1
and above

XVT/Win32 Win32 Windows NT, XP, Me,
Windows 95, 98, 2000

XVT/XM X and Motif UNIX
1-2

Using XVT/Mac
2
USING XVT/MAC

2.1. Introduction
This chapter addresses various platform-specific issues that you may
need to consider while using XVT/Mac. The information here
assumes you are familiar with developing Macintosh applications
from a general standpoint. If not, see Inside Macintosh for more
information.

2.1.1. Native Look-and-feel Development Issues

Developing successful cross-platform applications demands
familiarity with the look-and-feel of each target platform. This
requirement is especially true when developing for the Macintosh.
The next section outlines some sample porting restrictions for
XVT/Mac applications.

See Also: For more information on native look-and-feel differences, refer to
the other platform-specific books you may have received.

2.1.2. Sample Porting Restrictions — XVT/Mac

Applications ported to XVT/Mac need to take into account
Macintosh screen sizes and interface look-and-feel.

2.1.2.1. Multiple Monitors

XVT/Mac automatically handles multiple monitors, allowing your
end users to: 1) drag windows from one monitor to the other, and
2) resize windows so they span both monitors. If cross-platform
portability is important, your application should not make explicit
use of multiple monitor information, because XVT/Mac supports
this behavior automatically. On the other hand, if it seems necessary,
2-1

XVT Platform-Specific Book for Macintosh
and if you don’t mind sacrificing portability, your application can
access (non-portably) layout information of multiple monitors using
platform-specific escape functions.

The platform-specific escape function
XVT_ESC_MAC_GET_DISPLAY_INFO returns the bounding rectangle of
a specified monitor, and the new platform-specific escape function
XVT_ESC_MAC_GET_DESKTOP_BOUNDS returns the bounding
rectangle of the union of the monitor rectangles. For more details,
see the descriptions of these two escape functions in Appendix A.

2.1.2.2. Titlebars versus Menubars

In general, maintaining consistency in application ports is desirable.
For example, you might want to maintain the relative placement of
menubars and titlebars between platforms. However, this is not
always possible when retaining native look-and-feel. For example,
on XVT/Mac, the title of the application doesn’t hold the visually
dominant position relative to the menubar that it does on other
platforms.

2.2. Extensibility

2.2.1. Conditional Compilation

If, in your application, you need to provide some native-platform
GUI functionality not available in the XVT Portability Toolkit, then
the small percentage of your code that provides that functionality
will be non-portable. In this case, you must compile your code
conditionally, based on the compilers, the window systems, file
systems, and the operating system on which your non-portable code
will run.

The XVT Portability Toolkit automatically determines the
environment in which the application is running. The XVT header
files automatically sense the environment-specific variables that are
set implicitly by the compiler.

See Also: For more information on conditional compilation, see the “Symbols
for Conditional Compilation” section in the “About the XVT API”
chapter of the XVT Portability Toolkit Guide, and the file xvt_env.h
in your include folder.

Tip: It’s best to consolidate the non-portable code into a few separate
files so that most of your application will be portable XVT code.
Separating your non-portable code makes it easier to change your
2-2

Using XVT/Mac
program when the capability you need is added to a future version of
XVT.

Tip: To compile Macintosh-specific code conditionally:

Use the following preprocessor statements to compile window-
system-specific code:

#if XVTWS == MACWS
/* window-system-specific code goes here */
#endif

Use the following preprocessor statements to compile file
system-specific code:

#if XVT_FILESYS_MAC
/* file-system-specific code goes here */
#endif

2.2.2. Accessing Window Device Contexts
and Handles

Given an XVT WINDOW, your application can access its native
window handle (WindowRef) or graphics context (CGrafPtr). Color
QuickDraw is now supported under all systems. As a result, the
attribute ATTR_MAC_HAVE_COLOR_QUICKDRAW (to
determine if Color QuickDraw is available) is obsolete. Any
reference to non-Carbon compliant WindowPtr or CWindowPtr will
need to be changed to WindowRef. References to GrafPtr and
CGrafPtr are interchangable and should be standardized to
CGrafPtr.

Tip: To get the Macintosh WindowRef associated with an XVT
WINDOW (excluding windows of type W_PIXMAP, W_PRINT
and W_SCREEN) use logic similar to the following:

(WindowRef) xvt_vobj_get_attr(win, ATTR_NATIVE_WINDOW);

Tip: To get the Macintosh CGrafPtr associated with an XVT WINDOW
(includes only drawable windows of type W_DOC, XVT Platform-
Specific Book for Macintosh W_PLAIN, W_DBL, W_MODAL,
W_TASK if drawable, and W_NO_BORDER) use logic similar to
the following:

(CGrafPtr) xvt_vobj_get_attr(win, ATTR_NATIVE_GRAPHIC_CONTEXT);

See Also: For complete descriptions of these attributes, see Appendix A.
2-3

XVT Platform-Specific Book for Macintosh
2.2.3. Macintosh Toolbox Initialization

Using XVT-Design, you can initialize certain Macintosh Toolbox

systems by editing the tag SPCL:Main_Code in the Action Code Editor

(ACE) and setting the attribute ATTR_MAC_SYSTEM_INITIALIZATION.

XVT/Mac initializes certain Macintosh Toolbox systems with an
internal function contained in the file minit.c in the
samples:ptk:mac folder. To initialize the Macintosh Toolbox
before calling xvt_app_create, your application can create its own
initialization function and assign it to the attribute
ATTR_MAC_SYSTEM_INITIALIZATION. The function xvt_app_create
automatically calls the function assigned to the attribute
ATTR_MAC_SYSTEM_INITIALIZATION instead of its internal function.
Your application can call your initialization function directly prior
to calling xvt_app_create. However, you must ensure that you protect
your function against multiple calls. Note the use of the static
variable mac_initialized in minit.c.

If your application needs to call other Macintosh Toolbox
initialization functions, you can copy the file minit.c and create your
own function by making additions to the internal function in minit.c.
However, do not remove anything from this function, because
XVT/Mac depends on the Toolbox initialization performed in this
function.

Using XVT-Architect, you can initialize certain Macintosh Toolbox

systems by editing the application’s StartUp method before calling the

base class, CApplication::StartUp method and setting the attribute,

ATTR_MAC_SYSTEM_INITIALIZATION.

2.2.4. Accessing the Macintosh Toolbox File Manager

The FILE_SPEC record contains a field of type DIRECTORY. In
XVT/Mac this type is defined as containing the Mac volume ID and
the directory ID, as follows:

typedef struct s_dir {
short vol;
long dir;

} DIRECTORY;

This gives the application access to the native Mac volume ID and
directory ID by referencing the fields dir.vol and dir.dir in the

2-4

Using XVT/Mac
FILE_SPEC record to use with the Macintosh Toolbox File Manager
functions.

2.3. Invoking an Input Method Editor
An Input Method Editor (IME) is provided by Apple with the
operating system or language kit to allow application users to enter
multibyte or other non-ASCII characters from a keyboard that does
not support these characters. On the Mac, users may select a script
system on the keyboard layout menu. The IME appears
automatically as a window at the bottom of the screen as the user
types. The IME window may be moved, sized, and closed by the
user. In IMEs that use composed characters (for example in the
conversion from Katakana to Kanji), double clicking on the word or
pressing the space bar performs the composition of selected
characters. The IME is disabled when the user is finished entering
characters (Enter or Return key).

Character events are sent at appropriate times as determined by the
IME. If the user composes a character, a character event is sent only
after the conversion—only the composed character is sent in the
event. This means that there may be a delay between when
characters are typed and when your application receives an event.
Several characters may be typed before any character event is
received.

2.4. XVT/Mac Resource Specifics

You will probably never need to code native resources directly, since

XVT-Design and xrc handle the job automatically when you use the

XVT-Design tag SPCL:User_URL. The following information is provided

for reference only.

Generating Macintosh-specific Resources in XVT-Design

Tip: To generate platform-specific resources in XVT-Design:

1. Select the tag SPCL:User_URL in the ACE.

2. Add Mac conditionally-compiled Rez statements with an URL
#transparent statement.

2-5

XVT Platform-Specific Book for Macintosh
XVT-Design’s code generation facility adds the code fragment to
the generated URL file after url.h and after the XVT-Design-
specific URL statements.

See Also: For more information, see the “Objects and Tags” section in the
“Reference” chapter of the XVT-Design Manual.

Coding Macintosh-specific Resources

This section tells you how to code Macintosh-specific resources that
can be used with XVT. If you plan to code resources exclusively in
URL, XVT’s Universal Resource Language, you don’t need to read
this section, except as background information. Before creating any
Macintosh-specific resources, read the “Resources and URL”
chapter in the XVT Portability Toolkit Guide.

You can code all menus, dialogs, and strings in URL. Or, you can
create them directly in binary resources with a resource editing tool
such as ResEdit. Because XVT/Mac makes special use of some
native Macintosh resource types, coding resources by means other
than URL is not recommended. If you must code them in Rez, study
the output of xrc (in Rez format) for the resources in the XVT
Example Set to see how they are coded.

When defining macros that must be invoked prior to including url.h,
you may either define the macro in your source header files or on the
xrc compile line or in the options file xrc.opt.

2.4.1. Bundle Resources

Your Macintosh application should include a bundle resource that
specifies its version number, creator ID, application icon, and types
and icons for each of the files that it can process.

See Also: For more information about bundle resources, see the “Finder
Interface” chapter in the book Inside Macintosh: Macintosh Toolbox
Essentials.

When you code in URL, url.h automatically includes a default
bundle resource. If you want to code your own bundle resource, you
must define the symbol NO_STD_BUNDLE before including url.h,
then define your own bundle resource with an URL #transparent
statement.
2-6

Using XVT/Mac
Example: This example show how bundle resources are used in an application
named XVT-Sample:

#if XVTWS == MACWS
#transparent $$$

/* Signature resource */
type 'XVTD' as 'STR '; /* XVTD is signature */
resource 'XVTD' (0) { /* Creator resource

ID must be 0 */
"XVT-Sample Version M1.2R" /* Finder Info string */

};

/* File reference resource */
resource 'FREF' (128) { /* File type reference for

application icon */
'APPL', /* File type */
0, /* Local icon ID is 0 */
"" /* String must be empty */

};
/* Sample icon file type reference */

resource 'FREF' (129) {
'VTD ', /* File type */
1, /* Local icon ID is 1 */
"" /* This string should

be empty, unused */
};

/* Help icon file type reference */
resource 'FREF' (130) {

'XVTH', /* File type */
2, /* Local icon ID is 2 */
"" /* String must be empty */

};
/* Bundle resource */

resource 'BNDL' (128) {
'XVTD', /* Signature of this application */
0, /* Creator resource ID (must be 0) */
{

'ICN#', /* Local resource icon ID mapping */
{

0, 128, /* ICN# local ID 0 maps to 128 */
1, 129, /* ICN# local ID 1 maps to 129 */
2, 130 /* ICN# local ID 2 maps to 130 */

},
'FREF', /* Local resource ID file mapping*/
{ /* type references */

0, 128 /* FREF local ID 0 maps to 128 */
1, 129, /* FREF local ID 1 maps to 129 */
2, 130 /* FREF local ID 2 maps to 130 */

}
}

};
$$$
#endif

The following description of XVT-Sample illustrates the various
parts of a bundle:

• The creator is XVTD. A string resource of type XVTD, called
the signature, notes the version number. The signature is
displayed from the Finder when the “Get Info” command is
issued. The creator also appears in the first line of the BNDL
resource.

• XVT-Sample has three icons and two data-file types. The
first icon (number 128) is for the program itself. It is
2-7

XVT Platform-Specific Book for Macintosh
associated via FREF 128 with the file type APPL, which is the
type for all Macintosh applications. XVT-Sample also has an
icon and file type (VTD) for its own application-related files.

The VTD file reference type isn’t a standard type—it was
invented for XVT-Sample. Types you invent should have
only three characters for portability, because DOS-based
systems limit types to three characters. However, because the
Macintosh uses four-character file types, you must append a
space. This is necessary only when you edit Rez text files. It
is not necessary when you use xvt_fsys_set_file_attr with
XVT_FILE_ATTR_TYPESTR.

• XVT fixes the last type, XVTH, as the type for compiled help
files. XVT-Sample lists it in the BNDL so that a special icon
can exist for it. (You don’t have to list XVTH in your bundle
in order to use XVT’s online help system in your
application.)

• Not shown in the Rez input are the three icon resources
(128, 129, and 130). These were put into the resource file
with ResEdit. They could as easily have been put into their
own resource file and referenced by a Rez include statement.
This include statement would itself have to be in an URL
#transparent statement, since an URL #include statement cannot
be used to include binary resources.

You must make sure you set your application’s creator to match
what you’ve used in the bundle resource. For information on how to
set your application’s creator, please refer to the compiler’s
reference manual.

Caution: It is a common mistake to specify conflicting application
information in the Set Project Type dialog and URL-based SIZE
resource—this results in a runtime error. Make sure that correct
information is specified in both places.

If your files’ icons do not appear in the Finder, use ResEdit to verify
that they are in the application file and that the creator and type of
the application file are correct. Then use ResEdit to clear the
Desktop file, and reboot the Macintosh. When you reboot, the Finder
reconstructs the Desktop file.
2-8

Using XVT/Mac
2.4.2. SIZE Resources

If you simply need to set the partition sizes, you do not have to create
your own SIZE resource.

Tip: To set partition sizes, use the xrc compile line (or xrc.opt file)
-d option:

-d XVT_MINIMUM_MEM_SIZE = "800*1024"
-d XVT_PREFERRED_MEM_SIZE = "2048*1024"

The Macintosh SIZE resource communicates Finder attribute
information about your application to the Finder. It also specifies the
minimum and preferred partition sizes for your application:

• The minimum partition size is the actual limit below which
your application cannot run.

• The preferred partition size is the memory size at which your
application runs most effectively and the amount of memory
the operating system attempts to secure upon launching your
application. Your application must contain a SIZE resource to
be Carbon compliant.

When you code in URL, url.h automatically includes a default SIZE
resource. The default partition sizes are set to (2048 * 1024) or 2 MB
for the minimum size and (4096 * 1024) or 4 MB for the preferred
size.

Tip: To specify your own SIZE resource:

1. Define the symbol NO_STD_SIZE before including url.h.

2. Define the bundle resource with an URL #transparent statement.

Metrowerks CodeWarrior C++ determines the SIZE resource from
the settings for the project. Select “Preferences” on the Edit menu to
invoke the preferences dialog. Select Project from the scroll list.

Implementation Note: For applications developed with XVT/Mac for Power Macintosh,
the field AcceptHighLevelEvents must be set to isHighLevelEventAware. By
default, this value is set to true
for the Power Macintosh platform. A runtime error occurs if this flag
is not set properly.

The following sample code uses URL to set the minimum partition
size to 4 MB and the preferred partition size to 8 MB:

#define XVT_MINIMUM_MEM_SIZE 4*1024*1024
#define XVT_PREFERRED_MEM_SIZE 8*1024*1024
#include “url.h”
2-9

XVT Platform-Specific Book for Macintosh
Example: The following example (found in the file url_plat.h in the include
folder) shows the XVT/Mac default SIZE resource, including the
attribute value settings that XVT uses.

#ifndef NO_STD_SIZE
#transparent $$$
resource 'SIZE' (-1) { /* Default SIZE resource for XVT app */

reserved, /* Reserved */
acceptSuspendResumeEvents, /* Suspend/resume event-aware - */

/* ignoreSuspendResumeEvents, */
/* acceptSuspendResumeEvents */

reserved, /* Reserved */
canBackground, /* Can properly use background null events - */

/* cannotBackground, */
/* canBackground */

doesActivateOnFGSwitch, /* Activate/deactivate on resume/suspend - */
/* needsActivateOnFGSwitch, */
/* doesActivateOnFGSwitch */

backgroundAndForeground, /* Application does not have a user interface - */
/* backgroundAndForeground, */
/* onlyBackground */

dontGetFrontClicks, /* Get mouse down/up when suspended - */
/* dontGetFrontClicks, */
/* getFrontClicks */

ignoreAppDiedEvents, /* Apps use ignoreAppDiedEvents */
/* Debuggers use acceptAppDiedEvents - */
/* ignoreAppDiedEvents, */
/* acceptAppDiedEvents */

is32BitCompatible, /* Works with 24-bit addresses only or works */
/* with 24- or 32-bit addresses - */
/* not32BitCompatible, */
/* is32BitCompatible */

/* Next four bits are for System 7.0 */
isHighLevelEventAware, /* Posts/accepts high level events */

/* notHighLevelEventAware, */
/* isHighLevelEventAware-Use for PowerPC */

onlyLocalHLEvents, /* Local or local/remote high level events - */
/* onlyLocalHLEvents, */
/* localAndRemoteHLEvents */

notStationeryAware, /* Checks stationery bit when opening documents - */
/* notStationeryAware, */
/* isStationeryAware */

dontUseTextEditServices /* Can use text services through TextEdit - */
/* dontUseTextEditServices, */
/* useTextEditServices */

reserved, /* Reserved */
reserved, /* Reserved */
reserved, /* Reserved */

/* Memory sizes are in bytes */
#ifdef XVT_PREFERRED_MEM_SIZE

XVT_PREFERRED_MEM_SIZE,
#else

4 * 1024 * 1024, /* Preferred memory size */
#endif
2-10

Using XVT/Mac
#ifdef XVT_MINIMUM_MEM_SIZE
XVT_MINIMUM_MEM_SIZE,

#else
2 * 1024 * 1024 /* Minimum memory size */

#endif
};

$$$
#endif

See Also: For more detailed information on SIZE resources, see the “Event
Manager” chapter in Inside Macintosh: Macintosh Toolbox
Essentials.

2.4.3. Version Resources

The Macintosh version resource stores your application version
information for use by the Finder. This information is displayed
when the user selects Get Info from the File menu.The Finder also
uses the version resource to display version information if the user
opens the Views control panel and selects the Show Version box.

The vers resource stores a version number, a version message, and a
region code. The vers resource Rez template is as follows:

type 'vers' {
byte; /* Major version number */
byte; /* Minor version number */
byte; /* Development, alpha, beta, release */
byte; /* Stage of prerelease version */
integer; /* Region code, as in Script

Manager */
pstring; /* Version number string */
pstring; /* Version message string */

}

The version message does not need to contain the application name.
The application name comes from the file name in the Finder.

Example: This example defines a version resource for xrc.app:

#if XVTWS == MACWS
#transparent $$$

resource 'vers' (1, purgeable) {
0x05,
0x50,
release,
0x00,
verUS,
"5.60",
"5.60, © Providence Software Solutions, Inc. 1989-2002"

};

$$$
#endif
2-11

XVT Platform-Specific Book for Macintosh
2.4.4. Window Resources

XVT/Mac does not support the native Mac WIND resource. To create
windows from a resource, see the “Window Statement” topic in the
URL section of the online XVT Portability Toolkit Reference.

2.4.5. Dialog Resources

The following subsections describe rules you must follow when
creating dialogs for use with XVT/Mac. If you’re coding in URL,
you don’t have to follow these rules or know how to code dialogs in
Rez. Just follow the rules in the “Resources and URL” chapter in the
XVT Portability Toolkit Guide and the URL section of the online
XVT Portability Toolkit Reference.

Macintosh dialog resources are of type DLOG, and the corresponding
resource ID is the second argument of the xvt_dlg_create_res function.
The DLOG resource references a DITL resource, which lists the
controls. You can use the following controls:

check box list box push button
edit list button radio button
group box list edit scrollbar
icon picture static text

Note: XVT does not support items of type userItem in dialogs, even when
coded in native resource format.

Note: If you’re using an interactive utility such as ResEdit to create
resources, you’ll need to familiarize yourself with XVT dialog
resources, because mode controls, such as list boxes, are handled
and ordered in a special way. If in doubt, use ResEdit to examine the
resource fork you’ve created.
2-12

Using XVT/Mac
2.4.5.1. Modal Dialogs

To see how to code for a modal dialog, look at the About box
example below. Note that the resource controls only the appearance
of the box. Whether it behaves modally is determined by the first
argument (WD_MODAL or WD_MODELESS) to xvt_dlg_create_res or
xvt_dlg_create_def. Since XVT About boxes are always modal, provide
a resource that matches this behavior.

Rez Definition of the DLOG Resource

XVT/Mac stores information in certain fields in the dialog resource
record.

Example: This example shows the Rez definition of the DLOG resource:

type 'DLOG' {
rect; /* boundsRect */
integer documentProc, /* procID */

dBoxProc,
plainDBox,
altDBoxProc,
noGrowDocProc,
movableDBoxProc,
zoomDocProc = 8,
zoomNoGrow = 12,
rDocProc = 16;

byte invisible, visible; /* visible */
fill byte;
byte noGoAway, goAway; /* goAway */
fill byte;
unsigned hex longint; /* refCon */
integer; /* 'DITL' ID */
pstring; /* title */

/* The following are options for positioning windows,
usable in 7.0 */

#if SystemSevenOrLater
align word;

unsigned integer noAutoCenter = 0x0000,
centerMainScreen = 0x280a,
alertPositionMainScreen = 0x300a,
staggerMainScreen = 0x380a,
centerParentWindow = 0xa80a,
alertPositionParentWindow = 0xb00a,
staggerParentWindow = 0xb80a,
centerParentWindowScreen = 0x680a,
alertPositionParentWindowScreen = 0x700a,
staggerParentWindowScreen = 0x780a;

#endif
};
2-13

XVT Platform-Specific Book for Macintosh
DLOG Resource Definition Fields

You must set the procID field to documentProc for modeless dialogs or
dBoxProc for modal dialogs.

The refCon field of the DLOG resource passes XVT dialog flags from
URL to XVT/Mac, since no native fields support these features. The
available flags are:

MAC_FLAG_DISABLED Initially disables the dialog
MAC_FLAG_MODAL Specifies that the dialog is modal

Rez Definition of the DITL Resource

All XVT/Mac controls are defined within the DITL resource as
Control dialog item types that specify the resource ID of a CNTL
resource.

Tip: To create XVT controls:

1. Specify all dialog items as type Control.

2. Enter a CTRL resource ID in the item.

Example: This code fragment shows an extraction of the Rez definition of the
DITL resource:

type 'DITL' {
integer = $$CountOf(DITLarray)-1; /* Array size */
wide array DITLarray {

fill long;
rect; /* boundsRect */
switch {
case Control:

boolean enabled,
disabled; /* Enable flag */

key bitstring[7] = 7; /* ctrlItem and
 resCtrl */

byte = 2;
integer; /* 'CTRL' ID */

};
align word;

};
};
2-14

Using XVT/Mac
2.4.5.2. Movable Modal Dialogs

You can create Macintosh movable modal dialogs with a call to an
xvt_win_create_* function using the W_MODAL type. Alternatively, you
can create XVT modal dialogs as Macintosh movable modal dialogs
by using the attribute ATTR_MAC_PROC_ID.

See Also: For more information on how to create portable modal windows
(W_MODAL type), see the “Modal Windows” section in the
“Windows” chapter of the XVT Portability Toolkit Guide.

Tip: To create Macintosh movable modal dialogs:

1. Before creating your modal dialog, set the value of the attribute
ATTR_MAC_PROC_ID to movableDBoxProc. (This enumerated type
is defined in the Macintosh include file Windows.h.)

2. Create your dialog as a WD_MODAL type with xvt_dlg_create_*.

3. In order to avoid the creation of other windows or dialogs as
movable modal dialogs, you must reset the attribute to -1. Do
this in the E_CREATE for the dialog.

Example: This example shows how to create a movable Macintosh dialog:

long xvtmi_dm_post_fontsize(long defaultsize)
{

...
xvt_vobj_set_attr(NULL_WIN, ATTR_MAC_PROC_ID,

movableDBoxProc);
xvt_dlg_create_res(WD_MODAL, DB_FONTSIZE, EM_ALL,

xvtmi_cb_fontsize, (long)&response);
...

}

static long xvtmi_cb_fontsize(WINDOW win, EVENT *erp)
{

...
switch (erp->type) {
case E_CREATE:

xvt_vobj_set_attr(NULL_WIN,
ATTR_MAC_PROC_ID, -1);

...
}

2-15

XVT Platform-Specific Book for Macintosh
2.4.5.3. Automatic Dialog Positioning

The DLOG Rez resources that xrc produces are compatible with the
System 7 automatic dialog position flags. xrc places the following
code into the DLOG resource:

#if SystemSevenOrLater
"Dialog Title",
DIALOG_POSITION

#else
"Dialog Title"

#endif

The constant DIALOG_POSITION is defined if SystemSevenOrLater
is defined to 1. By default, XVT/Mac defines SystemSevenOrLater to be
1. If you don't want these options, define SystemSevenOrLater to 0
before including url.h in your URL file.

The DIALOG_POSITION constant must be defined to one of the
supported Rez dialog position flags:

noAutoCenter

alertPositionMainScreen

alertPositionParentWindow

alertPositionParentWindowScreen

For backward compatibility, DIALOG_POSITION is initially defined to
noAutoCenter for all application dialogs. To make use of the new
automatic positioning capability, the URL file must contain code to
undefine and redefine DIALOG_POSITION, as shown in the following
example.

Example: This example shows how to use the DIALOG_POSITION resource:

#if XVTWS == MACWS
#ifdef DIALOG_POSITION
#undef DIALOG_POSITION
#define DIALOG_POSITION alertPositionMainScreen
#endif
#endif

DIALOG DB_RESPONSE, 174, 68, 210, 169
"String Response Dialog" MODAL INVISIBLE

BUTTON DLG_OK, 137, 136, 60, 20 "OK" DEFAULT
BUTTON DLG_CANCEL, 64, 136, 60, 20 "Cancel"
TEXT 4, 13, 10, 184, 80
EDIT 5, 13, 103, 184, 16

#if XVTWS == MACWS
#ifdef DIALOG_POSITION
#undef DIALOG_POSITION
#define DIALOG_POSITION noAutoCenter
#endif
#endif
2-16

Using XVT/Mac
You need to reset the DIALOG_POSITION constant after the URL
DIALOG statement only if you have subsequent URL DIALOG
statements for which the automatic dialog position should not be
applied.

See Also: For more information on automatic dialog positioning and what
positioning flags are available, see the “Dialog Manager” chapter in
Inside Macintosh: Macintosh Toolbox Essentials.

2.4.5.4. Color Dialogs

Your application can access the dialog color resources to create non-
portable colorized dialogs.

Tip: To create non-portable colorized dialogs in resources:

Create a dctb resource for each DLOG resource of the dialogs for
which you want to provide a color table.

The dctb resource provides a color description of the dialog’s
window attributes.

Tip: To add color to the dialog controls:

Create an ictb resource for the DITM resource of the dialog for
which you want to add color controls.

You can add this information in a #transparent statement in URL
containing Rez descriptions, or you can add the resource directly to
the binary resource using ResEdit. There is no predefined type for
the ictb resource in ResEdit, so the data has to be coded in hex
format.

Note: XVT/Mac does not currently support the font and style tables that
can be part of an ictb resource.

Example: This example shows a dialog color table resource in Rez format. The
example creates a dctb resource and ictb resource for the About dialog
in a fictitious program. The code creates the resources in an URL
#transparent statement.

The About dialog has five controls. The ictb resource must have an
entry matching the DITL resource for each control. However, you do
not have to set colors for each item.

The ictb resource starts with color table length and color table offset
pairs for each item. If the color table length or offset is 0, the default
control color table is used for that item. Following the item pairs are
the actual color tables.
2-17

XVT Platform-Specific Book for Macintosh
#if XVTWS == MACWS
#transparent $$$

resource 'dctb' (DB_ABOUT, "About Dialog Color") {
{

wContentColor,
0xFFFF, 0x0000, 0xFFFF,
wFrameColor,
0xFFFF, 0xFFFF, 0xFFFF,
wTextColor,
0xCCCC, 0xFFFF, 0xFFFF,
wHiliteColor,
0xCCCC, 0x6666, 0xCCCC,
wTitleBarColor,
0xCCCC, 0x6666, 0xCCCC

}
};

data 'ictb' (DB_ABOUT, "About Item Color") {
/*offset ctb length, ctb offset */
/*0000*/ $"0040 0014" /* Item 1 */
/*0004*/ $"0040 0014" /* Item 2 */
/*0008*/ $"0040 0034" /* Item 3 */
/*000C*/ $"0040 0034" /* Item 4 */
/*0010*/ $"0040 0034" /* Item 5 */
/*0014*/ $"0000 0000 0000 0002" /* Color table 1 */
/*001C*/ $"0000 FFFF 0000 FFFF" /* Frame color */
/*0024*/ $"0001 AA00 00FF AA00" /* Body color */
/*002C*/ $"0002 0000 FFFF FFFF" /* Text color */
/*0034*/ $"0000 0000 0000 0002" /* Color table 2 */
/*003C*/ $"0000 FFFF 0000 0000" /* Frame color */
/*0044*/ $"0001 0000 FFFF 0000" /* Body color */
/*004C*/ $"0002 0000 FFFF FFFF" /* Text color */
};

$$$
#endif

See Also: For more information about color dialog resources, see the “Dialog
Manager” chapter in Inside Macintosh: Macintosh Toolbox
Essentials.

Setting Dialog or Window Color at Runtime

You can use the escape function
XVT_ESC_MAC_SET_WINDOW_COLOR to modify the color of a dialog
or window at runtime. This function lets you set the standard color
table for windows and dialogs.

When using the XVT_ESC_MAC_SET_WINDOW_COLOR escape
function, create the dialog or window as invisible and call
xvt_vobj_set_visible after calling the escape function to set the color.
This prevents the window from displaying in the default colors and
then changing them when the application calls the escape function.

The WINDOW argument can specify any XVT window or dialog, but
not a control. To set colors on controls, use the portable functions
xvt_ctl_set_colors and xvt_win_set_ctl_colors.
2-18

Using XVT/Mac
The escape function XVT_ESC_MAC_SET_WINDOW_COLOR takes
pointers to Macintosh RGBColor structures. Any of these pointers can
be NULL, in which case the corresponding default window color
value is used. You must include the Macintosh header file
QuickDraw.h to define the RGBColor structure.

Example: Here is an example of how to set a window’s color at runtime:

#if (XVTWS == MACWS)
#include "QuickDraw.h"
{
RGBColor contentColor, frameColor, textColor,

hiliteColor, titleBarColor;

contentColor.red = 0x0000;
contentColor.green = 0x0000;
contentColor.blue = 0xFFFF;
frameColor.red = 0xFFFF;
frameColor.green = 0x0000;
frameColor.blue = 0x0000;
textColor.red = 0x0000;
textColor.green = 0xFFFF;
textColor.blue = 0x0000;
hiliteColor.red = 0xFFFF;
hiliteColor.green = 0xFFFF;
hiliteColor.blue = 0x0000;
titleBarColor.red = 0xFFFF;
titleBarColor.green = 0x0000;
titleBarColor.blue = 0xFFFF;
xvt_escape(XVT_ESC_MAC_SET_WINDOW_COLOR, win,

&contentColor, &frameColor, &textColor,
&hiliteColor, &titleBarColor);

}
#endif

See Also: See the description for XVT_ESC_MAC_SET_WINDOW_COLOR in
Appendix A.

2.4.6. Control Resources

The following subsections describe rules you must follow when
creating controls for use with XVT/Mac.

2.4.6.1. Control “Ground” Rules

XVT/Mac has two important rules concerning the numbering of
controls:

• The default button must be the first control listed, and its ID
must be 1. It is often labeled OK, but it doesn’t have to be.

• The Cancel button (if you have one) must be next, so its
ID is 2.
2-19

XVT Platform-Specific Book for Macintosh
Note: For your About dialog, you can name either the OK button or the
Cancel button Help, in order to access the help system.

Since the IDs for the first two buttons will be 1 and 2, respectively,
you can use XVT’s predefined symbols DLG_OK and DLG_CANCEL in
your event handler.

Tip: The rest of the items (static text, scrollbars, etc.) can follow in any
order. Once you choose an order, use symbolic constants for the
controls and don’t change the order. If you use the same symbols in
dialog resources on other platforms, the same event handler function
can support multiple versions of the dialog.

All items are defined as type Control, rather than the actual control
type. The actual control type is stored in the CNTL resource specified
by the item. This gives XVT more flexibility in designing and
creating the controls. If XVT/Mac finds another item type in the
dialog item list, it tries to convert it to the appropriate control at load
time. All item types are supported, except userItem types.

XVT/Mac does not use the Macintosh Toolbox Dialog Manager.
Instead, all dialogs are created as windows with controls when the
resource is loaded.

In the file xvt_mctl.h, XVT/Mac defines constants for each control
definition procedure resource ID, such as xvtStaticTextProc, and
control flags, such as MAC_FLAG_NATIVE_JUST. Some of the
keywords, such as dBoxProc, visible, and NoGoAway are defined by Rez
in the file Types.r.

2.4.6.2. Rez Definition of the CNTL Resource

XVT/Mac stores information in certain fields in the control resource
record. To get special features in the XVT controls, you may need to
set these fields.

The Rez definition of the CNTL resource is:

type 'CNTL' {
rect; /* boundsRect */
integer; /* value */
byte invisible, visible; /* visible */
fill byte;
integer; /* max */
integer; /* min */
integer /* procID */
longint; /* refCon */
pstring; /* title */

};

The following sections provide details about some of the CNTL
resource fields.
2-20

Using XVT/Mac
CNTL Resource Definition Fields: procID

Tip: To create an XVT control, set the procID field of the CNTL resource
to one of the following:

pushButProc Push button control
radioButProc Radio button control
checkBoxProc Check box control
scrollBarProc Scrollbar control
xvtStaticTextProc Static text control
xvtIconProc Icon control
xvtPictProc Picture control
xvtListBoxProc List box control
xvtTextEditProc Edit control
xvtListButtonProc List button control
xvtListEditProc List edit control
xvtGroupBoxProc Group box control
xvtNotebookProc Notebook control
2-21

XVT Platform-Specific Book for Macintosh
CNTL Resource Definition Fields: value

For controls, the value field of the CNTL resource passes XVT control
flags to all XVT controls:

MAC_FLAG_DISABLED
Initially disables the control. It is available for all controls.

MAC_FLAG_CHECKED
Initially checks the radio button or check box controls.

MAC_FLAG_LEFT_JUST
MAC_FLAG_CENTER_JUST
MAC_FLAG_RIGHT_JUST

MAC_FLAG_NATIVE_JUST
Set the text or title justification for any control except
scroll, icon, or picture controls. Some controls, such as
push buttons, ignore these flags since the native control
does not support this feature.

MAC_FLAG_READONLY
Sets the selection mode for a list box control to “no
selections allowed”. (The default setting is single selection
mode.)

MAC_FLAG_MULTIPLE
Sets the selection mode for a list box control to “multiple
selections allowed”. (The default setting is single selection
mode.)

MAC_FLAG_MULTILINE
Sets an edit control to multiple lines for the Macintosh
only. Allows Return characters to be entered in the edit
control field. For compatibility with other platforms, this
control flag overrides the default, which is a single line edit
control.

MAC_FLAG_WORDWRAP
Automatically creates a new line with word wrap when the
edit control field is filled. Using MAC_FLAG_WORDWRAP
implies MAC_FLAG_MULTILINE. You do not need to set
both.
2-22

Using XVT/Mac
CNTL Resource Definition Fields: refCon

The refCon field of the CTRL resource passes the application control
ID for all XVT controls. The value must be greater than zero.

CNTL Resource Definition Fields: min and max

Different controls use the min and max fields in various ways. For
static text, list box, edit, and group box controls, the max field is a
Macintosh font number and the min field is the font size. For an icon
or picture control, the max field is the ICON or PICT resource,
respectively, to load for the control. For a scrollbar control, the min
and max fields are the initial range values. Other controls ignore
these fields.

CNTL Resource Definition Fields: title

The title field of the CTRL resource is normally used for control titles
or is ignored. For edit and list edit controls the title is the control’s
initial text for the edit field.

2.4.7. Menu Resources

The following subsections describe rules you must follow when
creating menus for use with XVT/Mac.

2.4.7.1. Creating Macintosh-specific Menus

You might want different menus on the Macintosh version of your
application than you have on other platforms. This does not limit
portability as long as the items that appear in only one version have
unique tags. Define all tags in header files and make sure the switch
statement of menu tags in your E_COMMAND event code has a case
for every tag.

Tip: You can define an item on a Macintosh menu that you don’t use on
another platform (such as Page Setup on the File menu). Define the
item normally in your Macintosh URL script. To omit the item on
other platforms, use conditional compilation in URL. At the URL
level, consecutive numbering of menu tags is unimportant.
2-23

XVT Platform-Specific Book for Macintosh
2.4.7.2. Menu Item Numbering

It’s best to use XVT-Design to create menus in URL, but if you need
to create menus in Rez or with resource editing tools, you must
follow specific rules. To maintain the user-tag-ID to Macintosh-ID
mapping, xrc creates an XVTM type resource for each MENU
resource. If this resource is not found, the menu items are numbered
consecutively starting from the menu ID. For example, the second
item on a menu with ID 600 would be 602.

However, if a menu item refers to a hierarchical menu, then the
menu item is tagged with the submenu’s ID. For example, if the
third item of menu 600 refers to menu 700, the item is tagged 700.
If the fourth item is not hierarchical, its tag is 604, effectively
skipping 603.

Note: If you use a utility such as ResEdit to modify menus interactively,
be sure you number the items and controls correctly and list them in
the correct order. If in doubt, use ResEdit to examine the resource
fork you’ve created.

2.4.7.3. “Quit” Menu Item

For a Mac OS X compliant look and feel, XVT will automatically
relocate the "Quit" menu item located under the "File" menu to the
Application menu.

2.4.7.4. Color Menus

To support color menus, XVT/Mac attempts to load the mctb
menu color table resource for each menu. This resource is not
supported in URL and must be created in Rez or with a resource
editing tool.

The application can access the menu color resources to create
non-portable colorized menus. To do this in resources, create an mctb
resource for each MENU resource of the menus for which you want
to provide a color description. You can add this information in a
#transparent statement in URL with Rez descriptions, or you can add
the resource directly to the binary resource using ResEdit.
2-24

Using XVT/Mac
Example: This example (an mctb resource defined in a URL file #transparent
statement) sets the color table for the File menu and a color table for
the New item on the File menu.

#if XVTWS == MACWS
#transparent $$$
resource 'mctb' (M_FILE, "File Menu") {

{
M_FILE, /* Set the File menu */
0, /* default for menu */
{

0xFFFF, 0x0000, 0xFFFF, /* menu title RGB color */
0xFFFF, 0xFFFF, 0xFFFF, /* menu bar RGB color */
0xCCCC, 0xFFFF, 0xFFFF, /* menu item default RGB

color */
0xCCCC, 0x6666, 0xCCCC /* menu background RGB

color */
},
M_FILE, /* Set the File menu */
1, /* Menu Item 1 - "New" */
{

0xFFFF, 0x0000, 0x0000, /* menu item mark RGB
color */

0x0000, 0xFFFF, 0x0000, /* menu item text RGB
color */

0x0000, 0xFFFF, 0xFFFF, /* menu item accelerator
RGB color */

0x0000, 0x0000, 0xFFFF /* menu item background
RGB color */

}
}

};
$$$
#endif

Note: You can also set or change menu colors at runtime using the
Macintosh Toolbox functions GetMCInfo and SetMCEntries.

See Also: For more detailed information on color menu resources, see the
“Menu Manager” chapter in Inside Macintosh: Macintosh Toolbox
Essentials.
2-25

XVT Platform-Specific Book for Macintosh
2.4.7.5. Menu Accelerators

Macintosh menu accelerators or keyboard equivalents must always
begin with the Command key. Any printable ASCII character can be
used as a menu accelerator without limiting portability.

You can use some modifier keys but not others:

Shift key
Invalid (Macintosh doesn’t differentiate between
uppercase and lowercase).

Control key
Invalid.

Command key
Valid. Specify this key using the alt keyword.

Option key
Valid. Use the non-portable character associated with an
Option key sequence. Type this character directly into the
URL accel statement. xrc compiles this character into the
native Macintosh resource.

Example: The following URL statement sets the menu accelerator for the
menu item M_BAKE_APPLE_PIE to Option-P:

#if XVTWS == MACWS
accel M_BAKE_APPLE_PIE "¼" alt

#endif

See Also: For more information, see the E_CHAR event and the accel statement
in the online XVT Portability Toolkit Reference.

2.4.7.6. Balloon Help Menu Access

Note: Support for Balloon Help has been discontinued by Apple for Mac
OS X and greater. This section is included if Balloon Help is to be
implemented in a "Classic" Carbon application

You can automatically add menu items to your application’s
Balloon Help menu by creating a menu in URL with the ID M_HELP.
On other platforms, you would add the M_HELP menu to the menubar
as a regular menu. On the Macintosh platform, however, you append
the items in the M_HELP menu to the Macintosh Balloon Help menu.

XVT/Mac provides a default M_HELP menu for use with online help.
To use the default M_HELP menu, place the item
DEFAULT_HELP_MENU in your application’s menubar resource(s). If
you do not want to use the default M_HELP menu, you must define
the NO_STD_HELP_MENU symbol before including url.h in your URL
file.
2-26

Using XVT/Mac
Put the M_HELP menu at the menubar level and do not attempt to
make it a submenu of another menu. Because the Macintosh
operating system does not support submenus on the Balloon Help
menu, you should also avoid putting submenus on the M_HELP menu
in URL.

Note: Because the help menu must have the ID M_HELP, you can have only
one help menu in the resource for all menubars. If you want different
menubars to have different items appended to the Balloon Help
menu, your application must do this through xvt_menu_get_tree and
xvt_menu_set_tree.

When xvt_menu_get_tree is called, XVT/Mac returns the items on the
Balloon Help menu as a MENU_ITEM array describing the M_HELP
menu at the end of the menubar MENU_ITEM array. If you don’t place
the M_HELP menu at the end of the menubar in URL, you can’t
depend on it having the same location when your application calls
xvt_menu_get_fetch. This is because the M_HELP menu is always added
at the end of the menubar MENU_ITEM array.

As you might expect, xvt_menu_set_tree makes any necessary
modifications to the Balloon Help menu items based on changes to
the M_HELP menu. If the user selects one of the appended items, an
E_COMMAND event is sent to the event handler for the window that
owns the current menubar. The E_COMMAND event ID that is sent is
the one assigned to the item in URL or through xvt_menu_set_tree.

Note: Don’t forget to create the Macintosh native hmnu resources for the
items you add to the Balloon Help menu.
2-27

XVT Platform-Specific Book for Macintosh
Example: This example (based on another example from Inside Macintosh:
Macintosh Toolbox Essentials) shows how to code help menu
resources in URL:

MENU M_HELP "Help"
ITEM M_HELP_SURFWRITER "SurfWriter Help"
ITEM M_HELP_WIPEOUT "WipeOut Help"

MENU TASK_MENUBAR
DEFAULT_FILE_MENU
DEFAULT_EDIT_MENU
SUBMENU M_HELP "Help"

MENUBAR TASK_MENUBAR

#if XVTWS == MACWS
#transparent $$$ literal
#include "BalloonTypes.r"
resource 'hmnu' (kHMHelpMenuID, "Help", purgeable) {
HelpMgrVersion, 0, 0, 0,
HMSkipItem {
},
{

HMStringResItem {
146, 1,
146, 2,
146, 3,
0,0
},
HMStringResItem {
146, 4,
146, 5,
146, 6,
0,0
},

}
};

resource 'STR#' (146, "My help menu items' strings") {
{
"Displays help for SurfWriter word processor.";
"Displays help for SurfWriter word processor.";
"Not available until you open a SurfWriter document.";
"Closes help for SurfWriter word processor.";
"Displays help for WipeOut typing corrector.";
"Displays help for WipeOut typing corrector.";
"Not available until you open a SurfWriter document.";
"Closes help for WipeOut typing corrector.";
}
};
$$$
#endif
2-28

Using XVT/Mac
2.4.8. Cursor Resources

You can use cursors of your own design, as long as their IDs are
greater than 10. Lower numbers are reserved for XVT’s standard
cursors. You can use your cursors’ IDs directly in calls to the
xvt_win_set_cursor function. You can load cursors directly into the
resource fork with a resource editing tool such as ResEdit, or place
them in a #transparent statement in URL. You cannot code them in
URL.

Example: Here is an example of a cursor resource coded in Rez format:

#if XVTWS == MACWS
#transparent $$$
resource 'CURS' (128) {

$"0000 0F00 0880 1080 1900 2700 2200 4200"
$"4400 8400 8800 C800 F000 E000 C000 8000",
$"0000 0000 0000 0000 0000 0000 0000 0000"
$"0000 0000 0000 0000 0000 0000 0000 0000",
{15, 0} /*Hot point*/

};
$$$
#endif

The XVT function xvt_win_set_cursor also loads color cursors from crsr
resources. Each crsr resource must be a color representation of any
CURS resource with the same ID, since
XVT/Mac always tries to load the crsr resource first.

If the crsr resource isn’t found and
ATTR_MAC_HAVE_COLOR_QUICKDRAW is TRUE,
XVT/Mac tries to load a CURS resource with the specified ID.

2.4.9. Control Icon Resources

You can place icons as controls in dialogs and windows. When you
create a dialog or window, the icon is created just as any other
control would be.

Tip: To create icons in dialog or window resources:

1. Create your icon using a resource editing tool such as ResEdit.

2. Add an ICON statement in your URL file; a sample ICON
statement is shown below:

ICON ICON_RID 200, 300, 75, 50 123

where the statement consists of:

• The keyword ICON

• The resource ID
2-29

XVT Platform-Specific Book for Macintosh
• The x, y, width, and height specifications

• The native icon resource ID

3. Do one of the following:

To your .url file, add a #transparent statement that loads the icon
from a binary resource file with the Rez include statement. For
example, to include the binary resource file icon.rsrc,
containing one or more icon resources:

#if XVTWS == MACWS
#transparent $$$
include "icon.rsrc";
$$$
#endif

-OR-

DeRez your icon and place the resulting Rez text for the icon in
a #transparent statement in your .url file. (To learn how to
decompile resources with DeRez, see your MPW Command
Reference or other compiler reference.)

You can also create icons in windows and dialogs using the function
xvt_ctl_create_def. (The function xvt_ctl_create does not support the
creation of icons.

Tip: To create an icon control using xvt_ctl_create_def:

1. Create the icon using a resource editing tool such as ResEdit.

2. Add a #transparent statement to your URL file.

3. Create a WIN_DEF structure with the type specified as WC_ICON.

4. Specify the icon_id in the v.ctl.icon_id portion of the WIN_DEF
structure. This icon_id must be the same as the ICON or cicn
resource ID. Each cicn resource must be a color representation
of any ICON resource with the same ID, since XVT/Mac always
tries to load the cicn resource first. For the URL ICON statement
described at the beginning of this section, setting the icon_id in
the WIN_DEF structure looks like this:

windef[0].v.ctl.icon_id = 123;
2-30

Using XVT/Mac
2.4.10. Drawn Icons Resources

You cannot directly define an icon in URL, but you can put a Rez
statement in a #transparent statement to define one. You can also
create the icon using a resource editing tool such as ResEdit and
include the binary resource in a #transparent statement using the Rez
include statement.

Example: This example shows how to code an icon resource in Rez format:

#if XVTWS == MACWS
#transparent $$$
resource 'ICON' (130) { /* Icon resource with ID 130 */

$"F056 8E0F 0FD7 B078 0075 6F84 0FFF F1F2"
$"07FC 7E00 F078 3FF8 0F98 3FC6 0079 20A0"
$"03D8 3CA0 0C3C 2250 001E 4A50 0021 E220"
$"1F40 9E00 00C8 6100 00A0 2098 07D4 22E0"
$"1880 2080 20B4 24F0 C0C0 408C 01A0 E100"
$"011F DE00 0209 C000 0409 C76A 0809 C54C"
$"3019 E74A 4019 556A 0021 2800 0030 9400"
$"0031 CA00 0070 AA00 0060 A200 0080 9C00"

};
$$$
#endif

You can use your icon IDs when you call xvt_dwin_draw_icon.
xvt_dwin_draw_icon also loads color icons from cicn resources. Each cicn
resource must be a color representation of any ICON resource with
the same ID, since XVT/Mac always tries to load the cicn resource
first.

If ATTR_MAC_HAVE_COLOR_QUICKDRAW is TRUE and the cicn
resource isn’t found, XVT/Mac attempts to load an ICON resource
with the specified ID.

2.4.11. Finder Icon Resources

A complete set of finder icons includes a black and white icon, an
icon mask, and 8-bit color icons and 4-bit color icons for both the
16-by-16 and 32-by-32 sizes. To provide a complete set, you need to
specify six different resources:

• ICN# for large black and white icon and mask

• ics# for small black and white icon and mask

• icl8 for large 8-bit color icons

• ics8 for small 8-bit color icons

• icl4 for large 4-bit color icons

• ics4 for small 4-bit color icons
2-31

XVT Platform-Specific Book for Macintosh
The ICN# and ics# resources also contain an icon mask that is used
with the icon family to indicate user selection.

The easiest way to create an icon family is to use ResEdit. Binary
icon resources may be included from a ResEdit-generated file by
using a Rez include statement inside a URL #transparent. Alternatively,
you may use DeRez to convert the binary icon to a text form that can
be inserted into a URL #transparent.

Example: This example shows how to code an icon list resource in Rez format:

#if XVTWS == MACWS
#transparent $$$
resource 'ICN#' (140) { /* Icon list resource - ID 140 */

{ /* The first icon */
$"F056 8E0F 0FD7 B078 0075 6F84 0FFF F1F2"
$"07FC 7E00 F078 3FF8 0F98 3FC6 0079 20A0"
$"03D8 3CA0 0C3C 2250 001E 4A50 0021 E220"
$"1F40 9E00 00C8 6100 00A0 2098 07D4 22E0"
$"1880 2080 20B4 24F0 C0C0 408C 01A0 E100"
$"011F DE00 0209 C000 0409 C76A 0809 C54C"
$"3019 E74A 4019 556A 0021 2800 0030 9400"
$"0031 CA00 0070 AA00 0060 A200 0080 9C00"
, /* 2nd icon is mask for finder bundle */
$"1FA9 71F0 F028 4F87 FF8A 907B F000 0E0D"
$"F803 81FF 0F87 C007 F067 C039 FF86 DF5F"
$"FC27 C35F F3C3 DDAF FFE1 B5AF FFDE 1DDF"
$"E0BF 61FF FF37 9EFF FF5F DF67 F82B DD1F"
$"E77F DF7F DF4B DB0F 3F3F BF73 FE5F 1EFF"
$"FEE0 21FF FDF6 3FFF FBF6 3895 F7F6 3AB3"
$"CFE6 18B5 BFE6 AA95 FFDE D7FF FFCF 6BFF"
$"FFCE 35FF FF8F 55FF FF9F 5DFF FF7F 63FF"
}

};
$$$
#endif
2-32

Using XVT/Mac
2.4.12. String Resources

You can access STR and STR# resources (portably) with the XVT
functions xvt_res_get_str and xvt_res_get_str_list, respectively.

Example: This example shows sample string and string list resources coded in
Rez format:

resource 'STR ' (210, purgeable) {
"Test string to read with xvt_res_get_str"

};

resource 'STR#' (260, purgeable) {
{

"Alabama",
"Alaska",
"Arizona",
"Arkansas",
"California",
"Colorado",

...
"West Virginia",
"Wisconsin",
"Wyoming"

}
};

When calling the function xvt_res_get_str_list, you should specify start
and end resource IDs so that your call will work on other platforms,
even though the end resource ID is not used on the Macintosh. In this
example, the start ID is the same as the ID for the STR# resource
(260) and the imaginary end ID is (260 + 50 – 1), or 309. The
xvt_res_get_str_list call looks like this:

SLIST x;
...
if ((x = xvt_res_get_str_list(260, 309)) == NULL {

... handle error ...
}

Note: You can almost always code string resources in URL.

2.4.12.1. International Strings

All XVT Portability Toolkit functions have moved internal English
strings to the resource file to facilitate localization of applications.
Each platform defines a constant for each string’s resource ID. The
default file uengasc.h in the include folder contains the
XVT/Mac string constants. Other language and character codeset
localizations can be found in the same location.
2-33

XVT Platform-Specific Book for Macintosh
2.4.12.2. String Resource IDs

During xvt_app_create, XVT/Mac locates and loads the following
string resource IDs to replace internal XVT strings (if they exist in
the resource):

MAC_STR_HELP_ID
See ATTR_MAC_STR_HELP in Appendix A.

MAC_STR_STYLEM1_ID
See ATTR_MAC_STR_STYLE_MENU1 in Appendix A.

MAC_STR_STYLEM2_ID
See ATTR_MAC_STR_STYLE_MENU2 in Appendix A.

MAC_STR_STYLEM3_ID
See ATTR_MAC_STR_STYLE_MENU3 in Appendix A.

MAC_STR_ABOUT_ID
Replaces the text “About %s...” in the item on the Apple
Menu that brings up the About Box dialog, as in “About
XVT...”. The %s format item is replaced with the
application name.

MAC_STR_CLICK_ID
Replaces the text “Click mouse to continue.” that is
displayed in an XVT Alert dialog (created by
xvt_dm_post_fatal_exit or xvt_dm_post_message).

MAC_STR_SELECT_ID
Replaces the text "Select \322%s\323" that is displayed by
the Open File Dialog when selecting directories. The %s
format represents the current directory name selected.

MAC_STR_FIXED_FONT_ID
Allows the application to define the font name specified by
the font define XVT_FFN_FIXED. The internal default font
used is “monaco”.

MAC_STR_LOW_MEM_WARNING_ID
Replaces the text “There is very little memory available.
Please increase the preferred memory size in the
application’s Get Info window.” displayed when
the XVT application is low on available memory.

MAC_STR_NOTIFICATION_ID
Replaces the text “The application \322%s\323 needs your
attention.\n\n” displayed by the Mac Notification Manager
when the application needs attention. The %s format item
is replaced with the application name.
2-34

Using XVT/Mac
2.5. XVT’s Encapsulated Font Model

2.5.1. Font Terminology

This section uses the following XVT-defined terms to describe
XVT’s encapsulated font model:

Physical font
A particular implementation of a font as installed on the window
system on which an application is running.

Logical font
A description of a desired physical font, to a degree of
specificity ranging from just a typeface family name or size to
a complete description that specifies a particular physical font.
A logical font has both portable and non-portable attributes. It
is identified by an object of type XVT_FNTID.

2.5.2. Native Font Descriptors

To specify a particular physical font, your application can use a
native font descriptor, which is a string of data fields. You can
include this string as a parameter to xvt_font_set_native_desc, or in URL
as part of a FONT or FONT_MAP statement.

The native font descriptor string contains the following fields:

• The native window system and version of the XVT
encapsulated font model (the current version is “01”).

• Platform-specific fields that the XVT Portability Toolkit
decodes and uses to uniquely specify a native font. The fields
describe specific attributes of a native font. Each field is
separated by a slash, “/”.

The native font descriptor string, then, has this format:

"<system and version>/<field1>/<field2>/<field3>/
...<fieldn>"

See Also: For more information about specifying fonts, see the “Fonts and
Text” chapter in the XVT Portability Toolkit Guide.

2.5.2.1. XVT/Mac Font Descriptor Version Identifier

For XVT/Mac, the font descriptor version identifier format is
MAC<vers>. In this release of XVT/Mac, the font descriptor version
number is “01,” so the font descriptor version identifier is MAC01.
2-35

XVT Platform-Specific Book for Macintosh
2.5.2.2. XVT/Mac Font Fields

On the Macintosh, four attributes specify a font: family, face
(style), size, and mode. The mode attribute is already addressed by
the DRAW_CTOOLS mode member. Consequently, the native font
descriptor string contains just the family, face, and size. For
XVT/Mac, the string should look like this:

"MAC01/<family>/<face>/<size>"

For <face>, you can use plain, or any of the following valid values, in
any order separated by “-”:

bold
italic
underline
outline
shadow
condense or extend (but not both)

Example: This string shows a valid XVT/Mac native font descriptor string:

"MAC01/times/bold-italic/*"

Note: An asterisk (*) in a native font descriptor string indicates a wildcard
condition in which any value is acceptable for that particular field.
2-36

Development Environment
3
DEVELOPMENT ENVIRONMENT

3.1. Introduction
This chapter gives detailed information on building XVT/Mac
applications. The Macintosh development environment supports
one compiler: Metrowerks CodeWarrior C/C++.

XVT-Design and XVT-Architect generated IDE project files

automatically include the appropriate options for the compiler. For

up-to-date information regarding compiler settings and libraries, see

the Readme file in the doc folder.

Your compiled application consists of one linked application file
containing two forks:

Data Fork
Contains executable image for PowerPC-based applications.

Resource Fork
Contains the executable image and other resources, including
descriptions of your windows, dialogs, controls, menubars, and
strings.

Each development environment requires that resources be compiled
for the resource fork. At runtime, you simply run the linked
application.

See Also: Resource compilers are discussed in detail in section 3.3.

3-1

XVT Platform-Specific Book for Macintosh
3.1.1. Include Files

XVT-Design and XVT-Architect generate code that automatically includes all necessary

header files.

To build XVT applications, you must include the XVT-specific header file, xvt.h in
addition to any other application-specific header files.

xvt.h automatically includes several standard header files. You do not have to include the
following header files explicitly in your application, although doing so is harmless:

ctype.h stdio.h
fcntl.h stdlib.h
stdarg.h string.h
stddef.h time.h
Types.h unix.h

Most of these header files are ANSI C files and are fully portable. However, the code you
write using information in these files may be non-portable because of variations in the
ANSI C implementations. If so, you need to conditionally compile around that code.

Do not assume Macintosh header files have been included. You should explicitly include
the Macintosh header files you need before you include xvt.h.

The Metrowerks CodeWarrior C/C++ compiler requires the following libraries and files:

• The XVT API library

• The Metroworks Standard Libraries (MSL)

• The Mac Toolbox library

• Your application object files

XVT also requires either the XVT text edit libraries or the XVT text edit dummy library.
Additionally, if you want to use hypertext online help with your application, you must use
either the bound XVT help viewer library or the standalone XVT help viewer library.

See Also: For up-to-date information on library names, see the Readme file in the doc folder. For
more information on the required libraries, see section 3.2.2 (Metrowerks CodeWarrior C/
C++).

3-2

Development Environment
3.2. Metrowerks CodeWarrior C/C++
Development Environment

The following subsections contain detailed information on building
XVT/Mac applications in Metrowerks CodeWarrior C/C++ on both PowerPC platforms.

3.2.1. Environment Options:
Metrowerks CodeWarrior C/C++

Note: Although this information is correct at publishing time, for the most up-to-date
information, see the Readme file in the doc folder.

When using XVT with the Metrowerks CodeWarrior C/C++ compiler, you must set several
project settings, as shown below.

Note: Settings labeled recommended are not required, but XVT recommends that you use them.

Tip: To set project settings:

1. Select Edit=>ProjectName Settings—then select the Target:Access Paths item from the
preference dialog. Add the XVT include and lib folders to the user search path.

2. Select the Target:PPC Target or Target:68K Target item. Set the SIZE Flags value as
indicated in the table below. Set your application name and desired heap sizes as well.

3. Select the Language Settings: C/C++ Language item. Set the Language Info values as
indicated in the table below.

Group: Option: Value:
‘SIZE Flags’ acceptSuspend

ResumeEvents
On (required)

‘SIZE Flags’ canBackground On (recommended)
‘SIZE Flags’ doesActivateOn

FGSwitch
On (recommended)

‘SIZE Flags’ is32BitCompatible On (recommended)
‘SIZE Flags’ isHighLevelEvent

Aware
On (required)

‘SIZE Flags’ localAndRemoteHL
Events

On (required)
3-3

XVT Platform-Specific Book for Macintosh
4. Select the Code Generation:PPC Processor Processor item. Set the Code Model value, Struct
Alignment value, and Info values as indicated in the table below.

5. Select the Linker:PPC Linker item. Set the Link Options/Info as indicated in the table
below.

Note: If an option is not noted as required in the above tables, you may set it as desired for your
application.

Compiler Optimization Flag

XVT provides a compiler optimization flag, XVT_OPT, for runtime optimization of the PTK.
This flag is described further in the XVT Portability Toolkit Guide. To use the flag with the
Metrowerks CodeWarrior C/C++ compiler, you must setup and use the prefix file for the
compiler:

1. To create a prefix file, edit a new file. Enter the following text in the file to define
XVT_OPT:

#define XVT_OPT 1

2. Save the file and name it as you like, “XVT Prefix” for example.

3. Select Edit=>ProjectName Settings...—then select the Language Settings:C/C++ Language item
from the preference dialog. Enter your prefix file in the Prefix File edit field.

Group: Option: Value:
Language Info ARM conformance On (required)
Language Info Enable C++

Exceptions
On (required)

Language Info Require Function
Prototypes

On (recommended)

Language Info Enable bool Support On (required)
Language Info Enable wchar_t

Support
On (required)

Language Info Enums Always Int Off (required)

Group: Option: Value:
PPC Processor Struct Alignment 68K (required)

Group: Option: Value:
Link Options Dead-strip Static

Initialization Code
Off (required)
3-4

Development Environment
Now recompile and link your application. To remove the optimization, simply remove the
prefix file name from the Prefix File edit field described above.

3.2.2. Link Libraries

When using the Metrowerks CodeWarrior C/C++ compiler, the XVT library is distributed
as the following library files:

XVTmPPCmwAPI.lib Core library (required)

XVTmPPCmwTE.lib Text edit library; required when you
use the bound help viewer or any XVT
functions starting with “xvt_tx_”

XVTmPPCmwTES.lib Dummy text edit library; use instead
of XVTmPPCmwTE.lib

XVTmPPCmwHI.lib The online help IPC viewer
application interface library

XVTmPPCmwHB.lib The online help viewer application
interface bound to the application

XVTmPPCmwPWR.lib XVT-Power++ class library

XVTmPPCmwRW.lib RogueWave Tools.h++ class library

All XVT libraries are located in the lib folder.

Tip: Add the XVT libraries to your project as follows:

1. Add XVTm*mwAPI.lib to your project using the Add Files... command on the Project
menu.

2. If you are using the text edit object, add the text edit library XVTm*mwTE.lib;
otherwise, add the dummy text edit library, XVTm*mwTES.lib, found in the lib
folder.

3. If you are using online help, add one of the libraries, depending on whether you are
using the bound help viewer or the standalone IPC help viewer:

The bound help viewer requires the XVTm*mwHB.lib library.

The standalone IPC help viewer application requires the XVTm*mwHI.lib library.

4. In addition to the XVT libraries, add the following standard libraries that come with
Metrowerks CodeWarrior C/C++:

PowerPC-based Macintoshes C and C++ applications:
3-5

XVT Platform-Specific Book for Macintosh
InterfaceLib, MathLib, MSL C.PPC.Lib, MSL
RuntimePPC.Lib, MSL SIOUX.PPC.Lib

PowerPC-based Macintoshes C++ applications:

MSL C++.PPC.Lib

3.2.3. For Source Customers Only:
XVT/Mac Development Environment

This section contains information pertinent to XVT/Mac source
customers. If you have purchased the XVT/Mac binary product, you
can skip this section.

3.2.3.1. Building the XVT/Mac Libraries

XVT supplies the following Metrowerks CodeWarrior C/C++
project files for the XVT/Mac Portability Toolkit libraries:

XVT*API.mu for library XVTm*mwAPI.lib
XVT*TE.mu for library XVTm*mwTE.lib
XVT*TES.mu for library XVTm*mwTES.lib
XVT*HB.mu for library XVTm*mwHB.lib
XVT*HI.mu for library XVTm*mwHI.lib

Tip: To build the XVT/Mac libraries:

1. Create lib folder if it doesn’t exist.

2. Select Project=>Reset Project Entry Paths.

3. Select Project=>Research for Files

4. Select Project=>Make. Do this for each Metrowerks CodeWarrior
C/C++ project.

The makefile places the finished libraries in the lib folder.

3.2.3.2. Building Utility Programs

For source customers, XVT/Mac supplies projects for the utility
programs xrc, errscan, helpc, and helpview. For each of these
utility programs, first build the resources, and then build the
application executable.
3-6

Development Environment
Tip: For example, to build resources for xrc:

1. Use the xrc supplied with the XVT Portability Toolkit to
compile the file xrcxvt.url in the src:xrc folder into xrcxvt.r,
the native resource file.

Tip: To build xrcxrc:

1. Open the xrcppc.mu project in the src:xrc folder.

2. Select Project=>Reset Project Entry Paths.

3. Select Project=>Research for Files.

4. Select Project=>Make.

Repeat steps 1 – 4 for each utility you need to build. The makefile
puts the finished utility programs in the bin folder.

Note: Since these utility programs are XVT applications, make sure that
the XVT/Mac libraries are built and installed in the expected
location prior to building these programs.

See Also: Refer to the Readme file shipped with the XVT/Mac Portability
Toolkit for the location of utility program source files.
3-7

XVT Platform-Specific Book for Macintosh
3.3. Compiling Resources

3.3.1. Using the xrc Interactive Interface

On the Macintosh platform, xrc is an interactive application. On
other platforms, xrc is used as the line compiler.

Tip: To start xrc:

1. Check that your xrc.opt file exists in the bin folder and contains
the options needed to compile your URL file.

xrc.opt tells xrc.app where to look for header files. Replace the
sample path with the full path of your XVT include folder and
enclose the pathname in single or double quotes, as follows:

-i ‘HD:xvtdsc56:mac_ppc:include:’
-d HIGH_LEVEL_EVENT_AWARE

If you have other include folders you want xrc to search, add
another -i option on a new line of xrc.opt for each include
folder. Begin the new line with -i, followed by a space, then the
include folder pathname enclosed in single or double quotes.
Repeat this process for each include folder you want xrc to
search.

2. Double click on the xrc icon.

3. Select Translate=>Rez. A standard file dialog appears.

4. From the file dialog, select the URL file to be translated.
A second standard file dialog appears.

5. Enter the output file name for the Rez script and select Save. The
translation begins.

By default, xrc appends .r to the URL file root name.

During the translation, the status window displays the current file
and line number. If xrc detects any errors in the file it is compiling,
it displays them in pop-up text windows, but only the first five errors
are reported. You can edit the input file while viewing the error
window. Then either close the error window manually, or let xrc
close it when you quit or begin another translation.
3-8

Development Environment
3.3.1.1. Using Drag and Drop with xrc

The output is always in Rez format. The output filename is the URL
file root name with .r appended.

Caution: If an output file already exists, xrc overwrites it. Once xrc has
started processing, you cannot cancel the operation until all files
have been processed or an error occurs.

3.3.2. Macintosh Resource Compilers

Before reading this section, familiarize yourself with the
documentation for the compiler supplied with your development
environment (the Rez compiler for Metrowerks CodeWarrior C/
C++).

3.3.2.1. Metrowerks CodeWarrior Rez Compiler

The CodeWarrior Rez compiler is part of the CodeWarrior build
process.

Tip: To compile your Rez script files:

1. In the CodeWarrior IDE application, open your application
project file.

2. Select Project=>Add Files.

3. Select your .r file and click the Add button followed by the Done
button.

4. From the Project menu, select the Bring Up To Date or Make item
to compile the .r file as well as all the other files.

There are currently some limitations when using the CodeWarrior
Rez compiler. There is no method available to set Rez compiler
options through Metrowerks CodeWarrior. Thus it is not possible
to compile resources translated for Japanese or other multibyte
character codesets.

See Also: For more information about Metrowerks CodeWarrior Rez, see
your Metrowerks CodeWarrior C/C++ User's Guide.
3-9

XVT Platform-Specific Book for Macintosh
3.4. Building Your Application with the Help System
XVT’s hypertext online help system requires a help viewer. For
XVT/Mac, you can bind the portable viewer to the application or run
it as a separate (standalone) executable.

See Also: For information on the help viewers, see the “Hypertext Online
Help” chapter in the XVT Portability Toolkit Guide.
For information on the portable help compiler command options,
refer to the online XVT Portability Toolkit Reference .

3.4.1. Portable Viewers

XVT/Mac provides the XVT portable hypertext help viewer in both
bound and standalone forms. For both forms, you must use the XVT
help compiler helpc to produce XVT-portable binary help files for
the help viewer to use.

3.4.2. Using the Helpc Interactive Interface

On the Macintosh platform, Helpc is an interactive application. On
other platforms, it is used as a line compiler.

Tip: To start Helpc:

1. Double click on the Helpc icon.

2. Select Compile=>Set Options to invoke the help compiler options
dialog.

3. From the help compiler options dialog, select the Find button in
the Source File Selection group box. From the file selection dialog
that appears, select the help source file to be compiled.

4. From the help compiler options dialog, select the Find button in
the Include Directories group box. From the file selection dialog
that appears, select include.

Repeat this step for any other required help include directories.

5. From the help compiler options dialog, select any other desired
options.

6. From the help compiler options dialog, select the Apply button.

7. Select Compile=>Begin Compile to compile the help source.

By default, Helpc appends .csc to the help source file root name.
3-10

Development Environment
During the compilation, the status window displays the current
status. If Helpc detects any errors in the file it is compiling, it
displays them in the status window.

Once you have selected your help compiler options and have
successfully compiled your help source file, you can save the set of
selected compiler options for later use. The saved compiler options
are specific to the help source file.

Tip: To save the help compiler options:

From the help compiler File menu, select Save As. From the file
selection dialog that appears, enter a filename for the help
compile options to be saved.

Tip: The next time you compile the help file, follow these steps:

1. Double click on the Helpc icon.

2. From the File menu, select Open. From the file selection dialog
that appears, select the previously saved help options file. The
help compiler status window shows the help source filename for
the selected options file.

3. Select Compile=>Begin Compile to compile the help source.

3.4.2.1. Bound Viewer

Tip: To bind the help viewer to your application:

Link with one of the following sets of libraries (in addition to
the base XVT libraries):

Metrowerks CodeWarrior C/C++:

XVTmPPCmwHB.lib The online help viewer application
interface bound to the application

If you are providing context-sensitive help from modal XVT
windows or dialogs, XVT strongly recommends that you use the
standalone help viewer. The bound help viewer is a modeless
window in XVT. Opening a modeless window from a modal object
may result in undefined behavior.
3-11

XVT Platform-Specific Book for Macintosh
3.4.2.2. Standalone Viewer

Helpview is an application that communicates with XVT
applications to provide hypertext help.

Tip: To use Helpview with your application:

Link your application with the following library (in addition to
the base XVT libraries):

Metrowerks CodeWarrior C/C++:

XVTmPPCmwHI.lib The online help IPC viewer
application interface library
3-12

Appendix A
A
APPENDIX A:
NON-PORTABLE ATTRIBUTES AND
ESCAPE CODES

A.1. Non-portable Attributes
The xvt_vobj_set_attr and xvt_vobj_get_attr functions allow you to
manipulate XVT attributes. Non-portable attributes let you fine-tune
your application to make it more closely adhere to the look-and-feel
of the underlying platform, or to add functionality not provided by
the XVT interface. This section provides a list of the non-portable
attributes for use with XVT/Mac.

See Also: Additional non-portable attributes may be listed in the Readme file
in the doc folder.

ATTR_MAC_ALWAYS_UPDATE

Description: Normally, an E_UPDATE event is not sent when the update window’s
update region is empty. However, if this attribute is set to TRUE,
E_UPDATE events are sent when update_window is called, even if
the update region is empty.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets empty region update event

state
xvt_app_create use: Can use either before or after
Default value: FALSE
Argument type: BOOLEAN
A-1

XVT Platform-Specific Book for Macintosh
ATTR_MAC_BEHIND_WINDOW

Description: Used by the functions xvt_win_create_* to place the window at a
different level, rather than always creating a new active window. If
you want to create a new WINDOW behind an existing XVT WINDOW,
set this attribute to the existing XVT WINDOW before calling
xvt_win_create_*. ATTR_MAC_BEHIND_WINDOW has no effect when a
modal dialog or modal window is active. Setting this attribute to
NULL_WIN creates a new window as the top active window.

Uses win argument: Yes
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets layer WINDOW for creating

new windows
xvt_app_create use: Must use after
Default value: NULL_WIN
Argument type: Value argument is ignored

ATTR_MAC_CHAR_TO_TASK

Description: For portability to other XVT platforms, characters typed while no
window has focus are ignored. However, if you want your
application to receive these E_CHAR events on the Macintosh only,
set this attribute to TRUE, which sends the E_CHAR events to the task
window event handler.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sends unused E_CHAR events to

TASK_WIN
xvt_app_create use: Can use either before or after
Default value: FALSE
Argument type: BOOLEAN
A-2

Appendix A
ATTR_MAC_CONTROL_HANDLE

Description: Given a WINDOW for an XVT control, returns the Macintosh
ControlHandle. The values of the control must not be changed directly.

Uses win argument: Yes
xvt_vobj_get_attr returns: Macintosh ControlHandle for

XVT control WINDOW
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Must use after
Default value: None
Argument type: ControlHandle

ATTR_MAC_CTL_DEFER_UPDATE

Description: Setting this attribute to a value of one prior to a series of calls to the
function xvt_vobj_set_title or xvt_vobj_move on any control suspends
updates to the controls until the attribute is set to zero. The parent
window of the control group must be passed using the win argument.
Only one parent window at a time is allowed to have this attribute
set to one. The application can then set the attribute to zero, causing
all the controls to be updated. ATTR_MAC_CTL_DEFER_UPDATE
provides a performance enhancement for windows or dialogs with
large numbers of controls that must be initialized or set as a group.

Uses win argument: Yes
xvt_vobj_get_attr returns: Currently set value for

win argument
xvt_vobj_set_attr effect: Suspends updates to edit

controls caused by
xvt_vobj_set_title or
xvt_vobj_move

xvt_app_create use: Must use after
Default value: Zero
Argument type: long
A-3

XVT Platform-Specific Book for Macintosh
ATTR_MAC_EVENT_TIME

Description: Specifies the number of ticks of processor usage that your
application relinquishes to other applications if no events are
pending for it. This is the value passed to the native Macintosh
function WaitNextEvent.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets shared processing time
xvt_app_create use: Can use either before or after
Default value: One
Argument type: long

ATTR_MAC_FOREIGN_WIN

Description: Normally, when the user activates a non-XVT window, the current
menubar state is saved and the menubar is grayed (disabled). The
menubar is restored when the user interacts once again with an XVT
WINDOW. However, if you set this attribute to TRUE, XVT is
prevented from graying the menubar.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets non-XVT window

menubar state
xvt_app_create use: Can use either before or after
Default value: FALSE
Argument type: BOOLEAN

ATTR_MAC_FRONT_WINDOW_FCN

Description: You can define your own C function to implement the functionality
equivalent to the Macintosh Toolbox function FrontWindow. Set this
attribute to point to your own function to help implement floating
windows. Passing a value of NULL sets the function pointer back to
the internal function.

Caution: Never set the function pointer to point directly to FrontWindow.

Prototype: WindowPtr XVT_CALLCONV1 front_window_function (void)
A-4

Appendix A
Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Installs front window function,

or installs default function if
value is NULL

xvt_app_create use: Can use either before or after
Default value: Internal default front window

function

ATTR_MAC_HAVE_COLOR_QUICKDRAW

Description: Set to TRUE during xvt_app_create if Color QuickDraw (version 2.0 or
later) is available.

Uses win argument: No
xvt_vobj_get_attr returns: Currently set value
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Must use after
Default value: FALSE
Argument type: BOOLEAN

See Also: The attribute ATTR_HAVE_COLOR on page A-26.

ATTR_MAC_HILITE_MODE

Description: Allows applications to draw in the highlight color as selected by the
user from the Color Control Panel. When you set this attribute to
TRUE before any xvt_dwin_draw_* function is called using M_XOR
mode, the object is drawn in the highlight color. For text, the box
behind the text, rather then the text itself, is drawn in highlight color.
The attribute must explicitly be set to FALSE to discontinue drawing
in the highlight color.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Enables/disables highlight

color draw mode
xvt_app_create use: Must use after
Default value: FALSE
Argument type: BOOLEAN
A-5

XVT Platform-Specific Book for Macintosh
ATTR_MAC_LBOX_KEY_HOOK

Description: This function is called in response to an E_CHAR event when a list
box control has focus. The EVENT will always be of type E_CHAR and
the WINDOW will always be of type WC_LBOX. If this attribute is set
to NULL, an internal function is called that causes the selection of the
first list item where the first characters of the list item match the
characters of to up to 10 consecutive E_CHAR events. The
comparison is case-insensitive and diacritical (accent, tilde, etc.)
character-insensitive.

The following keyboard key behavior is always defined for the list
box control and cannot be defined by the application list box key
hook function:

Home key Scroll to first list item
End key Scroll to last list item
Page Up key Scroll up one page
Page Down key Scroll down one page
Arrow Up key Select the item above the current selection

and deselect the currently selected item
Arrow Down key Select the item below the current selection

and deselect the currently selected item

Prototype: BOOLEAN XVT_CALLCONV1 lbox_key_hook_function
(WINDOW ctlwin, EVENT * ep)

WINDOW ctlwin
List box control window.

EVENT * ep
XVT E_CHAR event record.

Uses win argument: No
xvt_vobj_get_attr returns: Currently set value
xvt_vobj_set_attr effect: Sets the key callback function

used by all list box controls
xvt_app_create use: Can use either before or after
Default value NULL
A-6

Appendix A
ATTR_MAC_LBOX_PROC_ID

Description: Setting this attribute to a value other than zero forces the procID to be
used as the list box definition ID for new list box controls created
with the native Mac Toolbox function LNew. Set the value prior to
a call to xvt_ctl_create_* with a control type of WC_LBOX, and reset the
value after completion of the call. The value must be greater than or
equal to zero.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets list box definition ID
xvt_app_create use: Can use either before or after
Default value: Zero
Argument type: short

ATTR_MAC_LOW_MEMORY_THRESHOLD

Description: XVT/Mac generates a warning dialog when available memory for
the application reaches a critical low memory state. This attribute
controls the threshold which XVT compares to the current available
memory before generating a warning. The value set is in bytes and
must be between zero and LONG_MAX. Setting the value to zero
eliminates any low memory checking done by XVT. The warning
message can be changed by modifying the URL STRING resource
with ID MAC_STR_LOW_MEM_WARNING_ID.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets low memory warning

threshold
xvt_app_create use: Can use either before or after
Default value: 524288 bytes (512 KB)
Argument type: long
A-7

XVT Platform-Specific Book for Macintosh
ATTR_MAC_MENU_HOOK

Description: This function is called whenever a menu selection is made. It is
called after MenuSelect and before xvt_win_dispatch_event of
the E_COMMAND event. If the function returns FALSE, the menu
selection is ignored and XVT performs no further processing. If the
function returns TRUE, XVT processes the selection normally. To
disable menu selection processing through the
ATTR_MAC_MENU_HOOK function, call xvt_vobj_set_attr with NULL as
the value of the attribute.

The current Macintosh WindowPtr is passed in the wp parameter. The
Macintosh menu ID and Macintosh menu item ID for the selection
are passed in the macID and macItem parameters. A handle to the
Macintosh MenuInfo record for the selected menu is passed in the
menuH parameter.

Prototype: BOOLEAN XVT_CALLCONV1 menu_hook_function
(WindowPtr wp, short macID, short macItem,
MenuHandle menuH)

WindowPtr wp
Native Macintosh window pointer for the window owning the
current menubar.

short macID
Native Macintosh menu ID.

short macItem
Native Macintosh menu item number.

MenuHandle menuH
Native Macintosh menu handle of selected menu.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Installs menu hook function or

no hook if NULL
xvt_app_create use: Can use either before or after
Default value: NULL
A-8

Appendix A
ATTR_MAC_MOUSE_CONTROL_FOCUS

Description: Helps an application combine edit controls and text edit objects
in the same window. Setting this attribute to TRUE allows
E_MOUSE_DOWN events to “steal” focus from an active edit control.
This enables the application to switch focus to a different text edit
object, or to another control. Note that a native mouse down event in
an empty window background space will cause any active edit
control to lose focus, which is not standard Macintosh behavior.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets mouse click control focus

state
xvt_app_create use: Can use either before or after
Default value: FALSE
Argument type: BOOLEAN

ATTR_MAC_NATIVE_HTML_REFERENCE

Description: Returns the HRReference value for the underlying native HTML
reference object used by a WC_HTML control.

Uses win argument: Yes
xvt_vobj_get_attr returns: HRReference value for WC_HTML

control
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Must use after
Default value: None
Argument type: HRReference
A-9

XVT Platform-Specific Book for Macintosh
ATTR_MAC_NO_GRAY_DISABLED_EDIT

Description: Allows the application to keep non-grayed disabled edit control text.
By default, edit controls change all contained text to gray when the
edit control becomes disabled. When you set this attribute to TRUE,
all text created after that time will be displayed normally, disabled
or not.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets disabled text state for edit

controls
xvt_app_create use: Can use either before or after
Default value: FALSE
Argument type: BOOLEAN

ATTR_MAC_NO_GRAY_MAP_COLORS

Description: By default, on monochrome monitors, XVT/Mac maps all colors to
three shades of gray dithered patterns, except when you use a
brush pattern other than PAT_SOLID. When you choose a non-solid
brush pattern, XVT/Mac follows the Macintosh (monochrome)
policy of mapping all non-white colors (in either the foreground or
the background of the pattern) to black. Thus, patterns composed of
non-white colored areas are rendered as regions of solid black. By
setting the attribute ATTR_MAC_NO_GRAY_MAP_COLORS to TRUE,
you can restrict the scope of XVT/Mac’s color mapping to only the
gray colors (COLOR_DKGRAY, COLOR_GRAY, and COLOR_LTGRAY).
Then only gray colors are mapped to the gray dithered patterns,
which in turn allows colored patterns to be drawn in such a way that
they resemble patterns instead of solid black regions. This attribute
can be called once for the entire application (before xvt_app_create is
called) or around particular draw functions.

Uses win argument: No
xvt_vobj_get_attr returns: Currently set value
xvt_vobj_set_attr effect: Determines if gray dithered

pattern mapping is done on
monochrome monitors

xvt_app_create use: Can use either before or after
Default value FALSE
Argument type BOOLEAN

See Also: The attribute ATTR_MAC_USE_COLOR_QUICKDRAW on page A-23.
A-10

Appendix A
ATTR_MAC_NO_LBOX_FOCUS_BOX

Description: This attribute controls whether a list box control draws a focus
indicator box around itself when it receives keyboard focus. By
default, a list box control draws the box for Macintosh System 7
look-and-feel compliant behavior. Use this attribute for backward
compatibility if drawing the box might disrupt an existing
application’s control layout in a window or dialog.

Uses win argument: No
xvt_vobj_get_attr returns: Currently set value
xvt_vobj_set_attr effect: Sets the focus indicator box

display state for WC_LBOX
controls

xvt_app_create use: Can use either before or after
Default value FALSE
Argument type: BOOLEAN

Note: You can use ATTR_MAC_NO_LBOX_FOCUS_BOX for all list boxes
or for a single list box if you set it before you call the functions
xvt_ctl_create or xvt_ctl_create_def.

ATTR_MAC_NO_SELECT_WINDOW

Description: Suppresses SelectWindow on native mouse down events in the content
region of a window. This attribute can be used to implement
“floating” windows (windows that remain in front of all other
windows while that application has focus).

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Suppresses or restores

SelectWindow call
xvt_app_create use: Can use either before or after
Default value: FALSE
Argument type: BOOLEAN
A-11

XVT Platform-Specific Book for Macintosh
ATTR_MAC_NO_SET_CURSOR

Description: Suppresses all calls to InitCursor and SetCursor. Enable this attribute if
you want the cursor to be entirely under the control of the
application (using Macintosh Toolbox calls).

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Suppresses or restores calls to

InitCursor and SetCursor
xvt_app_create use: Can use either before or after
Default value: FALSE
Argument type: BOOLEAN

ATTR_MAC_NO_UPDATE_MENU_BAR

Description: Prevents xvt_menu_set_tree from updating the menubar. The function
xvt_menu_update should be called later by the application to “clean up”
the menubar.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Suppresses or restores calls to

xvt_menu_update during
xvt_menu_set_tree

xvt_app_create use: Can use either before or after
Default value: FALSE
Argument type: BOOLEAN
A-12

Appendix A
ATTR_MAC_PAT_RES_ID

Description: Allows the use of application-defined patterns (otherwise, you are
limited to the 10 portable patterns defined in the XVT constant
PAT_STYLE). Set the pat member of the CBRUSH structure to
PAT_SPECIAL. Set this attribute to the native resource ID of a PAT#
resource (PAT# is the native pattern list resource type). Then set the
attribute ATTR_MAC_PAT_RES_INDEX to the index into the pattern list
resource for the currently desired pattern. The value of
ATTR_MAC_PAT_RES_INDEX must be a valid PAT# resource index in
the pattern list resource. Note that the first pattern in the PAT#
resource has an index of 1.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets the pattern list resource

used
xvt_app_create use: Can use either before or after
Default value: sysPatListID
Argument type: short

See Also: The attribute ATTR_MAC_PAT_RES_INDEX on page A-13.
For more information on application-defined patterns, see the
“QuickDraw Drawing” chapter in the book Inside Macintosh:
Imaging with QuickDraw.

ATTR_MAC_PAT_RES_INDEX

Description: This attribute is used only in conjunction with
ATTR_MAC_PAT_RES_ID to define the index for a PAT# resource.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets the pattern list index

used
xvt_app_create use: Can use either before or after
Default value: One
Argument type: short

See Also: The attribute ATTR_MAC_PAT_RES_ID on page A-13.
A-13

XVT Platform-Specific Book for Macintosh
ATTR_MAC_PIXMAP_GWORLD_DEPTH

Description: This attribute allows the application to control the color depth and
thus the memory size of the GWorld used internally to represent a
W_PIXMAP. The value can be set to one of the following values: 0, 1,
2, 4, 8, 16, or 32. Using lower depth values, however, may cause
degradation of your W_PIXMAP image. Using a value of 0 allows the
system to decide the best setting for the current monitor depth.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets the pixmap GWorld depth
xvt_app_create use: Can use either before or after
Default value: Zero
Argument type: short

ATTR_MAC_PRINT_CLIPPING

Description: Certain printers do not allow the clip region to be set for the native
print window GrafPort when printing. This attribute allows the
application to disable print window clipping when printing to
problem printers.

Uses win argument: No
xvt_vobj_get_attr returns: Currently set value
xvt_vobj_set_attr effect: Sets print clipping enabled or

disabled
xvt_app_create use: Can use either before or after
Default value: TRUE
Argument type: BOOLEAN
A-14

Appendix A
ATTR_MAC_PRINT_COPIES

Description: Allows access to print job information—specifically, the number
of requested copies. Set this attribute with a call to the function
xvt_print_create_win. Note that some laser printer drivers handle copies
at the printer level rather than at the application level. Thus, this
information is not available as the data is not stored in the print job
record.

Uses win argument: No
xvt_vobj_get_attr returns: Currently set value
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Must use after
Default value: Zero
Argument type: int

See Also: For more information on printing, see the “Printing Manager”
chapter in the book Inside Macintosh: Imaging with QuickDraw.

ATTR_MAC_PRINT_FIRST_PAGE

Description: Allows access to print job information about the first page
to be printed. Set this attribute with a call to the function
xvt_print_create_win.

Uses win argument: No
xvt_vobj_get_attr returns: Currently set value
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Must use after
Default value: Zero
Argument type: int

See Also: For more information on printing, see the “Printing Manager”
chapter in the book Inside Macintosh: Imaging with QuickDraw.
A-15

XVT Platform-Specific Book for Macintosh
ATTR_MAC_PRINT_LAST_PAGE

Description: Allows access to print job information about the last page
to be printed. Set this attribute with a call to the function
xvt_print_create_win.

Uses win argument: No
xvt_vobj_get_attr returns: Currently set value
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Must use after
Default value: Zero
Argument type: int

See Also: For more information on printing, see the “Printing Manager”
chapter in the book Inside Macintosh: Imaging with QuickDraw.

ATTR_MAC_PROC_ID

Description: Setting this attribute to a value other than –1 forces the procID to be
used as the window definition ID for new document (not child)
windows. Set the value prior to a call to xvt_win_create_* with a
window type of W_DOC, W_DBL, W_MODAL, WD_MODELESS, or
WD_MODAL, and reset the value after completion of the call. The
value must be greater than or equal to zero, or equal to –1.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets window definition ID or

default if value is –1
xvt_app_create use: Can use either before or after
Default value: –1
Argument type: int
A-16

Appendix A
ATTR_MAC_ROUNDED_GROUPBOX

Description: Allows the application to create a group box with rounded rectangle
borders instead of square borders. (This is a common look-and-feel
for Macintosh applications.) Setting the attribute to TRUE causes all
subsequent group box controls to have rounded rectangle borders.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets group box control

rectangle border state
xvt_app_create use: Can use either before or after
Default value: FALSE
Argument type: BOOLEAN

ATTR_MAC_SCROLL_THUMBTRACK

Description: Allows an application to receive the E_CONTROL events of type
SC_THUMBTRACK on the Macintosh, if desired. Setting this attribute
to TRUE causes these events to be sent to the application’s event
handler.

Caution: Be aware that the application should not call xvt_sbar_set_pos or
xvt_sbar_get_pos while processing thumbtrack events on the
Macintosh. (You will notice odd behavior of the scrollbar thumb if
this is done.) Use the scrollbar position passed in the thumbtrack
event instead.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Determines if SC_THUMBTRACK

events are sent
xvt_app_create use: Can use either before or after
Default value: TRUE
Argument type: BOOLEAN
A-17

XVT Platform-Specific Book for Macintosh
ATTR_MAC_SET_TITLE_AUTO_SELECT

Description: Allows the application to specify automatic selection of the text after
xvt_vobj_set_title is called for an edit control. Setting this attribute to
TRUE allows the new title to be entirely selected during a call to
xvt_vobj_set_title. Setting this attribute to FALSE will place the input
caret at the end of the new text. This state can be set for the entire
application or set around a single xvt_vobj_set_title function call.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets edit control

xvt_vobj_set_title auto
select state

xvt_app_create use: Can use either before or after
Default value: TRUE
Argument type: BOOLEAN

ATTR_MAC_SHOW_JOB_DIALOG

Description: Disables the display of the print job dialog in the function
xvt_print_create_win. Setting the attribute to FALSE after
the first call to xvt_print_create_win for a batch disables the job dialog
for subsequent calls to the function xvt_print_create_win. You should
set the attribute to TRUE prior to the first call to xvt_print_create_win to
ensure that the print job dialog is
put up at least once (to initialize the print job dialog record).

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets print job dialog display

state
xvt_app_create use: Can use either before or after
Default value: TRUE
Argument type: BOOLEAN
A-18

Appendix A
Example: This example shows how to use ATTR_MAC_SHOW_JOB_DIALOG:

if ((printrcd = xvt_print_create((INTPTR)&SizePrintRcd))
!= NULL)

{ ...
xvt_vobj_set_attr(NULL_WIN,

ATTR_MAC_SHOW_JOB_DIALOG, (long)TRUE);
for (ele = xvt_slist_get_first(filelist);

ele != NULL;
ele = xvt_slist_get_next(filelist,ele))

{
docname = (char*)xvt_slist_get_data(ele);
if ((pwin =

xvt_print_create_window(printrcd,docname))
== NULL)

break;
xvt_vobj_set_attr(NULL_WIN,

ATTR_MAC_SHOW_JOB_DIALOG, (long)FALSE);
...
/* Fill print window with current document */
...
xvt_vobj_destroy(pwin);

}
xvt_vobj_set_attr(NULL_WIN,

ATTR_MAC_SHOW_JOB_DIALOG, (long)TRUE);
}

ATTR_MAC_STR_HELP

Description: The value of this attribute is a string that is compared to each of the
buttons in the About box to determine if the help system will be
invoked. The passed string is copied to an internal buffer. Maximum
string length is 256 bytes.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets default string for invoking

help
xvt_app_create use: Can use either before or after
Default value: “Help”
Argument type: char*

Note: During xvt_app_create (only), the value of the string
resource MAC_STR_HELP_ID (if created) overrides the value of
ATTR_MAC_STR_HELP.
A-19

XVT Platform-Specific Book for Macintosh
ATTR_MAC_STR_STYLE_MENU1

Description: The value of this attribute is the text used to build a Macintosh Font
Style menu. The string may contain Macintosh meta-characters
(font style, accelerator, etc.) used by the Macintosh menu manager.
The passed string is copied to an internal buffer. Maximum string
length is 256 bytes.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets string for Font Style

menu items
xvt_app_create use: Can use either before or after
Default value:

“Plain Text/T;-(;Bold<B/B;Italic<I/I;Underline
<U/U;Outline<O;Shadow<S;-(;Condense;Extend”

Argument type: char*

Note: During xvt_app_create (only), the value of the string
resource MAC_STR_STYLEM1_ID (if created) overrides the value of
ATTR_MAC_STR_STYLE_MENU1.

ATTR_MAC_STR_STYLE_MENU2

Description: The value of this attribute is a string that represents the font styles
for text in a Macintosh Font Style menu. The order and choice of
characters in this string should be changed if the order or contents of
the Font Style menu is changed. Each character in this string value
represents a font style for a corresponding menu item in the
ATTR_MAC_STR_STYLE_MENU1 string. This correspondence is one-
for-one—the first character represents the font for the first menu
item, the second character represents the font for the second menu
item, and so forth. Characters that may be defined for the
ATTR_MAC_STR_MENU2 string are as follows:

Character: Font style:

P Plain text (unmodified)
B Bold text
I Italic text
U Underline text
A-20

Appendix A
O Outline text
S Shadow text
C Condensed text
E Extended text
<space> Separator or unsupported font modifier

No other characters are valid. The passed string is copied to an
internal buffer. Maximum string length is 256 bytes.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets string for matching

Font Style menu items
xvt_app_create use: Can use either before or after
Default value: “P BIUOS CE”
Argument type: char*

Note: During xvt_app_create (only), the value of the string resource
MAC_STR_STYLEM2_ID (if created) overrides the value of
ATTR_MAC_STR_STYLE_MENU2.

ATTR_MAC_STR_STYLE_MENU3

Description: The value of this attribute is a string that lists the font point sizes in
a Macintosh Font Style menu. XVT/Mac assumes the numeric value
is the first part of each item (for example, the numeral “9” in “9 point”).
The passed string is copied to an internal buffer. Maximum string
length is 256 bytes.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets string for Font Style menu

point size items
xvt_app_create use: Can use either before or after
Default value:

"-(;9 point;10 point;12 point;14 point;
18 point;24 point;36 point;48 point;
72 point;Other %s%d%s..."

Argument type: char*

Macintosh replaces the %s format characters in the string with
parentheses and the %d with the name of the current font.
A-21

XVT Platform-Specific Book for Macintosh
Note: During xvt_app_create (only), the value of the string resource
MAC_STR_STYLEM3_ID (if created) overrides the value of
ATTR_MAC_STR_STYLE_MENU3.

ATTR_MAC_SYSTEM_INITIALIZATION

Description: This function is called during xvt_app_create to initialize the native
Macintosh Toolbox if the attribute is set to a value other than NULL.
To see how XVT/Mac uses the initialization function, look at the file
minit.c in the samples:ptk:mac: folder. Use the code in this file as
a template for your own custom function. Do not remove any of the
Macintosh Toolbox initialization functions in the file, as XVT/Mac
depends on them. However, you can add other Toolbox initialization
functions as required by your application, or modify arguments to
the existing Toolbox initialization functions.

Your application can call your initialization function directly prior
to xvt_app_create. However, you must ensure that your function is
protected against multiple calls. Examine the internal function in
minit.c.

Prototype: void XVT_CALLCONV1 system_initialization_function(void)

Uses win argument: No
xvt_vobj_get_attr returns: Currently set value
xvt_vobj_set_attr effect: Sets the system initialization

function used by
xvt_app_create

xvt_app_create use: Must use before
Default value: NULL
A-22

Appendix A
ATTR_MAC_USE_COLOR_QUICKDRAW

Description: On a Macintosh with color display, XVT/Mac switches to its
monochrome algorithms when the color depth is set to two. These
are the same algorithms XVT uses on Macintoshes without Color
QuickDraw. This attribute lets you test your programs without
running on a monochrome-only Macintosh. When this attribute is
set to TRUE, grays and colors (unless ATTR_NO_GRAY_MAP_COLORS
is set to TRUE) are drawn with patterns instead of with a solid pattern
and a gray color. You can force a Color QuickDraw-equipped
Macintosh to use the color algorithms at all times—even when the
color depth is two—by setting this attribute to TRUE. This attribute
has no effect on Macintoshes without Color QuickDraw.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Sets QuickDraw color

algorithm state
xvt_app_create use: Can use either before or after
Default value: FALSE
Argument type: BOOLEAN

See Also: The attribute ATTR_NO_GRAY_MAP_COLORS on page A-10.

ATTR_MAC_USE_NATIVE_ORIGIN

Description: To make applications more portable, all windows and dialogs are
created with a screen origin of 0,0 at the bottom of the menubar and
extreme left of the screen. Setting this attribute to TRUE changes the
origin to the top of the menubar (extreme top and left of screen).
This is the native system origin.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Places the screen origin
xvt_app_create use: Can use either before or after
Default value: FALSE
Argument type: BOOLEAN
A-23

XVT Platform-Specific Book for Macintosh
ATTR_MAC_WIN_MAX_HEIGHT
ATTR_MAC_WIN_MAX_WIDTH
ATTR_MAC_WIN_MIN_HEIGHT
ATTR_MAC_WIN_MIN_WIDTH

Description: Setting these attributes defines the minimum or maximum height or
width of the client rectangle in which a user can resize a window.
These attributes only affect windows that have a size box and have
no effect on window resizing with xvt_vobj_move.

Uses win argument: Yes
xvt_vobj_get_attr returns: Previously set value for win
xvt_vobj_set_attr effect: Sets the minimum or maximum

height or width for win
xvt_app_create use: Must use after
Default value: SHRT_MAX for maximums,

80 for minimums
Argument type: short

ATTR_MAC_WIN_USE_FIRST_CLICK

Description: Setting this attribute to TRUE for a given window allows that window
to receive E_MOUSE_DOWN or E_CONTROL events, in addition to the
E_FOCUS event, when a mouse click causes the window to become
active. You can set this attribute for top-level and child windows, but
not for dialogs or controls. Because this behavior is not standard
Macintosh look-and-feel compliant, the attribute should be used
only to implement special features. For example, if you want to
include a floating toolbar window in your application, you could set
this attribute to TRUE because the window is always fully visible (or
fully invisible). Thus, the user’s click in the toolbar’s controls has no
adverse affect, since the controls in the floating toolbar will never be
obscured by other windows.

Uses win argument: Yes
xvt_vobj_get_attr returns: Previously set value for win
xvt_vobj_set_attr effect: Sets first click state for win
xvt_app_create use: Must use after
Default value: FALSE
Argument type: BOOLEAN
A-24

Appendix A
A.2. Variations on Portable Attributes
These portable attributes have been modified slightly to support
differences on the native Macintosh platform.

ATTR_EVENT_HOOK

Description: A pointer to a hook function that is called whenever a native
Macintosh event is generated for a window or dialog in your
application. (It is called after WaitNextEvent and before
xvt_win_dispatch_event.) The Mac EventRecord parameter pevent is a
pointer to the event record retrieved from the Macintosh system
event queue. An XVT WINDOW is passed as the win parameter if it is
appropriate for the event. If no window is appropriate or if the
window is not an XVT WINDOW, win is passed as a value of
NULL_WIN. The BOOLEAN parameter ismodal is set to TRUE if the
window is a modal dialog.

Your application can process this message data in any appropriate
manner—however, modifying this data may have undesired side
effects in subsequent processing of the event by XVT/Mac. If your
hook function returns FALSE, XVT does not process the event
further. If your hook function returns TRUE, XVT processes the
event normally.

EventRecord is defined as follows in the file Events.h:

struct EventRecord{
short what;
long message;
long when;
Point where;
short modifiers;

};

typedef struct EventRecord EventRecord;

Prototype: BOOLEAN XVT_CALLCONV1 event_hook_function
(WINDOW win, BOOLEAN ismodal, EventRecord * pevent)

WINDOW win
Window receiving event.

BOOLEAN ismodal
Window is a modal dialog.

EventRecord * pevent
Native Macintosh event.
A-25

XVT Platform-Specific Book for Macintosh
Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Installs hook or uninstalls hook

if value is NULL
xvt_app_create use: Can use either before or after
Default value: NULL

ATTR_HAVE_COLOR

Description: A BOOLEAN value indicating whether the application is running on a
color system. Set to TRUE during xvt_app_create if the main display is
a color monitor.

Uses win argument: No
xvt_vobj_get_attr returns: Color monitor state
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Must use after
Default value: FALSE
Argument type: BOOLEAN

ATTR_HAVE_MOUSE

Description: A BOOLEAN value indicating whether or not the program is running
on a system with a mouse or other pointing device present. Note that
this attribute is always TRUE on Macintosh, because there is no way
to query the system if the mouse is present or not.

Uses win argument: No
xvt_vobj_get_attr returns: Always TRUE
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Must use after
Default value: TRUE
Argument type: BOOLEAN
A-26

Appendix A
ATTR_KEY_HOOK

Non Multibyte-aware Application

If your application uses a single-byte character codeset and you have
set the value of ATTR_MULTIBYTE_AWARE as FALSE (default), then
ATTR_KEY_HOOK behaves as follows:

Description: A pointer to a hook function that is called after native keyDown or
autoKey events are received and before E_CHAR events are sent to
your application. The keycode, modifiers, and chrp parameters are
copies of data retrieved from the Macintosh system event queue. An
XVT WINDOW is passed as the win parameter if it is appropriate for
the event. If no window is appropriate or if the window is not an
XVT WINDOW, win is passed with a value of NULL_WIN. The
BOOLEAN parameter ismodal is set to TRUE if the window is a modal
dialog.

If you need to perform key translation, you must modify data in the
modifiers, if appropriate, and chrp parameters. XVT uses these
parameters to construct an E_CHAR event. If your hook function
returns FALSE, XVT dispatches the E_CHAR event without further
processing. If your hook function returns TRUE, XVT processes the
event normally and dispatches the E_CHAR event to your application
XVT event handler.

Prototype: BOOLEAN XVT_CALLCONV1 key_hook(WINDOW win,
BOOLEAN ismodal, short * keycode, short * modifiers,
short * chrp)

WINDOW win
Window receiving key event.

BOOLEAN ismodal
Window is a modal dialog.

short * keycode
Native Macintosh keycode value.

short * modifiers
Native Macintosh key modifiers flags.

short * chrp
Native Macintosh character value.
A-27

XVT Platform-Specific Book for Macintosh
Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Installs hook function, or

reinstalls default hook if value
is NULL

xvt_app_create use Can use either before or after
Default value: user_key_hook found in

mhook.txt (samples:ptk:mac:
folder)

Multibyte-aware Application

If your application is multibyte-aware (in other words, you have set
the value of ATTR_MULTIBYTE_AWARE as TRUE), then
ATTR_KEY_HOOK behaves as follows:

Description: A pointer to a hook function that is called after native keyDown or
autoKey events are received and before E_CHAR events are sent to
your application. The keycode and modifiers parameters are copies of
data retrieved from the Macintosh system event queue. The ep
parameter is a pointer to the E_CHAR event structure. An XVT
WINDOW is passed as the win parameter if it is appropriate for the
event. If no window is appropriate or if the window is not an XVT
WINDOW, win is passed with a value of NULL_WIN. The BOOLEAN
parameter ismodal is set to TRUE if the window is a modal dialog.

If you need to perform key translation, you must modify data in the
ep parameter. XVT will dispatch the E_CHAR event returned. If your
key hook function translates a character to a virtual key, then it
should also set the event ep->v.chr.virtual_key field to TRUE. If your
hook function returns FALSE, XVT dispatches the E_CHAR event
without further processing. If your hook function returns TRUE, XVT
processes the event normally and dispatches the E_CHAR event to
your application XVT event handler.

Prototype: BOOLEAN XVT_CALLCONV1 key_hook(WINDOW win,
BOOLEAN ismodal, short * keycode, short * modifiers,
EVENT * ep);

WINDOW win
Window receiving key event.

BOOLEAN ismodal
Window is a modal dialog.

short * keycode
Native Macintosh keycode value.
A-28

Appendix A
short * modifiers
Native Macintosh key modifiers flags.

EVENT * ep
XVT character event.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Installs hook function, or

reinstalls default hook if value
is NULL

xvt_app_create use Can use either before or after
Default value: user_key_hook found in

mhook.txt (samples:ptk:mac:
folder)

ATTR_NATIVE_GRAPHIC_CONTEXT

Description: A value that represents the underlying graphics context used by the
native window system for a particular window. Returns the
Macintosh CGrafPtr for an XVT window. The window must be a valid
XVT WINDOW that is not a control. Note that child windows return
the CGrafPtr for their root level parent. You must include the
Macintosh Toolbox include file QuickDraw.h in order to have the
Macintosh type CGrafPtr defined.

Uses win argument: Yes
xvt_vobj_get_attr returns: Macintosh CGrafPtr value for

WINDOW
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Must use after
Default value: None
Argument type: CGrafPtr
A-29

XVT Platform-Specific Book for Macintosh
ATTR_NATIVE_WINDOW

Description: A value that represents the underlying window object used by the
native window system, for a particular window. Returns the
Macintosh WindowRef for an XVT window. The window must be a
valid XVT WINDOW that is not a control. Note that child windows
return the WindowRef for their root level parent. You must include the
Macintosh Toolbox include file QuickDraw.h in order to have
the Macintosh types WindowRef defined.

Uses win argument: Yes
xvt_vobj_get_attr returns: WindowRef value for WINDOW
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: No
Default value: None
Argument type: WindowRef

ATTR_NUM_TIMERS

Description: The number of timers in a system available to the application via
xvt_timer_create. On the Macintosh, this attribute always returns
SHRT_MAX because the number of timers is limited only by available
memory.

Uses win argument: No
xvt_vobj_get_attr returns: Always SHRT_MAX
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Must use after
Default value: SHRT_MAX
Argument type: short
A-30

Appendix A
ATTR_PRINTER_*

Description: The ATTR_PRINTER_* attributes do not report accurate information
on the Macintosh because xvt_vobj_get_attr doesn’t have access to the
current print record. Instead, you should use the escape function
XVT_ESC_GET_PRINTER_INFO.

Uses win argument: No
xvt_vobj_get_attr returns: Values for default print record
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Must use after
Default value: Values for default print record
Argument type: long

A.3. Non-Portable Escape Codes
The xvt_app_escape function enables you to set or get
XVT/Mac-specific information that you cannot set or get using
the xvt_vobj_set_attr or xvt_vobj_get_attr functions. The xvt_app_escape
function’s escape codes and the associated parameter lists are given
below, with a brief explanation of types
and values. The escape code is an integer whose value is defined
internally by XVT.

XVT_ESC_MAC_DIALOG_POSITION

Description: This escape determines the proper screen position for a dialog
according to Apple’s Macintosh Human Interface Guidelines
on Dialog Positions. To use this function, make the application’s
dialogs invisible in XVT-Design or in URL. In the E_CREATE for the
dialog event handler, call this function to get a corrected client rect,
then call xvt_vobj_move followed by xvt_vobj_set_visible on the dialog
window. The passed rect does not need to be initialized.

Prototype: xvt_app_escape(XVT_ESC_MAC_DIALOG_POSITION,
WINDOW win, RCT * prct);

WINDOW win
Dialog window.

RCT * prct
Dialog-modified screen rectangle.
A-31

XVT Platform-Specific Book for Macintosh
XVT_ESC_MAC_FONT_GET_RES_NAME

Description: Given a native Macintosh font resource ID, this function returns the
font family resource name. The application must allocate memory
for the returned name before calling this function. The size of the
allocated space is passed in maxsize.

Prototype: xvt_app_escape(XVT_ESC_MAC_FONT_GET_RES_NAME,
short macfontid, char * pname, short maxsize);

short macfontid
Macintosh font resource ID.

char * pname
Returned Macintosh font resource name.

short maxsize
Maximum length of name.

XVT_ESC_MAC_GET_DESKTOP_BOUNDS

Description: This escape calculates the bounding rectangle of the desktop's
current visible region. This rectangle potentially spans multiple
monitors. On systems with more than one monitor, the physical
layout of the desktop is defined in the Monitors control panel.

Prototype: xvt_app_escape(XVT_ESC_MAC_GET_DESKTOP_BOUNDS,
RCT * bounds);

RCT * bounds
Desktop bounding rectangle returned.

XVT_ESC_MAC_GET_DISPLAY_INFO

Description: This escape calculates the bounding rectangle of the specified
display within the desktop’s current visible region, and specifies
color and pixel size. Displays are specified by index into the native
graphics device list. Index 0 refers to the main display, i.e., the
display containing the menubar. xvt_app_escape returns FALSE if the
index does not correspond to an existing display.

Prototype: xvt_app_escape(XVT_ESC_MAC_GET_DISPLAY_SIZE,
short index, RCT * bounds, BOOLEAN * is_color,
short * psize);

short index
Display index.

RCT * bounds
Returned bounding rectangle of display.
A-32

Appendix A
BOOLEAN * is_color
Color = TRUE, Grayscale = FALSE.

short * psize
Returned pixel size for display.

XVT_ESC_MAC_GET_EDIT_HANDLE

Description: This escape returns the text edit handle for a WC_EDIT or
WC_LISTEDIT control.

Prototype: xvt_app_escape(XVT_ESC_MAC_GET_EDIT_HANDLE, WINDOW win,
TEHandle * ptehandle);

WINDOW win
Control window for a WC_EDIT or WC_LISTEDIT control.

TEHandle * ptehandle
Returned text edit handle for the control.

XVT_ESC_MAC_GET_LIST_HANDLE

Description: This escape returns the list handle and other information for a
WC_LBOX control.

Prototype: xvt_app_escape(XVT_ESC_MAC_GET_LIST_HANDLE, WINDOW win,
ListHandle * plist_handle, Rect * pview, int * pfont,
int * psize);

WINDOW win
Control window for a WC_LBOX control.

ListHandle * plist_handle
Returned list handle for the control.

Rect * pview
Returned viewing rectangle for the list box.

int * pfont
Returned Macintosh font number set for the list box.

int * psize
Returned font size set, in points, for the list box.
A-33

XVT Platform-Specific Book for Macintosh
XVT_ESC_MAC_GET_PICT_ID

Description: Given an XVT control window for a picture or icon control, this
function returns the native Macintosh resource ID of the PICT or
ICON resource used by the control. A picture control is created by
making a dialog item of type picture in the native resources.

Prototype: xvt_app_escape(XVT_ESC_MAC_GET_PICT_ID, WINDOW win,
long * pid);

WINDOW win
XVT picture or icon control window.

long * pid
Returned Macintosh PICT resource ID for picture control or
ICON resource ID for icon control.

XVT_ESC_MAC_MODAL_WINDOW

Description: This escape makes an XVT window modal by limiting mouse clicks
to the window and disabling the menubar; it works only on windows
of type W_DBL or W_DOC. This escape could be useful to a C++
programmer because it offers a separation between the modality of
a window and the creation of a window. Another indirect benefit is
that W_DBL and W_DOC windows can use different border styles than
W_MODAL windows, which might be useful in certain situations.
However, remember that choosing border styles other than the style
provided by W_MODAL windows changes the look-and-feel of the
application, and takes the application away from the standard
Macintosh look-and-feel. The function returns when the window is
closed.

Prototype: xvt_app_escape(XVT_ESC_MAC_MODAL_WINDOW, WINDOW win);

WINDOW win
W_DBL or W_DOC type window.
A-34

Appendix A
XVT_ESC_MAC_PALET_GET_PALETTE_HANDLE

Description: Given an XVT_PALETTE, this function returns the corresponding
native PaletteHandle.

Prototype: xvt_app_escape(XVT_ESC_MAC_PALET_GET_PALETTE_HANDLE,
XVT_PALETTE palet, PaletteHandle * pmacpalette);

XVT_PALETTE palet
XVT_PALETTE to get native palette from.

PaletteHandle * pmacpalette
Returned native PaletteHandle. If an error occurs, the handle will
be set to NULL.

XVT_ESC_MAC_PICT_READ_FROM_FILE

Description: Given a file pointer specifying a valid Macintosh PICT file, this
function will read the contents and return a PICTURE and the
PICTURE’s bounding rectangle.

Prototype: xvt_app_escape(XVT_ESC_MAC_PICT_READ_FROM_FILE,
FILE * filep, PICTURE * pict, RCT * rctp);

FILE * filep
Macintosh PICT file.

PICTURE * pict
Returned PICTURE representing the Macintosh PICT that was
read. If an error occurs during reading, NULL_PICT will be
returned.

RCT * rctp
Returned bounding rectangle for the XVT PICTURE.

XVT_ESC_MAC_PICTURE_COMMENT

Description: This escape allows the application to access the native Macintosh
Toolbox function PicComment. Calling native Macintosh Toolbox
functions while in the context of an open PICTURE (for a particular
window) does not append those function calls to the PICTURE object.

Prototype: xvt_app_escape(XVT_ESC_MAC_PICTURE_COMMENT, WINDOW win,
short kind, short datasize, Handle datahandle);

WINDOW win
XVT WINDOW with an open PICTURE.

short kind
The kind parameter passed to PicComment.
A-35

XVT Platform-Specific Book for Macintosh
short datasize
The datasize parameter passed to PicComment.

Handle datahandle
The datahandle parameter passed to PicComment.

XVT_ESC_MAC_RES_GET_PICT

Description: Given an ID for a PICT resource, this function reads the PICT from the
current resource list and returns a PICTURE and the PICTURE’s
bounding rectangle.

Prototype: xvt_app_escape(XVT_ESC_MAC_RES_GET_PICT, short id,
PICTURE * pict, RCT * rctp);

short id
Resource ID of PICT.

PICTURE * pict
Returned PICTURE representing the Macintosh PICT that was
read. If an error occurs during reading, NULL_PICT will be
returned.

RCT * rctp
Returned bounding rectangle for the XVT PICTURE.

XVT_ESC_MAC_SET_PICT_ID

Description: Given an XVT control window for a picture control or an icon
control, this function sets the native Macintosh PICT or ICON
resource ID used by the control. A picture control is created by
defining a dialog item of type picture in the native resources.

Prototype: xvt_app_escape(XVT_ESC_MAC_SET_PICT_ID, WINDOW win,
long id);

WINDOW win
XVT picture or icon control window.

long id
New Macintosh PICT resource ID for picture control or ICON
resource ID for icon control.
A-36

Appendix A
XVT_ESC_MAC_SET_WINDOW_COLOR

Description: This escape allows the application to set the standard color table for
individual windows or dialogs. The function takes five pointers to
Macintosh RGBColor structures that define: window content color,
frame color, text color, highlight color, and title bar color. Any of the
color arguments can be NULL, in which case, the color uses the
default color for that field.

When using this function, create the window or dialog as invisible
and call xvt_vobj_set_visible after calling this escape function. This
prevents the window or dialog from displaying with
the default colors, and then changing when the application calls
xvt_app_escape.The structure RGBColor is defined in the Macintosh
include file QuickDraw.h, so you must include this file.

Prototype: xvt_app_escape(XVT_ESC_MAC_SET_WINDOW_COLOR,
WINDOW win, RGBColor * pcontextColor,
RGBColor * pframeColor, RGBColor * ptextColor,
RGBColor * philiteColor, RGBColor * ptitleBarColor);

WINDOW win
XVT window or dialog for which the color is being set.

RGBColor * pcontextColor
Color for the window or dialog context or background.

RGBColor * pframeColor
Color for the window or dialog frame.

RGBColor * ptextColor
Color for the window or dialog title text.

RGBColor * philiteColor
Color for the window or dialog active window highlight.

RGBColor * ptitleBarColor
Color for the window or dialog title bar.
A-37

XVT Platform-Specific Book for Macintosh
A-38

Appendix B
B
APPENDIX B:
FREQUENTLY ASKED QUESTIONS

Q: Why do I get the XVT Fatal Error, “Failure initializing resources,
Resource fork missing?, File:mres.c, Line 32,” or an error with ID
0x00509C42 when I attempt to run my program?

A: This error condition usually occurs when XVT/Mac can’t locate the
resources that should have been attached to the application during
the build process.

xrc must be used to convert the .url file to a text-based native
resource file. The text-based native resource file must have the
extension .r and must be added as a source file to the compiler
project.

Q: When running xrc, why do I get an error message indicating that the
xvt.h or url.h include file cannot be found?

A: To find the necessary include files, xrc relies on a small text file,
xrc.opt, found in the same folder as xrc. For a number of reasons,
this file may not provide the correct path. The best solution is to edit
the file using any text editor, inserting a complete, correct pathname.
Be sure to enclose your defined include path in double quotes (" ").

Example: This example shows a typical include path (note that each folder is
separated by a colon):

-i "HD:xvtdsc56:mac_ppc:include:"
B-1

XVT Platform-Specific Book for Macintosh
Q: I get an error from XVT but I can’t read it. It appears to be some
hex-coded number.

A: This is an internal code that the XVT error handler uses to search the
ERRCODES.TXT file. However, your application, when it
displays an error, checks only the current directory for this file. Place
a copy of ERRCODES.TXT in the same folder as your application.
(ERRCODES.TXT can be found in the doc folder.) Make sure that
you copy the original rather than move it. When the error is
displayed, you will get a text string rather than a code. Alternatively,
you can set the attribute ATTR_ERRMSG_FILENAME to the pathname
of the file.

Q: How do I interpret the error message screen?

A: The four lines of an error are:

• The first line states the level of the error (WARNING,
ERROR, or FATAL) as well as the message text such as
“Invalid rectangle passed into xvt_”.

• The second line states the category of the error and a
description of the category. The category information comes
from the file xvt_msgs.h, located in your include folder.

• The third line displays a stack trace, starting from
xvt_app_create, listing the known XVT functions from left to
right. The last known called XVT function is listed on the
right. This call is the source of the warning, error, or fatal
error. The stack trace does not list native functions or your
own function calls. By default, it only recognizes XVT
functions.

• The last line shows the source code file where the error
originated as well as the line number of the xvt_errmsg_sig call.

Q: The error message says that I have an error in a particular function
call but I know for a fact that I never call that function in my code
(or my code is calling it correctly). What’s wrong?

A: You are probably correct—the source of the error may not be from
your code calling the function, but rather, from another XVT
function that calls the function. To trace the actual source of the
problem, you can install the following error handler:
B-2

Appendix B
static BOOLEAN XVT_CALLCONV1
ErrHandler XVT_CALLCONV2
XVT_CC_ARGL((err,context))
XVT_CC_ARG (XVT_ERRMSG, err)
XVT_CC_LARG (DATA_PTR, context)
{

NOREF(err);
NOREF(context);
return FALSE; /* did not handle this error, */

/* pass it along */
}

Install this error handler either prior to or after xvt_app_create as
follows:

/* Establish a permanent error handler */
xvt_vobj_set_attr (NULL_WIN, ATTR_ERRMSG_HANDLER,

(long)ErrHandler);

Set a breakpoint at ErrHandler and run your program in the debugger.
You’ll be able to see where your code is generating this message and
more clearly discern the cause.

Q: How can I override the About box?

A: There are two ways to do this. If you don’t want to add to the
controls in the box but want to modify the look (slightly), look in the
url_plat.h for the URL code describing the About box. You can
delete controls from this dialog but you cannot add to them! XVT
does not recommend deleting controls from the About box.

The second (and better) way to override the About box is to create
your own menu hook function that you call from
ATTR_MAC_MENU_HOOK. In the prototype for this function, only
use the second and third parameters (macID and macItem)—you can
ignore the rest. XVT’s internal representation for the Apple menu is
macID = 32767. The first item on this menu, the About box item, is
macItem = 1. Make sure your menu hook function returns FALSE if this
item is selected and returns TRUE for all others. You can test for these
values in the menu hook function and call your own dialog or
window creation function (i.e., xvt_dlg_create_res). Make sure that the
container (your About box window) is modal; one approach is to
make it a modal window. You will then have full access to the event
handler to draw graphics, display QuickTime movies, etc.
B-3

XVT Platform-Specific Book for Macintosh
Q: If I fill my list box past a certain limit on the Macintosh, it starts to
behave strangely. I don’t have this problem on other platforms.
What’s wrong?

A: List boxes on XVT/Mac have a 32KB limit for the data you can store
in them. If you need to scroll through a large information list, create
a window that you can scroll through on your own. The native
Macintosh List Manager was not designed to handle data beyond
32KB.

Q: On the Macintosh, my string resources aren't accessible with
xvt_res_get_str. They seem to be accessible only with
xvt_res_get_str_list. How can I get them using xvt_res_get_str?

A: xrc generates two native types of string resources for the Macintosh:
STR and STR#. The former is created for an isolated string resource
listed in your URL file. Its resource ID does not directly follow or
precede any other string resource ID. The latter, STR#, comes from
lists of strings which are shown in the URL file by a series of
consecutive numbers. xvt_res_get_str looks for STR type resources.
xvt_res_get_str_list looks for STR# type resources.

If you don’t want to use the string lists, you can edit your string lists
to utilize non-consecutive resource IDs, or simply place the resource
IDs in reverse order. Either technique forces these resources to show
up in the Rez file as STR rather than STR#.

Q: When compiling my application with the XVT PTK 4.x release, I
sometimes get the following XVT internal warning:

WARNING: API function already marked in frame
Category: Error messaging facility (Error Message Frame problems)
Function: xvt_app_process_pending_events
xvt_app_process_pending_events
File: ./verrmsg.c line: 405

What does this mean and how can I correct the problem?

A: With error handling in XVT PTK 4.x, each time a function call is
made, it is “marked.” When it returns, it is “unmarked,” so that XVT
can report which call caused the error.

Since 4.x was released, we have learned that the marking and
unmarking of function calls does not happen correctly in certain
cases, particularly, in cases where the application interacts with the
toolkit directly in such a way that causes recursion. Thus, the
B-4

Appendix B
warning occurs. The warning is harmless and should not affect the
operation of the application at all.

To prevent the message, however, you can override the error
message handler by creating one that filters out the warning
message. You can install such a message handler from the window
event handler for C customers, as follows:

static BOOLEAN XVT_CALLCONV1
ErrHandler XVT_CALLCONV2
#ifdef XVT_CC_PROTO
(
XVT_ERRMSG err, /* Error Message Object */
DATA_PTR context /* Context, (not used here) */
)
#else
(err, context)
XVT_ERRMSG err;
DATA_PTR context;
#endif
{

/* Check for error signal(s) we want to ignore */
if (xvt_errmsg_get_msg_id(err) ==
ERR_EMF_FRAME_MARKED)

 return TRUE; /* forget this message,
it's OK */

/* Pass the remaining signals to the default
handler */

 return FALSE;
}

You can also override the warning in the task window event handler
or prior to calling xvt_app_create do, as follows:

case E_CREATE:
xvt_vobj_set_attr (win, ATTR_ERRMSG_HANDLER,

(long)ErrHandler);

If you are using C++, you can install an error handler by placing the
following line in header file:

BOOLEAN ErrHandler(XVT_ERRMSG err, DATA_PTR context);

Place the following line in an implementation file after the #include
statements:

extern BOOLEAN ErrHandler(XVT_ERRMSG err,
DATA_PTR context);

Place the following function definition in the implementation file:
B-5

XVT Platform-Specific Book for Macintosh
BOOLEAN XVT_CALLCONV1
ErrHandler XVT_CALLCONV2
#ifdef XVT_CC_PROTO

(
XVT_ERRMSG err, /* Error Message Object */
DATA_PTR context /* Context, (not used here) */
)
#else
(err, context)
XVT_ERRMSG err;
DATA_PTR context;
#endif
{
 /* Check for error signal(s) we want to ignore */
 if (xvt_errmsg_get_msg_id(err) == ERR_EMF_FRAME_MARKED)
 return TRUE; /* forget this message, it's OK */

 /* Pass the remaining signals to the default

handler */
 return FALSE;
}

Then place the following line in cstartup.cxx after the #includes (You
need to have a header file with the function prototype included):

extern BOOLEAN ErrHandler(XVT_ERRMSG err,
DATA_PTR context);

Finally, in CApplication() theApplication:

CApplication0 theApplication;
// add the following ATTR statement here
xvt_vobj_set_attr (NULL_WIN, ATTR_ERRMSG_HANDLER,

(long)ErrHandler);
theApplication.Go(

In summary, install the event handler so that it ignores the warning
message.

Q: How do I use color with controls in my application?

A: You can use the following two Portability Toolkit functions to set
colors for controls in your application:

void xvt_ctl_set_colors(WINDOW ctl_win,
// WINDOW ID of the control

XVT_COLOR_COMPONENT *colors,
// colors to set or unset

XVT_COLOR_ACTION action)
// set or unset the colors

and
B-6

Appendix B
void xvt_win_set_ctl_colors(WINDOW win,
// WINDOW ID of the window or dialog

XVT_COLOR_COMPONENT *colors,
// colors to set or unset

XVT_COLOR_ACTION action)
// set or unset the colors

xvt_ctl_set_colors sets or unsets the colors for a single control. This
function overrides any color values you set previously for the
control, but only for the XVT_COLOR_COMPONENT of the colors
array. All other colors used by the specified control are not affected.
To set the default colors for a control, use NULL for the value of
colors. An action value of XVT_COLOR_ACTION_SET sets the control
colors for the color components specified in the colors parameter.
An action value of XVT_COLOR_ACTION_UNSET sets the control
colors for the color components specified in the colors parameter to
colors inherited from the control's container, the colors owned by the
application, or the system default.

xvt_win_set_ctl_colors sets or unsets the colors for all existing controls
in window win and all controls that you create after setting the
colors. It will not change the colors of controls in other windows.
This function overrides any color values you set previously for the
controls in the window, but only for the XVT_COLOR_COMPONENT of
the colors array. All other colors used by the window's control are
not affected.

Note: For controls with color components set individually, the
components that were set will not be affected by this color change.
The components that were not set will be affected. For example, if a
pushbutton has blue set for the foreground color and the window has
red set for the background color, the background of the pushbutton
will be red.

To set the default colors for controls in a window, use NULL for the
value of colors. XVT_COLOR_ACTION_SET and
XVT_COLOR_ACTION_UNSET work as described above. Note that this
function does not affect the colors of the container decorations or
any other colors that appear in the container itself.

The following Portability Toolkit functions allow you to get the
currently-defined color settings:

XVT_COLOR_COMPONENT *xvt_ctl_get_colors(
WINDOW ctl_win)

and

XVT_COLOR_COMPONENT *xvt_win_get_ctl_colors(
WINDOW win)
B-7

XVT Platform-Specific Book for Macintosh
Q: Where are all new features of the PTK documented?

A: New functionality is outlined in the XVT Portability Toolkit
Reference and in the XVT Portability Toolkit Guide, both of which
you will find on the documentation CD. XVT has chosen to use an
online format to make reference information clearer, easier to find,
and more usable.

In addition to documenting new functionality, the online XVT
Portability Toolkit Reference contains sections on each of the
following topics:

• XVT Portable Attributes

• XVT Events

• XVT Data Types

• XVT Constants

• XVT Functions

• URL Statements

• Help File Statements

• Tools

Q: How do standard fonts map to multibyte fonts?

A: XVT does not automatically map to multibyte fonts. In order for
your application to use multibyte fonts, you must first
Internationalize and Localize your application, using the methods
detailed in Chapter 19 of the XVT Portability Toolkit Guide. You
must also install the multibyte fonts appropriate for the language you
intend to use, according to your system guidelines. This will allow
the fonts to be available to your XVT application.

Presumably, you will be translating your application to one or more
languages. If you have properly internationalized your application,
all your text and font references exist only in your resource file.
When you translate your text, you should also setup the font and
font_map resource appropriate for each language.

To set a multibyte font, you must modify the URL font or font_map
statements of your application to contain native fonts appropriate for
the language.

XVT supplies the following LANG_* xrc compiler options (files in
your ptk/include directory):
B-8

Appendix B
• LANG_JPN_SJIS supports Japanese in Shift-JIS code (file
ujapsjis.h)

• LANG_GER_IS1 supports German in ISO Latin 1

• LANG_GER_W52 supports German in Windows 1252

• Files for English, French, and Italian are also provided

These options and others are listed and discussed further in the XVT
Portability Toolkit Guide and the Guide to XVT Development
Solution for C++.

XVT cannot guarantee which character set your customers will use.
There is more than one set available for many languages. Because
the font to which you map must be available on your customer's
system in order for your application to run, a survey of your
proposed customer base may be in order.

The availability of these fonts and other system setup issues should
become part of the installation requirements for your application, or
the fonts should be installed with your application.

Q: I've completed development and thoroughly tested my application. I
understand the XVT Portability Toolkit has compile time
optimization. How do I enable it?

A: In order to understand how XVT compile time optimization works,
some knowledge of the XVT Portability Toolkit implementation is
required. The XVT Portability Toolkit is implemented in two layers.
The top API layer, the functions of which are listed in the XVT
Portability Toolkit Reference, is called directly by your application.
This layer performs error checking of all input parameters and
sometimes other validation before calling the internal layer. It is the
internal layer that contains the implementation of the functionality.

XVT provides a compile time symbol, XVT_OPT, which, when
defined during application compilation, redefines the top level
function names to directly call the internal API functions through
macros. This bypasses the parameter checking provided by the top
layer and eliminates an extra stack level for each XVT API function.
You can also leave XVT_OPT undefined, allowing for the specific
optimization of your application code. The header file xvt_opt.h
contains the macro definitions of the XVT API functions that are
optimized.

The optimization will not eliminate all error checking from the XVT
Portability Toolkit. Rather, it will eliminate only those errors related
B-9

XVT Platform-Specific Book for Macintosh
to XVT API function parameters. Also, because the top layer sets up
the error frames for function information, any errors that do occur
may have fictitious results for the function stack trace.

XVT recommends this option be used only after you have completed
development and have thoroughly tested your application.
Attempting to use this option too early in your development process
may result in application crashes and other odd behavior due to
improperly called functions that would otherwise have been checked
and diagnosed by the top API layer.

Q: How are the text edit objects after version 4.5 different from the text-
edit objects in previous versions?

A: Text-edit controls have been enhanced to work more like other
objects in the XVT Portability Toolkit. The text edits after 4.5 have
two improvements over those in previous versions. First, they have
been placed inside a child window. Second, you can now use some
of the same routines to manipulate controls and text-edits.
Additionally, if you find you still need the previous types of text-
edits, you can continue to use them.

In releases after 4.5, text-edits have been placed inside a child
window, ensuring that they have more consistent behavior with
other controls. For instance, the insertion point that appears in
editable controls now acts more consistently. You can be assured
that only one control will possess the insertion point at any one time.
Also, to maintain backward compatibility, the previous text-edit
functions will still work. That is, you may continue to use text-edit
controls that are not contained in a child window. To use old text-
edit features, read about using the attribute
ATTR_R40_TXEDIT_BEHAVIOR in the XVT Portability Toolkit Guide.

Since the old-style text-edit is fundamentally different from other
controls, it required specialized text-edit functions. However, you
can manipulate the new text-edit features with many of the generic
control and window functions. For instance, with the old-style text-
edit, code would have to decide whether a text-edit or some other
control should receive focus, requiring the use of two functions,
xvt_tx_set_active() and xvt_scr_set_focus_vobj(). The new text-edit lets you
use xvt_scr_set_focus_vobj() to clean up some code.
xvt_scr_set_focus_vobj() can be helpful if an application needs to handle
arrays of native controls mixed with text-edits.

Note: Not all the ctl functions work on text-edits. Check the XVT
Portability Toolkit Guide for specific functions you can use.
B-10

Appendix B
Q: I'm not sure I understand the M_* values for DRAW_MODE as
stated in the XVT Portability Toolkit Reference. What exactly am I
supposed to see?

A: The following “Draw Mode Definitions” section shows the different
drawing modes supported by XVT. There is also an explanation of
what these modes will do if you are drawing in black or white on
either a black or a white source pixel.

See Also: For more information, see “Draw_Mode” under “XVT Data Types” in
the XVT Portability Toolkit Reference.

Note: On systems that use a 256-color palette, and not 24 bit color,
information in the charts will hold true only for black and white
because the palette indices are used for ORing and XORing, not the
color values themselves. Because there are no definitive (or at least
portable) rules about what color is held in a given index, there are
absolutely no guarantees as to what your results will be. 129 xor 1 will
always be 128, but index 129 might be yellow, 1 might be white, and
128 might be off-puce. The application can attempt to force a
palette, but the colors present will be a random mix based on what
applications are currently running and what applications have run in
the past in the same session.

The following code and draw mode definitions demonstrate the
problem more clearly:

typedef enum { /* drawing (transfer) modes */
M_COPY,
M_OR,
M_XOR,
M_CLEAR,
M_NOT_COPY,
M_NOT_OR,
M_NOT_XOR,
M_NOT_CLEAR

} DRAW_MODE;

Draw Mode Definitions

M_COPY:

• If you draw black, source pixel will be forced to black

• If you draw white, source pixel will be forced to white

M_OR:

• If you draw black, source pixel will be forced to black

• If you draw white, source pixel will be left as is

M_XOR:
B-11

XVT Platform-Specific Book for Macintosh
• If you draw black, source pixel will be inverted

• If you draw white, source pixel will be left as is

M_CLEAR:

• If you draw black, source pixel will be forced to white

• If you draw white, source pixel will be left as is

M_NOT_OR:

• If you draw black, source pixel will be left as is

• If you draw white, source pixel will be forced to black.

M_NOT_CLEAR:

• If you draw black, source pixel will be left as is

• If you draw white, source pixel will be forced to white

M_NOT_COPY:

• If you draw black, source pixel will be forced to white

• If you draw white, source pixel will be forced to black

M_NOT_XOR:

• If you draw black, source pixel will be left as is

• If you draw white, source pixel will be inverted

Q: What is the difference between NText and CText?

A: NText and CText each display a single line of text and provide
alignment options within their frames. Although their basic
functions are similar, each class has unique characteristics that make
it better than the other in different situations.

The NText class is derived from the CNativeView class. Native views
have the look-and-feel of objects provided by the native window
manager. They look slightly different from platform to platform.
Visually and functionally they fit in with the analogous graphical
items on the target platform. They are not implemented by XVT-
DSC++, but by native toolkits, so you have less flexibility in
manipulating them. Native views don't know how to print
themselves. Since native views are derived from CView, they have all
of the capabilities of other objects at the view level. As a native
view, NText is defined by platform-specific resources. For example,
it uses the system font and color as defined by the window manager.
B-12

Appendix B
You should use NText when you want your application, or parts of
your application (certain dialog boxes, for example), to have the
look-and-feel of objects created by the native window manager.

The CText class is derived from the CView class. Unlike NText, which
is drawn by the native window manager, CText creates drawn text
which looks the same across all platforms. It allows user and
program control over its font properties and colors. For example, it
allows you to choose from a variety of font families (Times,
Helvetica) and styles (italics, boldface). It can dynamically change
its size as its contents change. It can change its placement and
alignment at runtime. It can also output itself to a printer.

You should use CText when you want more creative control over the
appearance of your text, when you want your text to appear the same
across all platforms, or when you want to give the user creative
control over the appearance of text in your application.

See Also: For more information, see “CText” and “NText” in the XVT
Development Solution for C++ Reference and also look for
references to CText and NText in the Guide to XVT Development
Solution for C++.

The “Textual Views” chapter in Introduction to C++ for Developers
is also helpful.

Q: Is there a way to implement zooming in DSC++?

A: The following solution does not use CUnits and will result in correctly
updated wireframes, scrolling, sizing, dragging, and so on.

Create a new class called ViewInfo, for example. The purpose of
ViewInfo is to keep track of the location where the view was created.
Each time that a new view is inserted in the CScroller, create an
associated ViewInfo. Fill the associated ViewInfo with the view's
creation-frame and a pointer to this view. This ViewInfo instance is
then appended to a RWOrdered.

When the zoom factor changes, for example, to 150%, iterate
through the RWOrdered, and tell the view, which is pointed to size 1.5
times its original frame. Once all views have processed, call
xvt_dwin_invalidate_rect on the CScroller. Everything should successfully
redraw. If a CWireFrame has been moved, it generates a WFSizeCmd,
and the DoCommand looks up in the RWOrdered to update the creation
coordinates according to the actual zooming factor.

The following code illustrates:
B-13

XVT Platform-Specific Book for Macintosh
class ViewInfo : public RWCollectable
{
public:

ViewInfo(CView* theView, const CRect& theRect) ;
~ViewInfo() ;
virtual CRect& SetFrame(const CRect& theRect) ;
virtual CRect GetFrame(void) ;
virtual CView* GetView(void) ;

protected:
CRect itsCreationFrame;
CView* itsView;

private:
} ;

A fundamental problem is equating the Size() method with zooming.
Here are the issues:

• What happens when a view is resized in the usual way? For
example, as a pane in a splitter window, a subview may be
resized to be twice as wide. Is this equivalent to zooming by
200%?

• What happens when a view is moved in the usual way? Will
the associated ViewInfo object need to refresh itsCreationFrame?
How would this be done?

• What happens when a native control is zoomed? For
example, if a NListButton is told to zoom (resize), the edit box
will remain the same height.

• What happens when a CPicture (or a CPictureButton, etc.) is told
to resize? Will the picture stay intact?

• What happens to subviews within subviews? The splitter will
be resized, but the oval will stay the same.

It should be possible to resolve all of these issues without the need
to subclass everything. Expand on what has been started in the
ViewInfo class above, and envision a type of visitor attached to the
switchboard called a CZoomHandler.

A CZoomHandler will have a zooming factor attribute. If this is set to
100%, it will not do anything. A CZoomHandler will intercept
E_UPDATE events at the Switchboard and perform a deep traversal
through the window's object hierarchy, via DoDraw(). The
CZoomHandler will render each view as it sees fit: On some views, it
may just temporarily reset its size attributes and then call its Draw()
method. On others, it may do its own drawing to handle some of the
tougher issues listed above.
B-14

Appendix B
Q: How do you create global variables for use in a DSC++
application?

A: The best way to use variables that can be accessed globally from
your application is to use them in a real global object, such as the
CApplication- derived object. The application object should
encapsulate the variables and make them accessible only through
member functions. For instance, if the application object has a
private variable named theVariable, then the application object might
have a member function named SetTheVariable() and another called
GetTheVariable(). This approach is a standard mode of operation in
most object-oriented applications.

Some prefer to use the CGlobalUser class. This class, however, does
not encapsulate and protect data as well as using a more object-
oriented approach as described above. In case you choose to use the
CGlobalUser class, the following paragraphs describe how.

The CGlobalUser class object has application global scope and can be
used to access any global variables you may need. You can find
documentation for this class in the XVT Development Solution for
C++ Reference.

The CGlobalUser class is utilized as follows:

1. Copy the file CGlobalUser.h from the pwr/include directory
to your development directory. You should rename the original
file so that the compiler will see your own copy.

2. Add public class variables to your copy of the header file as
follows:

///////////////////////
//Add items as needed//
///////////////////////

class CGlobalUser : public CNotifier
{

public:
CGlobalUser(void) {}
XVT_HELP_INFO xd_help_info;
FILE_SPEC* initFile;
SECURITY_LEVEL userLevel;

};

3. In your application's startup member function, create an
instance of CGlobalUser and pass it to CBoss: IBoss as follows:
B-15

XVT Platform-Specific Book for Macintosh
///////////////////////////////
// Call IBoss to instantiate //
// the CGlobalUser object //
///////////////////////////////

void CDEMOApp::StartUp();
{

CApplication::StartUp();
IBoss(new CGlobalUser);
DoNew();

}

4. Access the global variables through the CBoss's GU pointer, as
follows:

...
// Access the global userLevel
GU->userLevel = SUPER_USER;
...

5. Destroy the GU pointer in the application's ShutDown member
function, as follows:

////////////////////////////////////
// Destroy GU and set it to NULL //
////////////////////////////////////

void CDEMOApp::ShutDown(void)
{

delete GU;
GU = NULL;
CApplication::ShutDown();

}

Q: In the Application-Document-View hierarchy, can I have more
levels of Document-View? For example, can I have a hierarchy like
the following:

In other words, if there are only three levels in the hierarchy, I have
to put all data access/management code in one document and then
use this single document to maintain all its views, as illustrated
below?

Document View Document1 View1Application

Document View

Document2 View2
B-16

Appendix B
A: No, you cannot have multiple levels of documents using the DSC++
framework. CDocument objects must be parented to one CApplicaton
instance, just as CWindow objects are parented to a single CDocument
instance. However, this arrangement gives you plenty of power for
managing document data.

It might help to make a distinction between two different concepts
that are used in the DSC++ framework. One is the “Application-
Document-View” concept, and another is known as the “Model-
View-Controller” design pattern. These two patterns can be used
separately or together to build your application's data-flow structure.

It is true that you have only one level of views that are windows into
the data in a document. However, it makes sense that there is only
one level of complexity in this model. The real purpose of the App-
Doc-View idea is to help the developer visualize which windows are
looking at which separate groups of data.

In the App-Doc-View paradigm, it is the document's role to be the
conduit of data flow between the data level and the presentation
level of a two- or three-tier architecture. A document represents, in
all its complexity, an entire, independent data set. Even if your
presentation draws its data from several different sources, it can still
be thought of as one data set, managed by a single document.

The App-Doc-View concept helps in laying out applications that
have many windows that look into one data set, and a separate
collection of windows that look into an entirely different data set. In
your case, you may not have this type of complexity. More complex
documents probably should be broken up into more manageable
models, where the document manages (creates and destroys) these
models. Each model is designed to solve one piece of the overall
project.

In some cases, you may have a single window that looks into two
separate data sets. In such a situation, the “Model-View-Controller”
design pattern will be more appropriate. This design is borrowed

Document ViewApplication

Document View

SubView2

SubView1
B-17

XVT Platform-Specific Book for Macintosh
from the Smalltalk programming environment to help keep all the
windows into a data set in sync so they all have the same data at the
same time.

An MVC object structure can be as complicated as needed. When
the state of one model changes, all other dependent models may be
automatically notified and updated via the controllers to which the
models are registered.

You can implement this with a document that owns many data
models (use the CModel class). Each model has a controller that
decides whether windows can change or read the data. You register
each of the views with the data controller (use CController). These
views can be implemented as CViews, CSubviews, or CWindows. When
the data in the model changes, the controller will send a message to
the appropriate views so that they can update themselves with the
data. The document would manage both the data models and the
views themselves.

In Architect, you can visualize the layout with the Application-
Document-View graph. However there is no visual way to represent
the Model-View-Controller idea in Architect because this design
pattern has less to do with the layout of the application, and more to
do with the internal data structures.

These two separate concepts have their own unique uses as generic
design patterns. Thinking about object-oriented programs in terms
of abstract design patterns has proven quite useful to many object-
oriented programmers. A good book on the topic is Design Patterns:
Elements of Reusable Object-Oriented Software by Gamma, Helm,
Johnson, and Vlissides.

Q: How do you print hidden views, multiple pages, or native controls in
DSC++?

A: The default behavior of Architect-generated code is to print the
contents of a window on a single print page. DSC++ has built-in
functionality for printing the screen images of most drawn or
rendered objects, including CSubView-derived objects. Anything
which lies beyond the boundaries of the window is clipped in the
printed output. There is no functionality in DSC++ or the XVT
Portability Toolkit (PTK) for printing images of native controls,
specifically anything that inherits from the class CNativeView. If your
application only needs to be able to produce simple screen shots of
custom views drawn on a single page, you probably do not need to
override any printing methods.
B-18

Appendix B
However, many applications need to be able to print text or graphics
on multiple pages. Others may need to print portions of the view that
demonstrate how to print the contents of a text editor object on
multiple pages.

To understand Printing in DSC++, consider that there may be
several overloaded versions of DoPrint acting in a single print
process. CPrintManager has the DoPrint member function, CDocument has
DoPrint, and CView also has DoPrint. These three implementations
coexist, and they do different tasks. If you look at the DSC++
hierarchy, you can see they cannot override one another.

Printing is started when the user selects the Print option from the File
menu. This generates the standard M_FILE_PRINT menu command.
The menu command goes to your window's DoMenuCommand method.
It propagates up from there to the default CWindow menu, then the
default CDocument menu command. CDocument will then call the
CDocument-derived DoPrint Method.

If your application overrides the CView::DoPrint, note that your
overridden DoPrint function will not get called with the default
Architect code. This is because the CView class does not inherit from
CDocument, and it is the CDocument DoPrint that gets called by default.
You will need to add your own code to call the proper print method.
Usually this code is added at the window object level.

At the document level, the DoPrint method inserts each of the
document's windows as an entry (or page) in the print queue, and
calls the CPrintManager::DoPrint. The CPrintManager's DoPrint starts a PTK
print thread. If you override CView::DoPrint, your function will also
call CPrintManager::DoPrint.

The PrintThread function looks at every item in the print queue and
opens a print page for each one. It calls an item's DoPrintDraw and then
closes the page. This way each view in the queue gets exactly one
page.

The default DoPrintDraw, generally at the CView level, simply sets the
output device to be the printer, prepares the clipping region of the
view, and calls the view's PrintDraw. PrintDraw is not called if the view
is invisible. PrintDraw then does the drawing to the print page. In
many cases, PrintDraw just calls Draw, the same routine that draws to
the screen. Drawing to the screen or to the print page works
interchangeably, depending on how the output device is set.

The secret to printing multiple pages it to override the DoPrint method
that inserts pages into the print queue. Every time the CPrintManager's
Insert method is called results in a page of printed output. If you want
B-19

XVT Platform-Specific Book for Macintosh
a view to appear on several pages, call Insert once for each page with
the same view as its parameter. If the objects to be printed are within
a virtual frame, you can scroll hidden views into the visible portion
of the frame before you enter the views in the print queue.

The overridden DoPrint also needs to figure out how many pages a
view will occupy. Often times, this requires converting from printer
dot units to pixel units. For this, you need to create a units object
with dynamic mapping for your application.

Q: How can I set an accelerator on the Mac for a menu item?

A: The MENU_ITEM data structure provides a non-portable field for the
Macintosh, which will allow accelerators to be set for single menu
items in the menubar, as well as for single menu items in one of the
pull-down menus.

Each MENU_ITEM data structure represents each menu item in the
menubar or each menu item in a pull-down menu, as follows:

 typedef struct s_mitem {
 MENU_TAG tag;
 char *text;
 short mkey;
 short accel;
 unsigned enabled:1;
 unsigned checked:1;
 unsigned separator:1;
 struct s_mitem *child;

 /* non-portable fields */

 } MENU_ITEM;

accel is defined in xvt_plat.h through XVT_NP_MENU_FIELDS at the
end of the MENU_ITEM structure in xvt_type.h

Additionally, in the Portability Toolkit, there are Mac specific fields
in the MENU_ITEM structure for style and script.

Q: The XVT Portability Toolkit for Macintosh requires my application
to have the isHighLevelEventAware SIZE resource flag set. Does
this mean that the XVT Portability Toolkit provides support for high-
level Apple events?

A: The XVT Portability Toolkit does not provide direct coupling of
high-level Apple events to XVT events, but it assists in the
implementation of high-level Apple events if you choose to support
these yourself. This assistance comes in the form of calling
B-20

Appendix B
AEProcessAppleEvent from within the XVT Portability Toolkit's
internal event handler. AEProcessAppleEvent, simply put, will intercept
an incoming high-level Apple event and dispatch it to the
appropriate registered handler.

By default, XVT installs (and subsequently removes) high-level
Apple event handlers for kAEOpenDocuments and kAEPrintDocuments
events. This is done within xvt_app_create so that any files to be
opened or printed on application startup are processed and made
available through the existing xvt_app_get_file mechanism. Therefore,
if you need to provide your own handlers for kAEOpenDocuments and
kAEPrintDocuments you should do it before xvt_app_create is called. This
way XVT will not install its kAEOpenDocuments and kAEPrintDocuments
handlers, and your application will have a single unified way of
handling these events. The same is true for the kAEOpenApplication
event and any other type of high-level Apple event.

XVT also installs a high-level event handler for kAEQuitApplication
that is not removed. For this reason it is not possible for you to install
a handler for kAEQuitApplication after xvt_app_create has been called. In
addition, it is not advisable for you to install a handler for
kAEQuitApplication before xvt_app_create is called since XVT needs to
correctly terminate the application. If you supply a kAEQuitApplication
handler and call exit() or ExitToShell() without correctly re-entering the
application context, you will quit the Finder, not the application.
Also, the XVT supplied kAEQuitApplication handler dispatches an
E_QUIT event to the TASK Window event handler. Your application
should perform quit application tasks in response to this event for
portability rather than installing your own native high-level event
handler. We hope that it is clear, now, why XVT strongly suggests
that you do not use user-supplied kAEQuitApplication handlers.

The two main steps involved in implementing high-level Apple
events are the creation of the high-level event handlers and the
registration of those handlers to the high-level Apple events. The
following code snippets demonstrate the creation of the high-level
event handlers. These shells are for three core events:
kAEOpenApplication, kAEOpenDocuments, and kAEPrintDocuments, but the
concept can be carried forward for any high-level Apple event.
(kAEQuitApplication is also core event, but we handle this for you.)
B-21

XVT Platform-Specific Book for Macintosh
/* this code can be declared anywhere convenient */

#include <AppleEvents.h>
#include <GestaltEqu.h>

#define kGestaltMask 1L

pascal OSErr DoOpenApp (AppleEvent *theAppleEvent,

AppleEvent *reply, long refCon)
{
 /* place your code here */
 return(/* handler needs to return correct

OSErr result code */);
}

pascal OSErr DoOpenDoc (AppleEvent *theAppleEvent,

AppleEvent *reply, long refCon)
{
 /* place your code here */
 return(/* handler needs to return correct

OSErr result code */);
}

pascal OSErr DoPrintDoc (AppleEvent *theAppleEvent,

AppleEvent *reply, long refCon)
{
 /* place your code here */
 return(/* handler needs to return correct

OSErr result code */);
}

Once the high-level event handlers are declared, they must then be
registered to the appropriate high-level Apple events. This typically
is done before calling xvt_app_create. Be sure to make it the first call if
possible so you don't miss any incoming high-level events. AEInit
demonstrates the registration process.
B-22

Appendix B
void AEInit (void)
{
 OSErr err;
 long feature;

 err = Gestalt(gestaltAppleEventsAttr, &feature);
 if (err != noErr) {
 fprintf(stderr, "Problem in calling Gestalt!");
 return;
 }

 if (feature & (kGestaltMask << gestaltAppleEventsPresent)) {
 err = AEInstallEventHandler(kCoreEventClass, kAEOpenApplication,
(AEEventHandlerUPP)DoOpenApp, 0L, FALSE);
 if (err != noErr) fprintf(stderr, "AEOpenApplication Apple event not available!");

 err = AEInstallEventHandler(kCoreEventClass, kAEOpenDocuments,
(AEEventHandlerUPP)DoOpenDoc, 0L, FALSE);
 if (err != noErr) fprintf(stderr, "AEOpenDocuments Apple event not available!");

 err = AEInstallEventHandler(kCoreEventClass, kAEPrintDocuments,
(AEEventHandlerUPP)DoPrintDoc, 0L, FALSE);
 if (err != noErr) fprintf(stderr, "AEPrintDocuments Apple event not available!");
 }
 else {
 fprintf(stderr, "Apple events not available!");
 }
}

Note: This FAQ makes the assumption that you are familiar with
implementing high-level Apple events natively and makes no
attempt to be a definitive reference. For more information regarding
high-level Apple events, please refer to “Inside Macintosh:
Interapplication Communication.”

Q: The printer resolution values returned by
xvt_app_escape(XVT_ESC_GET_PRINTER_INFO, ...) are
incorrect for some printers, such as the LaserPrinter, for which the
values always return 72x72 dpi rather than 300x300 dpi. Initial
research shows that some printers have more than one possible
resolution and the Mac Toolbox seems to be returning the first one
in the list, rather than the currently specified resolution.

Is there a way to increase the printing resolution for printers that
support it?

A: The following discussion is a response from Apple Developer
Support in response to questions regarding printer resolutions:

The fundamental idea behind the Macintosh printing architecture is
device independence combined with QuickDraw's built-in 72 dpi
B-23

XVT Platform-Specific Book for Macintosh
resolution. The consequence is that an application “prints” by
drawing into a standard 72 dpi grafport, whose portBits.bounds
rectangle happens to represent the imageable area on the paper.
Everything else, including the whole scaling business, is the job of
the printer driver. (Note that the user may have chosen a scaling
factor different from 100% in printer drivers that support scaled
printing!) For example, the printer driver of the StyleWriter (360
dpi) by default requests for each font always 5 times the size
specified by the application, in order to achieve the best possible
text printing quality.

This 72-dpi principle also applies to QuickDraw pictures. As a
matter of fact, it is conceptually nearly the same thing as recording
drawing instructions in a PICT (between OpenPicture and ClosePicture
calls), or as recording them in a printing port (between PrOpenPage
and PrClosePage). Some applications actually prefer creating a
picture for each page to be printed, and just call DrawPicture() into the
printing port.

The limitation of this approach is that applications cannot take
advantage of higher device resolutions. In order to give them a
device independent way of imaging at one of the available device
resolutions, the PrGeneral call has been introduced, with related
opCodes, GetRsl, and SetRsl. If you use PrGeneral to set the resolution to
something supported by the currently selected printer driver, the
prInfo.iVRes and prInfo.iHRes values will reflect this setting, and the
rPage rectangle corresponds to the new coordinate system in the
printing port. Now, it's the responsibility of the application to scale
everything up to the new coordinate system. On the other hand, the
application can now control every pixel of the output device.

Regarding the (PostScript) LaserWriter, the context is more
confusing because of PostScript, which is in itself a device-
independent imaging model (with floating-point coordinates). The
PS LaserWriter driver, in principle, only sees PostScript and lets
PostScript figure out how to map graphic entities into the device
pixels. This way, the LaserWriter driver can be used to print to many
other PostScript devices of any resolution. Still, the 300dpi
knowledge is built into it, and application developers may decide to
set the resolution to this value, regardless of the features of the actual
printing engine, just because they know it's the resolution of most
of the (current) LaserWriters. Note that for some purposes, it may be
more appropriate to set the resolution to 288 dpi (4*72), to avoid
Moire effects.
B-24

Appendix B
In conclusion, if you don't have very specific requirements, just
stay in the 72 dpi world, and let the printer drivers take care of
everything. If you do have specific requirements (hair lines, your
own halftoning etc.), use PrGeneral and scale everything according to
the new coordinate system. See the article “Meet PrGeneral” in
Develop, Apple's technical journal, issue 7F3, for a more detailed
discussion and sample code.

In response to this information it has been decided that XVT cannot
predetermine the printing needs of any application and use the
device-independent printer calls. XVT does need to make sure the
application can access this capability via non-portable system-
specific calls, so to support this xvt_vobj_get_client_rect and
xvt_vobj_get_outer_rect, when called on an XVT print window, will
return the page rectangle and paper rectangle, respectively, in terms
of the current printer's pixel resolution setting. (This is the rPage
rectangle in the Mac TPrInfo record, and the rPaper rectangle in the
Mac TPrint record.) The origin of the coordinate system is the top, left
point of the page rectangle.

XVT has also tested the following code fragment as a way to set the
printer resolution and keep this information consistent with the XVT
print record. Any calls to xvt_app_escape(
XVT_ESC_GET_PRINTER_INFO, ...) after updating the printer
resolution, will reflect the correct information.

In most cases, the developer will want to implement this code
fragment right after the XVT print record has been created. DSC++
users will want to consider overriding CApplication::GetPrintRecord and
replacing calls to xvtPrintRcd with ((CApplication*)this)->itsPrintRecord.

The following code fragment makes the assumption that the
application's XVT print record has been created, is valid, and is
declared as PRINT_RCD *xvtPrintRcd:
B-25

XVT Platform-Specific Book for Macintosh
/* Include the Mac headers before XVT headers */
#if (XVTWS == MACWS)
#include <Memory.h>
#include <Printing.h>
#endif

#if (XVTWS == MACWS)
 {
 THPrint printH;
 TSetRslBlk setRslBlk;

 /* Allocate a Mac relocatable print record */
 if ((printH = (THPrint)NewHandle(

sizeof(TPrint))) == NULL)
 xvt_dm_post_error("Out of memory");

 /* Copy existing data from XVT print record into

new print record */
 HLock((Handle)printH);
 memcpy(*printH, xvtPrintRcd, sizeof(TPrint));
 HUnlock((Handle)printH);

 /* Set up the data block to set the printer
resolution */

 setRslBlk.iOpCode = setRslOp;
 setRslBlk.iError = noErr;
 setRslBlk.hPrint = printH;
 setRslBlk.iXRsl = 300;

/* Set horizontal resolution */
 setRslBlk.iYRsl = 300;

/* Set vertical resolution */
 PrOpen();
 PrGeneral((Ptr)&setRslBlk);
 PrClose();
 if (setRslBlk.iError != noErr)
 xvt_dm_post_error("PrGeneral() error %d",

setRslBlk.iError);

 /* Update the XVT print rcd with any new data */
 HLock((Handle)printH);
 memcpy(xvtPrintRcd, *printH, sizeof(TPrint));
 HUnlock((Handle)printH);

 /* Dispose a Mac relocatable print record */
 DisposeHandle((Handle)printH);
 }
#endif

The above code assumes the current printer can handle 300 dpi
resolution. This is not true for all printers, so there are two things
your application can do. If you set the printer resolution to
something it cannot handle, it will force the printer driver to use the
default resolution. This is also a method of unsetting the resolution
by specifying 0,0 as the resolution. You can also query the current
printer to see what printer resolutions it can physically be set to
using PrGeneral as follows:
B-26

Appendix B
#if (XVTWS == MACWS)
 {
 TGetRslBlk getRslBlk;
 getRslBlk.iOpCode = getRslDataOp;
 getRslBlk.iError = noErr;
 PrOpen(); PrGeneral((Ptr)&getRslBlk); PrClose();

 if (getRslBlk.iError != noErr)
 xvt_dm_post_error("PrGeneral() error %d",

getRslBlk.iError);

 /* Place your code here */
 }
#endif

The TGetRslBlk record contains the resolutions available on the
current printing device. For information on how to use the TGetRslBlk
record with the PrGeneral procedure, see “Determining and Setting the
Resolution of the Current Printer” in Inside Macintosh: Imaging
With QuickDraw.

Q: How can I override the About box in DSC and DSC++?

A: For XVT-DSC, there are two ways to override the About box. If you
don't want to add to the controls in the box, but you would like to
slightly modify the look, look in the url_plat.h file for the URL
code that describes the About box. You can delete controls from this
dialog, but you cannot add to them, and XVT does not recommend
deleting controls from the About box.

The second, better way to override the About box is to create your
own menu hook function that can be called from
ATTR_MAC_MENU_HOOK. In the prototype for this function, use only
the second and third parameters (macID and macItem). you can ignore
the rest. XVT's internal representation for the Apple menu is macID =
32767. The first item on the menu, the About box item, is macItem = 1.
Make sure your menu hook function returns FALSE if the macItem = 1
item is selected and returns TRUE for all others. You can test for these
values in the menu hook function and call your own dialog or
window creation function (i.e., xvt_dlg_create_res or xvt_win_create_res).
Make sure that the container (your About box window) is modal.
One approach is to make it a modal window. You will then have full
access to the event handler to draw graphics, display QuickTime
movies, etc.

For XVT-DSC++, the methods described above are always an
option. However, the DSC++ framework provides a method that can
be easily overridden, CApplication::DoAboutBox. This method is called
in response to a user selection from the menu. You may override the
B-27

XVT Platform-Specific Book for Macintosh
method to get your own About box by using an XVT-DSC++-type
window instead of an XVT-PTK-type window. If possible, make the
window modal. Finally, do not call the inherited object. Doing so
will bring up the standard About box. For an example of overriding
CApplication::DoAboutBox, download the DSC++ examples from
XVT's FTP site.
B-28

Index

XVT/MAC

INDEX
A
About box, B-27
Action Code Editor (ACE), 2-4
active window, A-2
Apple events, B-20
Apple, See Macintosh
application

cursor control, A-12
data and resource forks, 3-1
timers, A-30
title, 2-2

application programming
extensibility, 2-2
multibyte characters, 2-5
optimizing performance, 3-4
providing help for users, 3-10–??
simulating color depth of 2, A-23
system initialization, A-22

Application-Document-View concept, B-17
ATTR_ERRMSG_FILENAME, B-2
ATTR_ERRMSG_HANDLER, B-3
ATTR_EVENT_HOOK, A-25
ATTR_HAVE_COLOR, A-26
ATTR_HAVE_MOUSE, A-26
ATTR_KEY_HOOK, A-27
ATTR_MAC_ALWAYS_UPDATE, A-1
ATTR_MAC_BEHIND_WINDOW, A-2
ATTR_MAC_CHAR_TO_TASK, A-2
ATTR_MAC_CONTROL_HANDLE, A-3
ATTR_MAC_CTL_DEFER_UPDATE, A-3
ATTR_MAC_EVENT_TIME, A-4
ATTR_MAC_FOREIGN_WIN, A-4

ATTR_MAC_FRONT_WINDOW_FCN, A-4
ATTR_MAC_HAVE_COLOR_QUICKDRAW,

2-29, 2-31, A-5
ATTR_MAC_HILITE_MODE, A-5
ATTR_MAC_LBOX_KEY_HOOK, A-6
ATTR_MAC_LBOX_PROC_ID, A-7
ATTR_MAC_LOW_MEMORY_THRESHOLD,

A-7
ATTR_MAC_MENU_HOOK, A-8, B-3
ATTR_MAC_MOUSE_CONTROL_FOCUS, A-

9
ATTR_MAC_NATIVE_HTML_REFERENCE,

A-9
ATTR_MAC_NO_GRAY_DISABLED_EDIT,

A-10
ATTR_MAC_NO_GRAY_MAP_COLORS, A-

10
ATTR_MAC_NO_LBOX_FOCUS_BOX, A-11
ATTR_MAC_NO_SELECT_WINDOW, A-11
ATTR_MAC_NO_SET_CURSOR, A-12
ATTR_MAC_NO_UPDATE_MENU_BAR, A-

12
ATTR_MAC_PAT_RES_ID, A-13
ATTR_MAC_PAT_RES_INDEX, A-13
ATTR_MAC_PIXMAP_GWORLD_DEPTH, A-

14
ATTR_MAC_PRINT_CLIPPING, A-14
ATTR_MAC_PRINT_COPIES, A-15
ATTR_MAC_PRINT_FIRST_PAGE, A-15
ATTR_MAC_PRINT_LAST_PAGE, A-16
ATTR_MAC_PROC_ID, 2-15, A-16
ATTR_MAC_ROUNDED_GROUPBOX, A-17
I-1

XVT Platform-Specific Book for Macintosh
ATTR_MAC_SCROLL_THUMBTRACK, A-17
ATTR_MAC_SET_TITLE_AUTO_SELECT, A-

18
ATTR_MAC_SHOW_JOB_DIALOG, A-18
ATTR_MAC_STR_HELP, A-19
ATTR_MAC_STR_STYLE_MENU1, A-20
ATTR_MAC_STR_STYLE_MENU2, A-20
ATTR_MAC_STR_STYLE_MENU3, A-21
ATTR_MAC_SYSTEM_INITIALIZATION, 2-

4, A-22
ATTR_MAC_USE_COLOR_QUICKDRAW, A-

23
ATTR_MAC_USE_NATIVE_ORIGIN, A-23
ATTR_MAC_WIN_MAX_HEIGHT, A-24
ATTR_MAC_WIN_MAX_WIDTH, A-24
ATTR_MAC_WIN_MIN_HEIGHT, A-24
ATTR_MAC_WIN_MIN_WIDTH, A-24
ATTR_MAC_WIN_USE_FIRST_CLICK, A-24
ATTR_MULTIBYTE_AWARE, A-27
ATTR_NATIVE_GRAPHIC_CONTEXT, A-29
ATTR_NATIVE_WINDOW, A-30
ATTR_NUM_TIMERS, A-30
ATTR_PRINTER_*, A-31
ATTR_R40_TXEDIT_BEHAVIOR, B-10
attributes

non-portable, A-1
portable, A-25

automatic dialog position flags, 2-16

B
Balloon Help, 2-26
bundle resources

creator, 2-7
data types, 2-7
icons, 2-7

C
caret, where placed relative to selection, A-18
CGlobalUser.h file, B-15
CGrafPtr, A-29
character events, 2-5, A-2, A-6
cicn resource, 2-30, 2-31
clipping, A-14
CNTL resources, See controls, resources
color

depth, A-14, A-23
foreground and background, A-10
highlight, A-5
menus, 2-24
monochrome, A-10, A-23
system, A-26
text, A-37
using with controls, B-6

Color QuickDraw, A-5, A-23
color table

menus, 2-25
setting, A-37

colorized menus, 2-24
Command key, 2-26
compilation, conditional, 2-2, 2-23, 3-2
compile time optimization, B-9
compiler

list of supported, 1-1
Metrowerks CodeWarrior C++, 3-3
optimization, 3-4

compiler options
LANG_* CURL, B-8

Control key, 2-26
ControlHandle, A-3
controls

creating, 2-14, 2-21
defining constants, 2-20
edit, A-10, A-18
handle, A-3
initialize or set as a group, A-3
Macintosh icons, 2-29
numbering, 2-19
resources

Default and Cancel buttons, 2-19
dialog, 2-12
min and max fields, 2-23
procID field, 2-21
refCon field, 2-23
Rez definition, 2-20
title, 2-23
value field, 2-22

rounded rectangle borders, A-17
switching focus, A-9
using color with, B-6
using with dialog resources, 2-12
I-2

Index
conventions
for code, 1-x
general manual, 1-ix

crsr resource, 2-29
CText, B-12
ctype.h file, 3-2
curl

automatic dialog positioning, 2-16
building in Metrowerks CodeWarrior, 3-6
menu accelerators, 2-26
menu creation, 2-24
native Macintosh string resources, B-4

curl.app
troubleshooting, B-1

curl.opt file, B-1
CURS resource, 2-29
cursor

how to control, A-12
resources, 2-29

D
data fork, 3-1
dctb resource, 2-17
DeRez, 2-30
development environment

Metrowerks CodeWarrior C++, 3-3
diacritical marks, A-6
dialog

automatic positioning, 2-16, A-31
color, 2-17, A-37
controls, adding color, 2-17
resources, 2-12
Rez definition, 2-13
setting color at runtime, 2-18
using controls, 2-12

DIALOG_POSITION constant, 2-16
directories, See folders
DITL resources, 2-12, 2-14
DLG_CANCEL, 2-20
DLG_OK, 2-20
DLOG resources, See dialog resources
doc folder, 1-1, A-1
document hierarchy, B-16
draw mode definitions, B-11

M_CLEAR, B-12

M_COPY, B-11
M_NOT_CLEAR, B-12
M_NOT_COPY, B-12
M_NOT_OR, B-12
M_NOT_XOR, B-12
M_OR, B-11
M_XOR, B-11

DRAW_CTOOLS, 2-36
DRAW_MODE, B-11

E
E_CHAR events, 2-5, A-2, A-6
E_MOUSE_DOWN events, A-9, A-11, A-24
E_UPDATE events, A-1, A-3
edit control

automatic selection of text, A-18
disabled appearance, A-10
native handle, A-33

error handling, B-4
error message handler

overriding, B-5
error messages, B-2
errscan

building in Metrowerks CodeWarrior, 3-6
escape codes, A-31
event

character, 2-5, A-2, A-6
hook, A-25
mouse down, A-9, A-11
native, A-25
thumbtrack, A-17
update, A-1, A-3
WaitNextEvent, A-4, A-25

Events.h file, A-25

F
fcntl.h file, 3-2
FILE_SPEC record, 2-4
files

CGlobalUser.h, B-15
creator, 2-7
ctype.h, 3-2
curl.opt, B-1
Events.h, A-25
fcntl.h, 3-2
I-3

XVT Platform-Specific Book for Macintosh
icon.rsrc, 2-30
minit.c, 2-4, A-22
object, 3-2
QuickDraw.h, 2-19, A-29, A-30, A-37
readme, 1-1, A-1
required for XVT/Mac applications, 3-2
stdarg.h, 3-2
stddef.h, 3-2
stdio.h, 3-2
stdlib.h, 3-2
string.h, 3-2
time.h, 3-2
Types.h, 3-2
Types.r, 2-20
unix.h, 3-2
URL, 2-29
url.h, 2-9, B-1
url_plat.h, 2-10, B-3
Windows.h, 2-15
xvt.h, 3-2, B-1
xvt_env.h, 2-2
xvt_mctl.h, 2-20

finder icon resources, 2-31
floating window, A-4, A-11, A-24
focus

switching to different control, A-9
visual cue, A-11

folders
doc, 1-1, A-1
include, 2-2, 2-10
samples:ptk:mac, 2-4

, A-29
font

descriptor version identifier, 2-35
family resource name, A-32
logical, 2-35
native descriptors, 2-35
physical, 2-35

Font Style menu, A-20–A-22
fonts

mapping to multibyte fonts, B-8
standard, B-8

fork
data, 3-1
resource, 3-1

FrontWindow, A-4

G
geometry, PICTURE, A-36
global variables, B-15
graphics context, A-29
gray dithered patterns, A-10
group box control, appearance of, A-17
GWorld, A-14

H
help system, See online help
helpc

building in Metrowerks CodeWarrior, 3-6
helpview

building in Metrowerks CodeWarrior, 3-6
link libraries, 3-12

high-level Apple events, B-20
highlight color, A-5
hmnu Macintosh resources, 2-27
hypertext online help, See online help

I
ICON resource, 2-23, 2-30, 2-31
icon.rsrc file, 2-30
icons

as controls, 2-29, A-34
creating using xvt_dwin_draw_icon, 2-31

ictb resource, 2-17
IME, 2-5
include folder, 2-2, 2-10
initialization, 2-4
input method editor, See IME
internal warning messages

overriding, B-4
international characters, 2-5, A-6

J
Japanese characters, 2-5

K
key hook function, A-6
keyboard

accelerators, 2-26
international characters, 2-5
key translation, A-28

keys
I-4

Index
Command, 2-26
Control, 2-26
Option, 2-26
Shift, 2-26

L
LANG_* CURL compiler options, B-8
LANG_GER_IS1, B-9
LANG_GER_W52, B-9
LANG_JPN_SJIS, B-9
language, See multibyte characters, Japanese

characters
libraries

adding in Metrowerks CodeWarrior C++, 3-5
Mac Toolbox, 3-2
Metrowerks CodeWarrior C++, 3-5
required for XVT/Mac applications, 3-2
RogueWave Tools.h++, 3-5
text edit, 3-2, 3-5
XVTmPPCmwAPI.lib (core), 3-5
XVTmPPCmwHB.lib, 3-5, 3-11, 3-12
XVTmPPCmwHI.lib, 3-5
XVTmPPCmwPWR.libWR.lib, 3-5
XVTmPPCmwRW.lib, 3-5
XVTmPPCmwTE.lib, 3-5
XVTmPPCmwTES.lib, 3-5
XVT-Power++, 3-5

library, 3-11
link libraries, 3-5
list box

CNTL resource definition field, 2-21
definition ID, A-7
erratic behavior, B-4
focus control, A-11
font number set, A-33
keyboard key behavior, A-6
native handle, A-33

list edit
CNTL resource definition field, 2-21
native handle, A-33

logical fonts, 2-35
look-and-feel, 2-1, A-11, A-17, A-24, A-34
lowercase characters, 2-26

M
M_CLEAR, B-12
M_COPY, B-11
M_NOT_CLEAR, B-12
M_NOT_COPY, B-12
M_NOT_OR, B-12
M_NOT_XOR, B-12
M_OR, B-11
M_XOR, B-11
MAC_FLAG_*, 2-14, 2-22
mac_initialized, 2-4
MAC_STR_*, 2-34
MAC_STR_LOW_MEM_WARNING_ID, A-7
macID, B-3
Macintosh, 1-2

Balloon Help menu, 2-26
Color QuickDraw, A-5, A-23
cursor resources, 2-29
dialog automatic position flags, 2-16
Font Style menu, A-20–A-22
icons, 2-29
List Manager, B-4
look-and-feel, 2-1, A-11, A-17, A-24, A-34
menus, 2-23–2-25
PICT file format, A-35
QuickTime, B-3
resource compilers, 3-9
screen sizes and look-and-feel, 2-1
specific code, compiling conditionally, 2-3
Toolbox

accessing File Manager, 2-4
Dialog Manager, 2-20
initialization, 2-4
library, 3-2

WIND resource, 2-12
macItem, B-3
MacOS, 1-2

System 7, 2-9, 2-16
macros, when to invoke, 2-6
MACWS, 2-3
manual, conventions used in, 1-ix
mctb resource, 2-24
memory

approaching low threshold, 2-34, A-7
partition size, 2-9
I-5

XVT Platform-Specific Book for Macintosh
menubars
compared to titlebars, 2-2
grayed (disabled), A-4
prevent updating, A-12

menus
"Quit" menu item, 2-24
accelerators, 2-26, B-20
Balloon Help, 2-26
color resources, 2-24
creating in Rez, 2-24
hierarchical, 2-24
hook function, A-8
M_HELP, 2-26
Macintosh, 2-23–2-25
non-portable colorized, 2-24
processing selection, A-8
updating, A-12

Metrowerks CodeWarrior C++
adding libraries, 3-5
building libraries, 3-6
development environment, 3-3
libraries, 3-5
optimization with XVT_OPT, 3-4
preferences, setting, 3-3
project files, 3-5

minit.c file, 2-4, A-22
modal dialogs

and online help, 3-11
ATTR_MAC_BEHIND_WINDOW, A-2
coding in Rez, 2-13
creating as Macintosh movable modal

dialogs, 2-15
DLOG resource definition, 2-14

modal windows
ATTR_MAC_BEHIND_WINDOW, A-2
creating, A-34

modeless dialogs, 2-14
Model-View-Controller concept, B-17
monitors

color, A-26
monochrome, A-10, A-23
multiple, 2-1, A-32

Motif Window Manager, 1-2
mouse down event, A-9, A-11
mouse, checking for, A-26

MS-Windows 95, See Windows 95
MS-Windows 98, See Windows 98
MS-Windows NT, See Windows NT
multibyte characters, 2-5, 3-9, A-28, B-8
multibyte fonts, B-8

N
native

events, A-25
font descriptors, 2-35
functionality, 2-2
graphics device list, A-32
mouse down event, A-9, A-11
palette, A-35
pattern list resource, A-13
resources, 2-6
system initialization, A-22
system origin, A-23
window, A-30

NO_STD_BUNDLE, 2-6
NO_STD_HELP_MENU, 2-26
NO_STD_SIZE, 2-9
non-portable

attributes, A-1
code, 2-2
colorized menus, 2-24
escape codes, A-31

NText, B-12

O
online help

accessing, A-19
bound viewer

adding libraries in Metrowerks Code-
Warrior C++, 3-5

building your application with, 3-10
help viewer

bound, 3-11
portable, 3-10
standalone, 3-12

libraries required, 3-2
M_HELP menus, 2-26
modal windows and dialogs, 3-11
standalone help viewer

adding libraries in Metrowerks Code-
I-6

Index
Warrior C++, 3-5
optimization

Metrowerks CodeWarrior C++, 3-4
Option key, 2-26

P
pages, of printed output, A-15–A-16
palette, A-35
partition size, 2-9
PAT_SOLID, A-10
PAT_SPECIAL, A-13
patterns, A-10, A-13
performance, improving, 3-4
physical fonts

defined, 2-35
See Also font

PICT file format, A-35
PICT resource, 2-23
PICTURE

geometry, A-36
reading from file, A-35

picture control, A-34
pixmap, color depth, A-14
Portability Toolkit, See XVT Portability Toolkit
portable attributes, A-25
printing

clip region, A-14
current print record, A-31
dialog box, A-18
first page, A-15
hidden views, B-18
increasing resolution, B-23
last page, A-16
multiple pages, B-18
native controls, B-18
number of requested copies, A-15

project files, 3-5
PTK, See XVT Portability Toolkit

Q
QuickDraw.h file, 2-19, A-29, A-30, A-37
QuickTime, B-3

R
readme file, 1-1, A-1
rectangle

of desktop’s current visible region, A-32
of window resized by user, A-24

ResEdit
adding color to dialogs, 2-17
adding color to menus, 2-24
creating dialogs, 2-12
creating icons, 2-29
cursor resources, 2-29
using to modify menus, 2-24

resource fork, 3-1
resources

and Universal Resource Language (URL), 2-
6

BNDL (bundle), See bundle resources
cicn, 2-30, 2-31
CNTL (control), See controls, resources
crsr, 2-29
CURS, 2-29
dctb, 2-17
dialog, 2-12
DITL, 2-12, 2-14
errors finding, B-1
finder icon, 2-31
hmnu, 2-27
ICON, 2-23, 2-30, 2-31
ictb, 2-17
Macintosh

control, 2-19
cursor, 2-29
dialog, 2-12
strings, 2-33

mctb, 2-24
PICT, 2-23
SIZE, 2-9
'vers' (version), 2-11
window, 2-12
XVT/Mac, 2-6

Rez
using to code resources, 2-6

RogueWave Tools.h++ class library, 3-5

S
samples:ptk:mac folder, 2-4, A-29
SC_THUMBTRACK events, A-17
screen origin, A-23
I-7

XVT Platform-Specific Book for Macintosh
scrollbar thumb position, A-17
Shift key, 2-26
SIZE resources, 2-9
source code, 3-6
SPCL:Main_Code tag, 2-4
SPCL:User_URL tag, 2-5
stack trace, B-2
stdarg.h file, 3-2
stddef.h file, 3-2
stdio.h file, 3-2
stdlib.h file, 3-2
string internationalization, 2-33
string lists, B-4
string.h file, 3-2
strings (Macintosh resources), accessing, 2-33
System 7, 2-9, 2-16

T
task window, A-2
text

color, A-37
highlighting, A-5

text edit
CNTL resource definition field, 2-21
dummy library, 3-5
libraries, 3-2
native handle, A-33

text edit objects, B-10
thumbtrack event, A-17
time.h file, 3-2
timers, A-4, A-30
titlebars, 2-2
toolbar, floating, A-24
transparent URL statement, 2-5
Types.h file, 3-2
Types.r file, 2-20

U
UNIX, 1-2
unix.h file, 3-2
update events, A-1, A-3
uppercase characters, 2-26
URL

accel statement, 2-26
coding

dialog resources, 2-12
menu resources, 2-23
resources, 2-6
SIZE resources, 2-9
string resources, 2-33

DIALOG statement and dialog position, 2-17
file, 2-29
FONT, FONT_MAP statements, 2-35
transparent statements, 2-5

url.h file
and SIZE resources, 2-9
error involving, B-1

url_plat.h file, 2-10, B-3
userItem, 2-12, 2-20

V
'vers' (version) resources, 2-11

W
WaitNextEvent, A-4, A-25
warning messages

overriding, B-4
WC_EDIT, A-33
WC_LBOX, A-33
WC_LISTEDIT, A-33
window

active, A-2
color, A-37
creating new, A-2
definition ID, A-16
floating, A-4, A-11, A-24
foreign, A-4
geometry, A-24, A-32
modal, A-34
native, A-30
print, A-14
resources, 2-12
setting color at runtime, 2-18
task, A-2

WindowRef, A-30
Windows 95, 1-2
Windows 98, 1-2
Windows NT, 1-2
Windows.h file, 2-15
I-8

Index
X
XVT Portability Toolkit, 1-1

new features, B-8
xvt.h header file, 3-2, B-1
XVT/Mac, 1-2

color mapping policy, A-10
initialization, 2-4
resource specifics, 2-6
source code, 3-6

XVT/Win32
supported platform, 1-2

XVT/XM, 1-2
xvt_app_create, 2-4, 2-34
XVT_COLOR_ACTION_SET, B-7
XVT_COLOR_ACTION_UNSET, B-7
XVT_COLOR_COMPONENT, B-7
xvt_ctl_create, A-11
xvt_ctl_create_def, 2-30, A-11
xvt_ctl_set_colors, B-6, B-7
xvt_dlg_create_res, 2-12
xvt_env.h file, 2-2
xvt_errmsg_sig, B-2
XVT_ESC_GET_PRINTER_INFO, A-31
XVT_ESC_MAC_DIALOG_POSITION, A-31
XVT_ESC_MAC_FONT_GET_RES_NAME, A-

32
XVT_ESC_MAC_GET_DESKTOP_BOUNDS,

2-2, A-32
XVT_ESC_MAC_GET_DISPLAY_INFO, 2-2,

A-32
XVT_ESC_MAC_GET_EDIT_HANDLE, A-33
XVT_ESC_MAC_GET_LIST_HANDLE, A-33
XVT_ESC_MAC_GET_PICT_ID, A-34
XVT_ESC_MAC_MODAL_WINDOW, A-34
XVT_ESC_MAC_PALET_GET_PALETTE_HA

NDLE, A-35
XVT_ESC_MAC_PICT_READ_FROM_FILE,

A-35
XVT_ESC_MAC_PICTURE_COMMENT, A-35
XVT_ESC_MAC_RES_GET_PICT, A-36
XVT_ESC_MAC_SET_PICT_ID, A-36
XVT_ESC_MAC_SET_WINDOW_COLOR, 2-

18, A-37
XVT_FILESYS_MAC, 2-3
xvt_font_set_native_desc, 2-35

xvt_mctl.h file, 2-20
xvt_menu_set_tree, A-12
xvt_menu_update, A-12
XVT_MINIMUM_MEM_SIZE, 2-9
XVT_OPT, B-9

using in Metrowerks CodeWarrior C++, 3-4
XVT_PREFERRED_MEM_SIZE, 2-9
xvt_print_create_win, A-15, A-18
xvt_res_get_str, 2-33, B-4
xvt_res_get_str_list, 2-33, B-4
xvt_sbar_get_pos, A-17
xvt_sbar_set_pos, A-17
xvt_scr_set_focus_vobj(), B-10
xvt_timer_create, A-30
xvt_tx_set_active(), B-10
xvt_vobj_get_attr, A-1, A-31
xvt_vobj_move, A-3, A-24
xvt_vobj_set_attr, A-1, A-31
xvt_vobj_set_title, A-3, A-18
xvt_vobj_set_visible, 2-18
xvt_win_dispatch_event, A-25
xvt_win_set_ctl_colors, B-7
xvt_win_set_cursor, 2-29
XVT-Design

Action Code Editor (ACE), 2-4
coding resources with, 2-5
Macintosh

Toolbox initialization, 2-4
XVTmPPCmwAPI.lib library (core), 3-5
XVTmPPCmwHB.lib library, 3-5, 3-11, 3-12
XVTmPPCmwHI.lib library, 3-5
XVTmPPCmwPWR.lib library, 3-5
XVTmPPCmwRW.lib library, 3-5
XVTmPPCmwTE.lib library, 3-5
XVTmPPCmwTES.lib library, 3-5
XVT-Power++ class library, 3-5

Z
zooming in Power++, B-13
I-9

XVT Platform-Specific Book for Macintosh
I-10

	Chapter 1: Introduction 1-1
	Chapter 2: Using XVT/Mac 2-1
	Chapter 3: Development Environment 3-1
	XVT/Mac
	Preface
	About This Manual
	Conventions Used in This Manual
	General Conventions
	This symbol and typestyle highlight information specific to using XVT-Design, XVT’s C visual programming tool and code generator.
	This symbol and typestyle highlight information specific to using XVT-Architect, XVT’s C++ visual programming tool and code generator.
	Code Conventions

	1
	Introduction
	Welcome to XVT/Mac. This platform-specific book (PSB) contains information about using the latest release of the XVT Portability Toolkit (XVT/Mac) on your particular platform. If you had an earlier version of XVT/Mac, this manual replaces the previou...
	1.1. Compilers Supported by XVT/Mac
	XVT/Mac supports one compiler, Metrowerks CodeWarrior C/C++.

	1.2. XVT Implementations and Operating Systems
	The XVT library is currently available for several different window systems and operating systems:

	2
	Using XVT/Mac
	2.1. Introduction
	This chapter addresses various platform-specific issues that you may need to consider while using XVT/Mac. The information here assumes you are familiar with developing Macintosh applications from a general standpoint. If not, see Inside Macintosh fo...
	2.1.1. Native Look-and-feel Development Issues
	Developing successful cross-platform applications demands familiarity with the look-and-feel of each target platform. This requirement is especially true when developing for the Macintosh. The next section outlines some sample porting restrictions fo...

	2.1.2. Sample Porting Restrictions — XVT/Mac
	2.1.2.1. Multiple Monitors
	2.1.2.2. Titlebars versus Menubars

	2.2. Extensibility
	2.2.1. Conditional Compilation
	If, in your application, you need to provide some native-platform GUI functionality not available in the XVT Portability Toolkit, then the small percentage of your code that provides that functionality will be non-portable. In this case, you must com...

	2.2.2. Accessing Window Device Contexts and Handles
	2.2.3. Macintosh Toolbox Initialization
	Using XVT-Design, you can initialize certain Macintosh Toolbox systems by editing the tag SPCL:Main_Code in the Action Code Editor (ACE) and setting the attribute ATTR_MAC_SYSTEM_INITIALIZATION.
	XVT/Mac initializes certain Macintosh Toolbox systems with an internal function contained in the file minit.c in the samples:ptk:mac folder. To initialize the Macintosh Toolbox before calling xvt_app_create, your application can create its own initia...
	Using XVT-Architect, you can initialize certain Macintosh Toolbox systems by editing the application’s StartUp method before calling the base class, CApplication::StartUp method and setting the attribute, ATTR_MAC_SYSTEM_INITIALIZATION.

	2.2.4. Accessing the Macintosh Toolbox File Manager
	The FILE_SPEC record contains a field of type DIRECTORY. In XVT/Mac this type is defined as containing the Mac volume ID and the directory ID, as follows:

	2.3. Invoking an Input Method Editor
	An Input Method Editor (IME) is provided by Apple with the operating system or language kit to allow application users to enter multibyte or other non-ASCII characters from a keyboard that does not support these characters. On the Mac, users may sele...

	2.4. XVT/Mac Resource Specifics
	You will probably never need to code native resources directly, since XVT-Design and xrc handle the job automatically when you use the XVT-Design tag SPCL:User_URL. The following information is provided for reference only.
	Generating Macintosh-specific Resources in XVT-Design
	1. Select the tag SPCL:User_URL in the ACE.
	2. Add Mac conditionally-compiled Rez statements with an URL #transparent statement.

	Coding Macintosh-specific Resources

	This section tells you how to code Macintosh-specific resources that can be used with XVT. If you plan to code resources exclusively in URL, XVT’s Universal Resource Language, you don’t need to read this section, except as background information....
	2.4.1. Bundle Resources
	Your Macintosh application should include a bundle resource that specifies its version number, creator ID, application icon, and types and icons for each of the files that it can process.

	2.4.2. SIZE Resources
	If you simply need to set the partition sizes, you do not have to create your own SIZE resource.
	The Macintosh SIZE resource communicates Finder attribute information about your application to the Finder. It also specifies the minimum and preferred partition sizes for your application:
	1. Define the symbol NO_STD_SIZE before including url.h.
	2. Define the bundle resource with an URL #transparent statement.

	The following sample code uses URL to set the minimum partition size to 4 MB and the preferred partition size to 8 MB:

	2.4.3. Version Resources
	The Macintosh version resource stores your application version information for use by the Finder. This information is displayed when the user selects Get Info from the File menu.The Finder also uses the version resource to display version information...

	2.4.4. Window Resources
	2.4.5. Dialog Resources
	The following subsections describe rules you must follow when creating dialogs for use with XVT/Mac. If you’re coding in URL, you don’t have to follow these rules or know how to code dialogs in Rez. Just follow the rules in the “Resources and U...
	Macintosh dialog resources are of type DLOG, and the corresponding resource ID is the second argument of the xvt_dlg_create_res function. The DLOG resource references a DITL resource, which lists the controls. You can use the following controls:
	2.4.5.1. Modal Dialogs
	To see how to code for a modal dialog, look at the About box example below. Note that the resource controls only the appearance of the box. Whether it behaves modally is determined by the first argument (WD_MODAL or WD_MODELESS) to xvt_dlg_create_res...
	Rez Definition of the DLOG Resource

	XVT/Mac stores information in certain fields in the dialog resource record.
	DLOG Resource Definition Fields

	You must set the procID field to documentProc for modeless dialogs or dBoxProc for modal dialogs.
	Rez Definition of the DITL Resource

	All XVT/Mac controls are defined within the DITL resource as Control dialog item types that specify the resource ID of a CNTL resource.
	1. Specify all dialog items as type Control.
	2. Enter a CTRL resource ID in the item.

	2.4.5.2. Movable Modal Dialogs
	You can create Macintosh movable modal dialogs with a call to an xvt_win_create_* function using the W_MODAL type. Alternatively, you can create XVT modal dialogs as Macintosh movable modal dialogs by using the attribute ATTR_MAC_PROC_ID.
	1. Before creating your modal dialog, set the value of the attribute ATTR_MAC_PROC_ID to movableDBoxProc. (This enumerated type is defined in the Macintosh include file Windows.h.)
	2. Create your dialog as a WD_MODAL type with xvt_dlg_create_*.
	3. In order to avoid the creation of other windows or dialogs as movable modal dialogs, you must reset the attribute to -1. Do this in the E_CREATE for the dialog.

	2.4.5.3. Automatic Dialog Positioning
	The DLOG Rez resources that xrc produces are compatible with the System 7 automatic dialog position flags. xrc places the following code into the DLOG resource:
	The DIALOG_POSITION constant must be defined to one of the supported Rez dialog position flags:

	2.4.5.4. Color Dialogs
	Your application can access the dialog color resources to create non- portable colorized dialogs.
	Setting Dialog or Window Color at Runtime

	You can use the escape function XVT_ESC_MAC_SET_WINDOW_COLOR to modify the color of a dialog or window at runtime. This function lets you set the standard color table for windows and dialogs.

	2.4.6. Control Resources
	The following subsections describe rules you must follow when creating controls for use with XVT/Mac.
	2.4.6.1. Control “Ground” Rules
	XVT/Mac has two important rules concerning the numbering of controls:

	2.4.6.2. Rez Definition of the CNTL Resource
	XVT/Mac stores information in certain fields in the control resource record. To get special features in the XVT controls, you may need to set these fields.
	The Rez definition of the CNTL resource is:
	CNTL Resource Definition Fields: procID
	CNTL Resource Definition Fields: value

	For controls, the value field of the CNTL resource passes XVT control flags to all XVT controls:
	CNTL Resource Definition Fields: refCon

	The refCon field of the CTRL resource passes the application control ID for all XVT controls. The value must be greater than zero.
	CNTL Resource Definition Fields: min and max

	Different controls use the min and max fields in various ways. For static text, list box, edit, and group box controls, the max field is a Macintosh font number and the min field is the font size. For an icon or picture control, the max field is the ...
	CNTL Resource Definition Fields: title

	2.4.7. Menu Resources
	The following subsections describe rules you must follow when creating menus for use with XVT/Mac.
	2.4.7.1. Creating Macintosh-specific Menus
	You might want different menus on the Macintosh version of your application than you have on other platforms. This does not limit portability as long as the items that appear in only one version have unique tags. Define all tags in header files and m...

	2.4.7.2. Menu Item Numbering
	It’s best to use XVT-Design to create menus in URL, but if you need to create menus in Rez or with resource editing tools, you must follow specific rules. To maintain the user-tag-ID to Macintosh-ID mapping, xrc creates an XVTM type resource for ea...

	2.4.7.3. “Quit” Menu Item
	For a Mac OS X compliant look and feel, XVT will automatically relocate the "Quit" menu item located under the "File" menu to the Application menu.

	2.4.7.4. Color Menus
	2.4.7.5. Menu Accelerators
	Macintosh menu accelerators or keyboard equivalents must always begin with the Command key. Any printable ASCII character can be used as a menu accelerator without limiting portability.
	You can use some modifier keys but not others:

	2.4.7.6. Balloon Help Menu Access
	You can automatically add menu items to your application’s Balloon Help menu by creating a menu in URL with the ID M_HELP. On other platforms, you would add the M_HELP menu to the menubar as a regular menu. On the Macintosh platform, however, you a...

	2.4.8. Cursor Resources
	You can use cursors of your own design, as long as their IDs are greater than 10. Lower numbers are reserved for XVT’s standard cursors. You can use your cursors’ IDs directly in calls to the xvt_win_set_cursor function. You can load cursors dire...

	2.4.9. Control Icon Resources
	You can place icons as controls in dialogs and windows. When you create a dialog or window, the icon is created just as any other control would be.
	1. Create your icon using a resource editing tool such as ResEdit.
	2. Add an ICON statement in your URL file; a sample ICON statement is shown below:
	3. Do one of the following:
	1. Create the icon using a resource editing tool such as ResEdit.
	2. Add a #transparent statement to your URL file.
	3. Create a WIN_DEF structure with the type specified as WC_ICON.
	4. Specify the icon_id in the v.ctl.icon_id portion of the WIN_DEF structure. This icon_id must be the same as the ICON or cicn resource ID. Each cicn resource must be a color representation of any ICON resource with the same ID, since XVT/Mac always...

	2.4.10. Drawn Icons Resources
	You cannot directly define an icon in URL, but you can put a Rez statement in a #transparent statement to define one. You can also create the icon using a resource editing tool such as ResEdit and include the binary resource in a #transparent stateme...

	2.4.11. Finder Icon Resources
	A complete set of finder icons includes a black and white icon, an icon mask, and 8-bit color icons and 4-bit color icons for both the 16-by-16 and 32-by-32 sizes. To provide a complete set, you need to specify six different resources:

	2.4.12. String Resources
	You can access STR and STR# resources (portably) with the XVT functions xvt_res_get_str and xvt_res_get_str_list, respectively.
	When calling the function xvt_res_get_str_list, you should specify start and end resource IDs so that your call will work on other platforms, even though the end resource ID is not used on the Macintosh. In this example, the start ID is the same as t...
	2.4.12.1. International Strings
	2.4.12.2. String Resource IDs
	During xvt_app_create, XVT/Mac locates and loads the following string resource IDs to replace internal XVT strings (if they exist in the resource):

	2.5. XVT’s Encapsulated Font Model
	2.5.1. Font Terminology
	This section uses the following XVT-defined terms to describe XVT’s encapsulated font model:

	2.5.2. Native Font Descriptors
	To specify a particular physical font, your application can use a native font descriptor, which is a string of data fields. You can include this string as a parameter to xvt_font_set_native_desc, or in URL as part of a FONT or FONT_MAP statement.
	2.5.2.1. XVT/Mac Font Descriptor Version Identifier
	2.5.2.2. XVT/Mac Font Fields
	On the Macintosh, four attributes specify a font: family, face (style), size, and mode. The mode attribute is already addressed by the DRAW_CTOOLS mode member. Consequently, the native font descriptor string contains just the family, face, and size. ...
	For <face>, you can use plain, or any of the following valid values, in any order separated by “-”:

	3
	Development Environment
	3.1. Introduction
	This chapter gives detailed information on building XVT/Mac applications. The Macintosh development environment supports one compiler: Metrowerks CodeWarrior C/C++.
	XVT-Design and XVT-Architect generated IDE project files automatically include the appropriate options for the compiler. For up-to-date information regarding compiler settings and libraries, see the Readme file in the doc folder.

	Your compiled application consists of one linked application file containing two forks:
	3.1.1. Include Files
	XVT-Design and XVT-Architect generate code that automatically includes all necessary header files.
	To build XVT applications, you must include the XVT-specific header file, xvt.h in addition to any other application-specific header files.
	The Metrowerks CodeWarrior C/C++ compiler requires the following libraries and files:

	3.2. Metrowerks CodeWarrior C/C++ Development Environment
	The following subsections contain detailed information on building XVT/Mac applications in Metrowerks CodeWarrior C/C++ on both PowerPC platforms.
	3.2.1. Environment Options: Metrowerks CodeWarrior C/C++
	1. Select Edit=>ProjectName Settings—then select the Target:Access Paths item from the preference dialog. Add the XVT include and lib folders to the user search path.
	2. Select the Target:PPC Target or Target:68K Target item. Set the SIZE Flags value as indicated in the table below. Set your application name and desired heap sizes as well.
	3. Select the Language Settings: C/C++ Language item. Set the Language Info values as indicated in the table below.
	4. Select the Code Generation:PPC Processor Processor item. Set the Code Model value, Struct Alignment value, and Info values as indicated in the table below.
	5. Select the Linker:PPC Linker item. Set the Link Options/Info as indicated in the table below.
	Compiler Optimization Flag
	XVT provides a compiler optimization flag, XVT_OPT, for runtime optimization of the PTK. This flag is described further in the XVT Portability Toolkit Guide. To use the flag with the Metrowerks CodeWarrior C/C++ compiler, you must setup and use the p...
	1. To create a prefix file, edit a new file. Enter the following text in the file to define XVT_OPT:
	2. Save the file and name it as you like, “XVT Prefix” for example.
	3. Select Edit=>ProjectName Settings...—then select the Language Settings:C/C++ Language item from the preference dialog. Enter your prefix file in the Prefix File edit field.

	3.2.2. Link Libraries
	When using the Metrowerks CodeWarrior C/C++ compiler, the XVT library is distributed as the following library files:
	1. Add XVTm*mwAPI.lib to your project using the Add Files... command on the Project menu.
	2. If you are using the text edit object, add the text edit library XVTm*mwTE.lib; otherwise, add the dummy text edit library, XVTm*mwTES.lib, found in the lib folder.
	3. If you are using online help, add one of the libraries, depending on whether you are using the bound help viewer or the standalone IPC help viewer:
	4. In addition to the XVT libraries, add the following standard libraries that come with Metrowerks CodeWarrior C/C++:

	3.2.3. For Source Customers Only: XVT/Mac Development Environment
	This section contains information pertinent to XVT/Mac source customers. If you have purchased the XVT/Mac binary product, you can skip this section.
	3.2.3.1. Building the XVT/Mac Libraries
	XVT supplies the following Metrowerks CodeWarrior C/C++ project files for the XVT/Mac Portability Toolkit libraries:
	1. Create lib folder if it doesn’t exist.
	2. Select Project=>Reset Project Entry Paths.
	3. Select Project=>Research for Files
	4. Select Project=>Make. Do this for each Metrowerks CodeWarrior C/C++ project.

	3.2.3.2. Building Utility Programs
	1. Use the xrc supplied with the XVT Portability Toolkit to compile the file xrcxvt.url in the src:xrc folder into xrcxvt.r, the native resource file.
	1. Open the xrcppc.mu project in the src:xrc folder.
	2. Select Project=>Reset Project Entry Paths.
	3. Select Project=>Research for Files.
	4. Select Project=>Make.

	3.3. Compiling Resources
	3.3.1. Using the xrc Interactive Interface
	On the Macintosh platform, xrc is an interactive application. On other platforms, xrc is used as the line compiler.
	1. Check that your xrc.opt file exists in the bin folder and contains the options needed to compile your URL file.
	2. Double click on the xrc icon.
	3. Select Translate=>Rez. A standard file dialog appears.
	4. From the file dialog, select the URL file to be translated. A second standard file dialog appears.
	5. Enter the output file name for the Rez script and select Save. The translation begins.

	3.3.1.1. Using Drag and Drop with xrc

	3.3.2. Macintosh Resource Compilers
	Before reading this section, familiarize yourself with the documentation for the compiler supplied with your development environment (the Rez compiler for Metrowerks CodeWarrior C/ C++).
	3.3.2.1. Metrowerks CodeWarrior Rez Compiler
	The CodeWarrior Rez compiler is part of the CodeWarrior build process.
	1. In the CodeWarrior IDE application, open your application project file.
	2. Select Project=>Add Files.
	3. Select your .r file and click the Add button followed by the Done button.
	4. From the Project menu, select the Bring Up To Date or Make item to compile the .r file as well as all the other files.

	There are currently some limitations when using the CodeWarrior Rez compiler. There is no method available to set Rez compiler options through Metrowerks CodeWarrior. Thus it is not possible to compile resources translated for Japanese or other multi...

	3.4. Building Your Application with the Help System
	XVT’s hypertext online help system requires a help viewer. For XVT/Mac, you can bind the portable viewer to the application or run it as a separate (standalone) executable.
	3.4.1. Portable Viewers
	XVT/Mac provides the XVT portable hypertext help viewer in both bound and standalone forms. For both forms, you must use the XVT help compiler helpc to produce XVT-portable binary help files for the help viewer to use.

	3.4.2. Using the Helpc Interactive Interface
	On the Macintosh platform, Helpc is an interactive application. On other platforms, it is used as a line compiler.
	1. Double click on the Helpc icon.
	2. Select Compile=>Set Options to invoke the help compiler options dialog.
	3. From the help compiler options dialog, select the Find button in the Source File Selection group box. From the file selection dialog that appears, select the help source file to be compiled.
	4. From the help compiler options dialog, select the Find button in the Include Directories group box. From the file selection dialog that appears, select include.
	5. From the help compiler options dialog, select any other desired options.
	6. From the help compiler options dialog, select the Apply button.
	7. Select Compile=>Begin Compile to compile the help source.
	1. Double click on the Helpc icon.
	2. From the File menu, select Open. From the file selection dialog that appears, select the previously saved help options file. The help compiler status window shows the help source filename for the selected options file.
	3. Select Compile=>Begin Compile to compile the help source.

	3.4.2.1. Bound Viewer
	3.4.2.2. Standalone Viewer
	Helpview is an application that communicates with XVT applications to provide hypertext help.

	A
	Appendix A: Non-portable Attributes and Escape Codes
	A.1. Non-portable Attributes
	The xvt_vobj_set_attr and xvt_vobj_get_attr functions allow you to manipulate XVT attributes. Non-portable attributes let you fine-tune your application to make it more closely adhere to the look-and-feel of the underlying platform, or to add functio...
	ATTR_MAC_ALWAYS_UPDATE
	ATTR_MAC_BEHIND_WINDOW
	ATTR_MAC_CHAR_TO_TASK
	ATTR_MAC_CONTROL_HANDLE
	ATTR_MAC_CTL_DEFER_UPDATE
	ATTR_MAC_EVENT_TIME
	ATTR_MAC_FOREIGN_WIN
	ATTR_MAC_FRONT_WINDOW_FCN
	ATTR_MAC_HAVE_COLOR_QUICKDRAW
	ATTR_MAC_HILITE_MODE
	ATTR_MAC_LBOX_KEY_HOOK
	ATTR_MAC_LBOX_PROC_ID
	ATTR_MAC_LOW_MEMORY_THRESHOLD
	ATTR_MAC_MENU_HOOK
	ATTR_MAC_MOUSE_CONTROL_FOCUS
	ATTR_MAC_NATIVE_HTML_REFERENCE
	ATTR_MAC_NO_GRAY_DISABLED_EDIT
	ATTR_MAC_NO_GRAY_MAP_COLORS
	ATTR_MAC_NO_LBOX_FOCUS_BOX
	ATTR_MAC_NO_SELECT_WINDOW
	ATTR_MAC_NO_SET_CURSOR
	ATTR_MAC_NO_UPDATE_MENU_BAR
	ATTR_MAC_PAT_RES_ID
	ATTR_MAC_PAT_RES_INDEX
	ATTR_MAC_PIXMAP_GWORLD_DEPTH
	ATTR_MAC_PRINT_CLIPPING
	ATTR_MAC_PRINT_COPIES
	ATTR_MAC_PRINT_FIRST_PAGE
	ATTR_MAC_PRINT_LAST_PAGE
	ATTR_MAC_PROC_ID
	ATTR_MAC_ROUNDED_GROUPBOX
	ATTR_MAC_SCROLL_THUMBTRACK
	ATTR_MAC_SET_TITLE_AUTO_SELECT
	ATTR_MAC_SHOW_JOB_DIALOG
	ATTR_MAC_STR_HELP
	ATTR_MAC_STR_STYLE_MENU1
	ATTR_MAC_STR_STYLE_MENU2
	No other characters are valid. The passed string is copied to an internal buffer. Maximum string length is 256 bytes.

	ATTR_MAC_STR_STYLE_MENU3
	ATTR_MAC_SYSTEM_INITIALIZATION
	ATTR_MAC_USE_COLOR_QUICKDRAW
	ATTR_MAC_USE_NATIVE_ORIGIN
	ATTR_MAC_WIN_MAX_HEIGHT ATTR_MAC_WIN_MAX_WIDTH ATTR_MAC_WIN_MIN_HEIGHT ATTR_MAC_WIN_MIN_WIDTH
	ATTR_MAC_WIN_USE_FIRST_CLICK

	A.2. Variations on Portable Attributes
	These portable attributes have been modified slightly to support differences on the native Macintosh platform.
	ATTR_EVENT_HOOK
	ATTR_HAVE_COLOR
	ATTR_HAVE_MOUSE
	ATTR_KEY_HOOK
	Non Multibyte-aware Application
	If your application uses a single-byte character codeset and you have set the value of ATTR_MULTIBYTE_AWARE as FALSE (default), then ATTR_KEY_HOOK behaves as follows:
	Multibyte-aware Application

	If your application is multibyte-aware (in other words, you have set the value of ATTR_MULTIBYTE_AWARE as TRUE), then ATTR_KEY_HOOK behaves as follows:

	ATTR_NATIVE_GRAPHIC_CONTEXT
	ATTR_NATIVE_WINDOW
	ATTR_NUM_TIMERS
	ATTR_PRINTER_*

	A.3. Non-Portable Escape Codes
	The xvt_app_escape function enables you to set or get XVT/Mac-specific information that you cannot set or get using the xvt_vobj_set_attr or xvt_vobj_get_attr functions. The xvt_app_escape function’s escape codes and the associated parameter lists ...
	XVT_ESC_MAC_DIALOG_POSITION
	XVT_ESC_MAC_FONT_GET_RES_NAME
	XVT_ESC_MAC_GET_DESKTOP_BOUNDS
	XVT_ESC_MAC_GET_DISPLAY_INFO
	XVT_ESC_MAC_GET_EDIT_HANDLE
	XVT_ESC_MAC_GET_LIST_HANDLE
	XVT_ESC_MAC_GET_PICT_ID
	XVT_ESC_MAC_MODAL_WINDOW
	XVT_ESC_MAC_PALET_GET_PALETTE_HANDLE
	XVT_ESC_MAC_PICT_READ_FROM_FILE
	XVT_ESC_MAC_PICTURE_COMMENT
	XVT_ESC_MAC_RES_GET_PICT
	XVT_ESC_MAC_SET_PICT_ID
	XVT_ESC_MAC_SET_WINDOW_COLOR

	B
	Appendix B: Frequently Asked Questions
	Install this error handler either prior to or after xvt_app_create as follows:
	Draw Mode Definitions
	1. Copy the file CGlobalUser.h from the pwr/include directory to your development directory. You should rename the original file so that the compiler will see your own copy.
	2. Add public class variables to your copy of the header file as follows:
	3. In your application's startup member function, create an instance of CGlobalUser and pass it to CBoss: IBoss as follows:
	4. Access the global variables through the CBoss's GU pointer, as follows:
	5. Destroy the GU pointer in the application's ShutDown member function, as follows:

	Index

	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

