

 © 2011 Providence Software, Inc. All rights reserved. Using XVT for Windows® and Mac OS

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished under license and may be used or copied
only in accordance with the terms of such license. Except as permitted by any such license, no part of this guide may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of Providence Software Incorporated. Please note that the content in
this guide is protected under copyright law even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Providence Software
Incorporated. Providence Software Incorporated assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this
guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The unauthorized incorporation of such
material into your new work could be a violation of the rights of the copyright owner. Please be sure to obtain any permission required from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any actual organization. XVT, the XVT logo, XVT DSP,
XVT DSC, and XVTnet are either registered trademarks or trademarks of Providence Software Incorporated in the United States and/or other countries.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Macintosh is a trademark of Apple Inc.
registered in the U.S. and other countries. All other trademarks are the property of their respective owners.

Preface
XVT/XM
PREFACE

About This Manual
XVT takes pride in its documentation, and continually seeks to
improve it. If you find a documentation error, please contact
Customer Support. They will forward your suggestion to XVT’s
documentation team.

Conventions Used in This Manual

In this manual, the following typographic and code conventions
indicate different types of information.

General Conventions

code
This typestyle is used for code and code elements (names of
functions, data types and values, attributes, options, flags,
events, and so on). It also is used for environment variables and
commands.

code bold
This typestyle is used for elements that you see in the user
interface of applications, such as compilers and debuggers. An
arrow separates each successive level of selection that you need
to make through a series of menus, e.g., Edit=>Font=>Size.

bold
Bold type is used for filenames, directory names, and program
names (utilities, compilers, and other executables).

italics
Italics are used for emphasis and the names of documents.

Tip: This symbol marks the beginning of a procedure. These symbols can
help you quickly locate “how-to” information.
v

XVT Platform-Specific Book for Motif
Note: An italic heading like this marks a standard kind of information:
a Note, Caution, Example, Tip, or See Also (cross-reference).

This symbol and typestyle highlight information specific to using

XVT-Design, XVT’s visual programming tool and code generator.

Code Conventions

<non-literal element> or non_literal_element
Angle brackets or italics indicate a non-literal element, for
which you would type a substitute.

[optional element]
Square brackets indicate an optional element.

...
Ellipses in data values and data types indicate that these values
and types are opaque. You should not depend upon the actual
values and data types that may be defined.

vi

Table of Contents

XVT/XM
CONTENTS
Preface..1-v

Chapter 1: Introduction...1-1
1.1. Changes to Existing Features ... 1-2
1.2. Compilers Supported by XVT/XM .. 1-2
1.3. Viewing the Online

XVT Portability Toolkit Reference.. 1-2
1.4. XVT Implementations and Operating Systems...................... 1-2

Chapter 2: Using XVT/XM ...2-1
2.1. Introduction .. 2-1
2.2. Extensibility ... 2-1

2.2.1. Conditional Compilation .. 2-1
2.2.2. Accessing Window Device Contexts

and Handles .. 2-2
2.3. Invoking an Input Method Editor... 2-2
2.4. XVT/XM Resource Specifics... 2-5

2.4.1. Creating Portable Resources with URL...................... 2-6
2.4.2. Cursors and Drawn Icons.. 2-7
2.4.3. Icons as Controls... 2-11

2.5. XVT’s Encapsulated Font Model... 2-14
2.5.1. Font Terminology ... 2-14
2.5.2. Native Font Descriptors for Screen Display 2-14
2.5.3. Native Font Descriptors for Printing 2-16

2.6. Printing in XVT/XM .. 2-17
2.6.1. Print Files and XVTPATH 2-17
2.6.2. Fonts Used in Printing .. 2-17

2.7. Using X Resources ... 2-17
vii

XVT Platform-Specific Book for Motif
2.8. Making Changes to the Widgets Used by XVT/XM............2-19
2.8.1. Method One: Using Files under App-Defaults2-19
2.8.2. Method 2: Using Intrinsics to Change Widget

Attributes ...2-21
2.8.3. Method 3: Using UIL ..2-22
2.8.4. Widgets Used by XVT/XM.......................................2-24
2.8.5. Helpful Reference Manuals.......................................2-25

Chapter 3: Development Environment.. 3-1
3.1. Introduction...3-1
3.2. UNIX Development Environment ..3-2

3.2.1. Executing Makefiles..3-2
3.2.2. Include Files ..3-2
3.2.3. Compiler Flags ..3-2
3.2.4. Libraries ..3-2
3.2.5. Building Utility Programs ...3-4
3.2.6. For Source Customers Only:

XVT/XM Development Environment.........................3-5
3.3. Compiling Resources..3-6

3.3.1. Using xrc ...3-6
3.3.2. Using the Native Resource Compiler (uil)3-6

3.4. Building Your Application with the Help System..................3-7
3.4.1. Portable Viewer...3-7
3.4.2. Object Click Mode ..3-8

Appendix A:
Non-portable Attributes,
Escape Codes, and Menu Fields ..A-1

A.1. Non-portable Attributes ...A-1
ATTR_IME_USE_STATUSAREA ..A-2
ATTR_PS_PRINT_COMMAND ..A-2
ATTR_PS_PRINT_FILE_NAME ...A-3
ATTR_X_DISPLAY ...A-4
ATTR_X_DISPLAY_TASK_WIN ...A-5
ATTR_X_DLG_PARENT ..A-5
ATTR_X_MASK_SERVER_EVENTSA-6
ATTR_X_PLACE_WINDOW_EXACTA-6
ATTR_X_SELECTION_BUFF ..A-7
ATTR_X_SET_FOCUS_DEICONIZEA-8
ATTR_X_USE_USERS_STRING ..A-8
ATTR_X_WIDGET ..A-9
ATTR_XOR_REF_COLOR ..A-9
viii

Table of Contents
A.2. Variations on Portable Attributes ..A-11
ATTR_EVENT_HOOK ..A-11
ATTR_KEY_HOOK ...A-12
ATTR_NATIVE_GRAPHIC_CONTEXTA-14
ATTR_NATIVE_WINDOW ..A-14

A.3. Non-portable Escape Codes...A-15
XVT_ESC_XM_GET_COMBO_WIDGETSA-15
XVT_ESC_XM_GET_GRP_BOX_WIDGETSA-16
XVT_ESC_XM_LOWER_GRP_BOX_FRAMEA-16
XVT_ESC_XM_PICT_TO_XIMAGEA-17
XVT_ESC_XM_SET_CTL_BKG_COLORA-18
XVT_ESC_XM_XIMAGE_TO_PICTA-18

A.4. Non-portable MENU_ITEM Fields.....................................A-19
ATTR_X_PROPAGATE_ECHARA-20
ATTR_X_R45_MODALITY ..A-20
ATTR_X_EXPOSE_COMPRESSION_TYPEA-21
ATTR_X_TABLE_PROPORTIONAL_THUMBA-21

Appendix B:
The XVT/XM Look-and-Feel ..B-1

A.1. Focus Models... B-1
A.1.1. Window Managers and Input Focus B-1
A.1.2. Child Windows or Controls B-1
A.1.3. Keyboard Events .. B-2

A.2. XVT/XM Focus Policy.. B-3
A.2.1. Default Focus Model.. B-3
A.2.2. Changing Focus.. B-3

A.3. Keyboard Navigation... B-4
A.3.1. Controls and Navigation Keys B-4
A.3.2. Application Focus Traversal Lists B-5

A.4. Task Window Menubar ... B-5

Appendix C:
Frequently Asked Questions... C-1

Index .. 1-1
ix

XVT Platform-Specific Book for Motif
x

Introduction
1
INTRODUCTION

Welcome to XVT/XM. This platform-specific book (PSB) contains
information about using the latest release of the XVT Portability
Toolkit (XVT/XM) on your particular platform. If you had an earlier
version of XVT/XM, this manual replaces the previous platform-
specific book.

Installing the XVT Development Solution for C for Motif gives
instructions for installing XVT/XM. Once you have XVT/XM
installed, XVT recommends that you read this book and try the
sample programs that come with the product.

Note: Before writing your application, read the XVT Portability Toolkit
Guide. The Guide focuses on strategies for developing portable
applications.

See Also: For an alphabetical listing of all the XVT functions and other API
elements, refer to the online XVT Portability Toolkit Reference.
For additional information not documented in this platform-specific
book, see the readme file in the doc directory.
1-1

XVT Platform-Specific Book for Motif
1.1. Changes to Existing Features

1.2. Compilers Supported by XVT/XM
XVT/XM supports the following platforms and compilers:

• AIX with the VisualAge C++ compiler

• Linux (Red Hat) with the GNU C++ compiler

• HPUX with the aC++ compiler

• Solaris with the Sun One Studio compiler

See Also: Changes to compiler support may be listed in the readme file in the
doc directory.

1.3. Viewing the Online
XVT Portability Toolkit Reference

The online XVT Portability Toolkit Reference can be accessed by
changing to the bin directory and entering the following command:

helpview

When the portable XVT help viewer appears, a dialog will prompt
you for a help file. Select the file refman.csc from the doc directory.

1.4. XVT Implementations and Operating Systems
The XVT library is currently available for several different window
systems and operating systems:

XVT Product: Window Systems: Operating Systems:
XVT/Mac MacOS MacOS
XVT/Win32/64 Win32/64 Windows (all)

Windows (all)
XVT/XM X and Motif UNIX
1-2

Using XVT/XM
2
USING XVT/XM

2.1. Introduction
This chapter addresses various platform-specific issues that you
may need to consider while using XVT/XM. The information here
assumes you are familiar with developing Motif applications
from a general standpoint. If not, see the OSF/Motif Programmer’s
Guide and the OSF/Motif Programmer’s Reference for more
information.

2.2. Extensibility

2.2.1. Conditional Compilation

If, in your application, you need to provide some native-platform
GUI functionality not available in the XVT Portability Toolkit, then
the small percentage of your code that provides that functionality
will be non-portable. In this case, you must compile your code
conditionally, based on the compilers, the window systems, and the
operating systems on which your non-portable code will run.

The XVT Portability Toolkit automatically determines the
environment in which the application is compiled.

See Also: For more information on conditional compilation, see the “Symbols
for Conditional Compilation” section in the “About the XVT API”
chapter in the XVT Portability Toolkit Guide, and the file xvt_env.h
in your include directory.
2-1

XVT Platform-Specific Book for Motif
Tip: It’s best to consolidate any non-portable code into a few separate
files so that most of your application will be portable XVT code.
Separating your non-portable code makes it easier to change your
program when the capability you need is added to a future version of
XVT.

Tip: To compile Motif-specific code conditionally:

Use the following preprocessor statements to compile window
system-specific code:

#if XVTWS == MTFWS
/* window-system-specific code goes here */
#endif

Use the following preprocessor statements to compile file
system-specific code:

#if XVT_FILESYS_UNIX
/* UNIX file-system-specific code here */

#endif

2.2.2. Accessing Window Device Contexts
and Handles

Given an XVT WINDOW, your application can access its native
window handle (X type, Window) or graphics context (GC).

Tip: To get the X Window associated with an XVT WINDOW (excluding
windows of type W_PIXMAP, W_PRINT and W_SCREEN):

Call:
(Window) xvt_vobj_get_attr(win,

ATTR_NATIVE_WINDOW)

To get the X graphics context associated with an XVT WINDOW
(includes only drawable windows of type W_DOC, W_PLAIN, W_DBL,
W_MODAL, WTASK if drawable, and W_NO_BORDER):

Call:
(GC) xvt_vobj_get_attr(win,

ATTR_NATIVE_GRAPHIC_CONTEXT)

2.3. Invoking an Input Method Editor
An Input Method Editor (IME) is provided by Motif to allow
application users to enter multibyte or other non-ASCII characters
from a keyboard that does not support these characters. On UNIX,
users may select an environment variable for the language.

Character events are sent at appropriate times as determined by the
IME. If the user composes a character, a character event is sent only
2-2

Using XVT/XM
after the conversion—only the composed character is sent in the
event. This means that in some cases there may be a delay between
when characters are typed and when your application receives an
event. Several characters may be typed before any character event is
received.

To start the IME on Motif platforms requires some special setup
(this setup is not related to XVT requirements). The following
sections describe some suggested setup steps—the actual steps may
vary for each platform.

HP-UX

Tip: To use an IME under HP-UX, follow these steps:

1. Start the kks input server as part of the system startup by
entering the following command lines:

Set the executable pathname
setenv PATH "/usr/lib/nlio/bin:${PATH}"
#
Set the kks input server port (look in
/etc/services for the proper port). For example:
kks 6897/tcp

2. For each shell in which you need to execute an Input Method
Editor, set the LANG environment variable for the locale and
character codeset. For example, to set the locale and character
codeset for Japanese (EUC):

setenv LANG japanese.euc

3. For each shell, enter the command that starts the IME:

ximsstart -env -shell csh

4. Execute your XVT application from the shell.

Users invoke the IME by pressing the Kanji key (the key just to the
left of the space bar). The IME appears as an entry field just below
the shell window that has keyboard focus.
2-3

XVT Platform-Specific Book for Motif
IBM AIX

Normally, the AIX server requires no special startup for users
wishing to invoke an Input Method Editor.

Tip: To set up an aixterm window to use an IME, follow these steps:

1. Set the LANG environment variable for the locale and character
codeset. For example, to set the locale and character codeset for
Japanese (Shift-JIS):

setenv LANG ja_JP

2. Enter a command to start the aixterm window:

aixterm &

3. Enter a command to remap the keys on the keyboard for
Shift-JIS input:

xmodmap keyboard_file

where keyboard_file is the file that contains the desired key
bindings. The file keyboard_file also defines a key or sequence
of keys that enables and disables keyboard input using a
particular codeset. Enter man xmodmap or check your system
documentation for more details on how to remap the keyboard.

4. From the aixterm window, start your application.

XVT invokes the IME automatically when users type characters into
input fields or text edit objects. The IME appears as a thin window
across the bottom of the screen.
2-4

Using XVT/XM
Sun SPARC Solaris

Tip: To use an IME under Solaris, follow these steps:

1. Configure the X11 server as part of the system startup by
entering the following command lines:

Set font paths for server
xset +fp $OPENWINHOME/lib/locale/ja/X11/fonts/
75dpi,$OPENWINHOME/lib/locale/ja/X11/fonts/
F3,$OPENWINHOME/lib/locale/ja/X11/fonts/
F3bitmaps
#
Rebuild font directory cache after setting fonts
xset fp rehash
#
Start the IME server
htt &

2. For each shell in which you need to execute an Input Method
Editor, set the LANG environment variable for the locale and
character codeset. For example, to set the locale and character
codeset for Japanese (EUC):

setenv LANG ja

3. Execute your XVT application from the shell.

Users invoke the IME by simultaneously pressing the Control and
Space keys. The IME appears as an entry field just below the shell
window that has keyboard focus.

2.4. XVT/XM Resource Specifics

If you use XVT-Design, you probably won’t need to code native

resources directly. XVT-Design and the xrc compiler code resources

automatically. (XVT-Design can be configured to invoke xrc for you,

either directly as part of the code generation process or via a

generated makefile.) The information here is provided for reference

purposes only.

This section provides information on using URL (XVT’s Universal
Resource Language) with XVT/XM. It also tells you how to code
XVT/XM-specific resources.

See Also: Before creating any Motif-specific resources, see the “Resources
and URL” chapter in the XVT Portability Toolkit Guide.

2-5

XVT Platform-Specific Book for Motif
2.4.1. Creating Portable Resources with URL

The XVT-Design tag SPCL:User_Url in the Action Code Editor (ACE)

lets you add platform-specific resources.

Motif’s native resource language is User Interface Language (UIL).
The xrc compiler produces a UIL script file, which the Motif UIL
compiler uses to produce the binary resource UID file. The process
is analogous to coding a program in C and compiling it into object
code.

Tip: XVT recommends that you use xrc to generate the UIL resource file.
If necessary, you can then change the UIL file to add Motif-specific
resources. However, you should embed such resources in the URL
script using the #transparent statement.

You can code all menus, dialogs, and strings in URL. Or, you can
create them directly in UIL. If you decide to code them in UIL, study
the output of xrc (in UIL format) for the resources in the XVT
Example Set (../design/examples) to see how they are coded.

Some resources, such as file selection and error dialog boxes, must
be present in the UID file for XVT/XM to work properly.

Resource File Location

At runtime, XVT/XM applications look for resources in a file named
your_app.uid. In the filename your_app.uid, your_app matches
the base_appl_name field of the XVT_CONFIG structure.

To find your_app.uid, the application looks in the current directory
unless you have set the Motif environment variable UIDPATH on
UNIX.

See Also: See the document Installing XVT Development Solution for C for
Motif for more information on setting environment variables or
logical names.

2-6

Using XVT/XM
2.4.2. Cursors and Drawn Icons

You cannot define icons (needed by xvt_dwin_draw_icon) or cursors
(needed by xvt_win_set_cursor) directly in URL. Create your icons and/
or cursors using bitmap, the X Window System icon editor. The
bitmap editor generates a file containing the image of an icon, in the
form of C definitions and declarations.

Example: If you create an icon in a file named icon1, the file will contain text
similar to this:

#define icon1_width 16
#define icon1_height 16
static char icon1_bits[] = {0x40,0x00,0xf0,0x03,0x50,0x00,

0x50,0x00,0x50,0x00,0xf0,0x03,0x40,0x02,
0x40,0x02,0x40,0x02,0x40,0x02,0xf0,0x03,
0x40,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00};

Do not include this file in your portable XVT source files. Instead,
include it in a special file you write yourself, called a resource
manager file, which is used only in the Motif version of XVT. The
resource manager file gives XVT access to your icons and cursors
by numeric ID.

Example: If your XVT/XM application were named sample.c, you might call
your resource manager file rmsample.c. That file should contain
only the declarations and statements discussed below.

You’ll compile your resource manager file (e.g., rmsample.c)
normally and link it with the rest of your XVT application.

Using XVT-Design, you can specify a resource manager file in the

Extended Files window. The XVT-Design-generated makefile builds

and links in the resource file manager.

2-7

XVT Platform-Specific Book for Motif
2.4.2.1. Sample Resource Manager File (rmsample.c)

This example shows a complete resource manager file:

#include "xvt.h" /* standard XVT header */
#include "xvt_xres.h" /* needed for all rm*.c files */
#include "sample.h" /* this app's resource IDs */

#include "icon1" /* created with bitmap editor */
#include "icon2"
#include "cur1"
#include "cur2"

static ICON_RESOURCE icon1, icon2; /* icon objects */
static CURSOR_RESOURCE cur1, cur2; /* cursor objects */

RESOURCE_INFO rtable[] = { /* resource table */
{ "ICON", ICON1_RID, (char *)&icon1 },
{ "ICON", ICON2_RID, (char *)&icon2 },
{ "CURSOR", CUR1_RID, (char *)&cur1 },
{ "CURSOR", CUR2_RID, (char *)&cur2 },
{ 0 }

};

RESOURCE_INFO *xvt_xres_create_table
{

xvt_xres_build_icon(&icon1, icon1_height, icon1_width,
(DATA_PTR)icon1_bits);

xvt_xres_build_icon(&icon2, icon2_height, icon2_width,
(DATA_PTR)icon2_bits);

xvt_xres_build_cursor(&cur1, cur1_height, cur1_width,
(DATA_PTR)cur1_x_hot,
cur1_y_hot,cur1_bits);

xvt_xres_build_cursor(&cur2, cur2_height, cur2_width,
(DATA_PTR)cur2_x_hot,

cur2_y_hot, cur2_bits);
return(rtable);

}

The following sections discuss the important sections of this file.

Include Files for the Resource Manager File

At the top of your resource manager file, use #include to include these
files:

• xvt.h

• xvt_xres.h

• Your application’s header file that defines resource ID
numbers

• Each bitmap file that you created with bitmap
2-8

Using XVT/XM
Declarations and Statements for the Resource Manager File

For each individual icon or cursor, declare an object of type
ICON_RESOURCE or CURSOR_RESOURCE. (These types are defined in
xvt_xres.h.) For example, if you had two icons and two cursors, the
declarations might look like this:

static ICON_RESOURCE icon1, icon2;
static CURSOR_RESOURCE cur1, cur2;

Then, for each icon or cursor, initialize an element of an array of
type RESOURCE_INFO. Each element of this array is a structure with
three members:

• The string “ICON” or “CURSOR”

• The ID used by xvt_dwin_draw_icon or xvt_win_set_cursor

• A pointer to the corresponding ICON_RESOURCE or
CURSOR_RESOURCE

For example:

RESOURCE_INFO rtable[] = {
{ "ICON", ICON1_RID, (char *)&icon1 },
{ "ICON", ICON2_RID, (char *)&icon2 },
{ "CURSOR", CUR1_RID, (char *)&cur1 },
{ "CURSOR", CUR2_RID, (char *)&cur2 },
{ 0 }

};

Notice that the table is terminated with an element of all zeros.

The resource IDs must be unique within their type (icon or cursor).
Define constants for these numbers in your application-specific
header file sample.h. For example:

#define ICON1_RID 101
#define ICON2_RID 102
#define CUR1_RID 101
#define CUR2_RID 102

Additional Required Initialization

Even though the declarations have set up the data structures,
the ICON_RESOURCEs and CURSOR_RESOURCEs require further
initialization. You must create a function named xvt_xres_create_table,
which XVT calls. The function
has this prototype:

RESOURCE_INFO *xvt_xres_create_table(void)

Put this function in the resource manager file.
2-9

XVT Platform-Specific Book for Motif
XVT supplies two functions, xvt_xres_build_icon and
xvt_xres_build_cursor, that your xvt_xres_create_table function must call to
initialize the resource objects.

Here are the prototypes for these functions:

void xvt_xres_build_icon(iconp, height, width, data)
ICON_RESOURCE *iconp; /* pointer to ICON_RESOURCE */
unsigned height; /* height from bitmap editor */
unsigned width; /* width from bitmap editor */
DATA_PTR data; /* data from bitmap editor */

void xvt_xres_build_cursor(curp, height,
width, x_hot, y_hot, data)

CURSOR_RESOURCE *curp /* pointer to CURSOR_RESOURCE */
unsigned height; /* height from bitmap editor */
unsigned width; /* width from bitmap editor */
unsigned x_hot; /* hotspot x from bitmap editor */
unsigned y_hot; /* hotspot y from bitmap editor */
DATA_PTR data; /* data from bitmap editor */

These functions use the data from the files you created with bitmap
to initialize your ICON_RESOURCE and CURSOR_RESOURCE objects.

For example, you might call xvt_xres_build_icon to initialize one of
your icon resources as follows:

xvt_xres_build_icon(&icon1, icon1_height,
icon1_width, (DATA_PTR) icon1_bits);

Finally, after initializing the resources, your function must return the
address of the RESOURCE_INFO array (rtable in our example).

Do not put any other statements in your resource manager file.
Compile the file normally and link it with the rest of your XVT
application.

At runtime, XVT calls xvt_xres_create_table so that your calls
to xvt_xres_build_icon and xvt_xres_build_cursor are
executed. This function returns the address of the resource table
(rtable in our example).

Then, whenever it needs an icon or cursor by ID (for instance, when
your program calls xvt_dwin_draw_icon), XVT scans the resource table
(rtable) for the element with the desired ID and type (“ICON” or
“CURSOR”). That element points directly to the ICON_RESOURCE or
CURSOR_RESOURCE object that contains the data produced by the
icon editor.
2-10

Using XVT/XM
2.4.2.2. Cursor Masks

X cursors consist of a shape and a mask. The mask determines
which pixels on the screen are modified by the cursor. By default,
XVT uses a mask equal to the dimensions of the cursor bitmap.
You can create your own cursor mask by creating another cursor (as
described above) with a resource ID equal to 100 plus the ID of the
cursor for which you are creating the mask.

See Also: For more information about creating a cursor mask, see the
cursor.txt file in the doc directory.

2.4.3. Icons as Controls

You can treat icons as controls in windows and dialogs. The two
different ways to do this are:

• By specifying the icon as a control in your URL file

• By specifying the icon from within your program using
xvt_ctl_create_def, xvt_win_create_def, or xvt_dlg_create_def

Tip: To specify icons as controls belonging to a window or dialog in your
URL file:

1. Create your icon using the X Window System icon editor, as
explained in section 2.4.2.

2. Add an ICON statement in your URL file. A sample ICON
statement follows:

ICON ICON_RID 200, 300, 75, 50 123

where the statement consists of:

• The keyword ICON

• A resource ID (ICON_RID)

• The x, y, width, and height specifications

• A number that refers to the native icon resource ID (123)
2-11

XVT Platform-Specific Book for Motif
3. To your .url file, add a #transparent statement that tells the UIL
compiler about your icon. Here is an example of a #transparent
statement used to define an icon:

#transparent $$$
value icon_123 : exported
xbitmapfile('myicon.icon');

$$$

where the statement consists of:

• The keyword value

• Your icon’s special ID (the word icon followed by an
underscore followed by the number at the end of your URL
ICON statement)

• A colon

• The keywords exported xbitmapfile

• Your bitmap filename in parentheses and single quotes

When you create a dialog or window, XVT adds the icon to the
window or dialog just like it would for any other control.

You can also create icons in windows using xvt_ctl_create_def. (The
function xvt_ctl_create does not allow creation of icons.)

Tip: To create an icon control using xvt_ctl_create_def:

1. Create the icon using the X Window System icon editor, as
explained in section 2.4.2.

2. Add a #transparent statement to your URL file (see step 3 above).

3. Create a WIN_DEF structure with the type specified as WC_ICON,
and initialize its elements as follows:

rct: The location of the rectangle bounding the icon
units: U_PIXELS
wtype: WC_ICON
v.ctl.icon_id: The icon’s resource ID number (the same

number that was appended to the “special ID”
in the #transparent statement)

For the #transparent statement above, setting the icon_id in the WIN_DEF
structure looks like this:

windef[0].v.ctl.icon_id = 123;
2-12

Using XVT/XM
The file containing the icon ('myicon.icon') must be in the local
directory, or you must specify a pathname to the file. If you prefer
not to use an external file to specify your icon, or if you would like
to use colors in your icon, you can use UIL’s icon function in place
of the xbitmapfile function.

See Also: For more information about UIL’s icon function, see “Color and
Pixmaps” in the OSF/Motif Programmer’s Guide Release 1.2.
For general UID details, see “UIL” in the OSF/Motif Programmer’s
Reference Release 1.2.

Note: If you plan to use Motif-specific icons or cursors in your DSC++
application, you must edit the XResMgr.cxx file and add the
appropriate definitions. For example, the resources corresponding to
the retired class CIcon objects cannot be specified via XVT’s
Universal Resource Language (URL). You must, instead, define
them in the XResMgr.cxx file with a small amount of C code.
XResMgr.cxx is generated by XVT-Architect.
2-13

XVT Platform-Specific Book for Motif
2.5. XVT’s Encapsulated Font Model

2.5.1. Font Terminology

This section uses the following XVT-defined terms to describe
XVT’s encapsulated font model:

Physical font
A particular implementation of a font as installed on the window
system on which an application is running.

Logical font
A description of a desired physical font, to a degree of
specificity ranging from just a typeface family name or size to
a complete description that specifies a particular physical font.
A logical font has both portable and non-portable attributes. It
is identified by an object of type XVT_FNTID.

2.5.2. Native Font Descriptors for Screen Display

To specify a particular physical font, your application can use a
native font descriptor, which is a string of data fields. You can
include this string as a parameter to xvt_font_set_native_desc, or in URL
as part of a FONT or FONT_MAP statement.

The native font descriptor string contains the following fields:

• The native window system and version of the XVT
encapsulated font model (the current version is “01”).

• Platform-specific fields that the XVT Portability Toolkit
decodes and uses to uniquely specify a native font. The fields
describe specific attributes of a native font. Each field is
separated by a slash, “/”.

The native font descriptor string, then, has this format:

"<system and version>/<field1>/<field2>/<field3>/
...<fieldn>"

See Also: For more information about specifying fonts, see the “Fonts and
Text” chapter in the XVT Portability Toolkit Guide.

2.5.2.1. XVT/XM Font Descriptor Version Identifier

For XVT/XM, the screen font descriptor version identifier format is
X11<vers>. In this release of XVT/XM, the font descriptor version
number is “01,” so the screen font descriptor version identifier is
X1101.
2-14

Using XVT/XM
2.5.2.2. XVT/XM Font Fields

For Motif platforms, the native font descriptor string must contain
enough information to populate an “X logical font description,”
which is a 13-part font specification. The following table shows the
information used to map a logical font.

foundry “Manufacturer” of typeface, e.g., Adobe
family Name of typeface
weight Density of typeface
slant Roman (regular), italic, oblique, etc.
set_width Normal, condensed, narrow, etc.
addl_styl Additional style information, e.g., “sans”
pixel_size Height in pixels at specified resolution
point_size Nominal size of typeface in points
h_res Horizontal resolution of font
v_res Vertical resolution of font
spacing Character spacing, e.g., “p” to indicate

a proportional font
avg_width Average width of font in tenths of a pixel
encoding Character set encoding,

e.g., “iso8859-1”

For XVT/XM, the native font descriptor string has this structure:

"X1101/<foundry>/<family>/<weight>/<slant>/<set_width>/<addl_style>/
<pixel_size>/<point_size>/<h_res>/<v_res>/<spacing>/<avg_width>/
<encoding>"

Example: This string shows a valid XVT/XM native screen font descriptor
string:

"X1101/*/times/bold/i/normal//*/*/100/100/*/*/iso8859-1"

Note: An asterisk (*) in a native font descriptor string indicates a wildcard
condition in which any value is acceptable for that particular field.
An empty field in a native font descriptor string matches only a null
value in that particular field.

Tip: For a list of fonts available on your particular platform, enter a
command similar to the following:

/usr/bin/X11/xlsfonts on many UNIX platforms

/usr/X11/bin/xlsfonts on some UNIX platforms

$OPENWINHOME/bin/xlsfonts on SPARC platforms

Note: These are the most common paths to xlsfonts. The pathname may be
different on other platforms. This font utility may not exist on all
platforms.
2-15

XVT Platform-Specific Book for Motif
2.5.3. Native Font Descriptors for Printing

When using XVT/XM, print fonts are specified differently than
screen fonts.

2.5.3.1. XVT/XM Font Descriptor Version Identifier

For XVT/XM, the print font descriptor version identifier format is
POS<vers>. In this release of XVT/XM, the font descriptor version
number is “01,” so the print font descriptor version identifier is
POS01.

2.5.3.2. XVT/XM Print-specific Font Fields

Because the XVT/XM Portability Toolkit uses PostScript software
to print, the native print font descriptor string must contain enough
information to completely specify a PostScript font. The following
table shows the information required to specify a PostScript font.

family Name of font
style Combination of font characteristics
size Size of typeface, measured in points

The PostScript font descriptor string has this structure:

"POS01/<family>/<style>/<size>/"

Example: This string shows a valid PostScript font descriptor string:

"POS01/Times/BoldItalic/*"

2.5.3.3. Standard PostScript Native Descriptor Strings

The following standard combinations are available by default:

“Fixed” portable family:
"POS01/Courier/Normal/*"
"POS01/Courier/Bold/*"
"POS01/Courier/BoldOblique/*"
"POS01/Courier/Oblique/*"

“Helvetica” portable family:
"POS01/Helvetica/Normal/*"
"POS01/Helvetica/Bold/*"
"POS01/Helvetica/BoldOblique/*"
"POS01/Helvetica/Oblique/*"

“System” portable family:
"POS01/Times/Normal/*"
"POS01/Times/Bold/*"
"POS01/Times/BoldItalic/*"
"POS01/Times/Italic/*"
2-16

Using XVT/XM
“Times” portable family:
"POS01/Times/Normal/*"
"POS01/Times/Bold/*"
"POS01/Times/BoldItalic/*"
"POS01/Times/Italic/*"

2.6. Printing in XVT/XM
Printing from XVT/XM generates a PostScript file. Print output is
placed in a file created by the C library function tmpnam.

See Also: To set a specific output filename, see the description of the
ATTR_PS_PRINT_FILE_NAME attribute in Appendix A: Non-portable
Attributes, Escape Codes, and Menu Fields on page A-1.

2.6.1. Print Files and XVTPATH

XVT/XM requires a number of files, located in the print directory
of the XVT/XM installation, to generate a PostScript file. These files
include the font metrics files and the file xvtprolg.ps, which
contains PostScript driver functions. For printing to work properly,
these files must all be located in the same directory.

See Also: For a string pointer that points to the command to execute on the
PostScript print file, see Appendix A: Non-portable Attributes,
Escape Codes, and Menu Fields on page A-1.

To print in XVT/XM, you must set the environment variable to
include the print directory of the XVT PTK installation.

See Also: See the document Installing XVT Development Solution for C for
Motif for more information on setting UNIX environment variables.

2.6.2. Fonts Used in Printing

For information about how to specify PostScript fonts for XVT/XM
to use when printing, refer to section 2.5.3.

2.7. Using X Resources
X toolkit resources specify GUI object (widget) attributes.
Resources are specified in the .Xdefaults file or in application class-
specific files.

Note: The X resource specification allows either global (loosely) bound
specifications (*XmPushButton.foreground: green) or named per-widget
instance specifications (*button.foreground: black). Since XVT has
2-17

XVT Platform-Specific Book for Motif
chosen not to document the algorithm by which instance names are
assigned to Motif widgets instantiated by the XVT Portability
Toolkit, only global specifications can be used reliably.

UNIX

The .Xdefaults file is (typically) loaded into the X server at the start
of the session. Any changes the user makes to .Xdefaults take effect
only in a new session, or after an invocation of xrdb reloads the
resource database.

Application class resource files use the base_appl_name field of the
XVT_CONFIG structure, and must be present either in $HOME or in
the app-defaults directory. The app-defaults directory is typically
located under /usr/lib/X11 (on SPARC, the app-defaults directory
is located under $OPENWINHOME/lib). X recognizes various
environment variables for specifying paths to the application
resource files.

See Also: For more information about making changes to widgets used by
XVT/XM, see XVT Technical Note 117.
For more information about X resources, consult the X resources
chapter in O’Reilly’s X Toolkit Intrinsics Programming Manual and
Programming Reference.
2-18

Using XVT/XM
2.8. Making Changes to the Widgets Used by XVT/XM
This section presents three methods for making changes to the
widgets used by XVT/XM. At the end of this section is a list of
widgets used by XVT for particular objects, as well as a list of
reference manuals that are helpful when extending the XVT/XM
toolkit.

These methods are not appropriate for changing fonts and colors of
XVT top-level and child windows since the XVT drawing routines
(xvt_dwin_draw_text(), xvt_dwin_draw_rect(), and so on) do not use the
Motif widgets.

When you make changes to the widgets outside of XVT, the XVT
library doesn’t know that these changes have been made.
Consequently, you may see some unexpected results. For example,
if you changed the font of a push-button or oblong button after is was
created, the button would not resize based on the new font. To
modify the button, you have to call xvt_vobj_move() or resize it with
the Intrinsics.

2.8.1. Method One: Using Files under App-Defaults

XVT/XM is an Intrinsics-based toolkit. It takes advantage of the
Intrinsics method of changing widget attributes by using the files
under the app-defaults directory. This method uses files associated
with the application. These files contain names and values of
attributes that affect the appearance of a widget.

The /usr/lib/X11 directory contains a directory titled app-defaults.
The resource manager looks in the app-defaults directory for files
that directly affect the look of particular applications.

Note: For Sparc users, Sun changes the X directory structure and uses the
$OPENWINHOME environment variable to point to the location of the
X installation. Although Sparc machines do not have a /usr/lib/X11
directory, they look for this directory to find the app-defaults files.
Therefore, you need to create the /usr/lib/X11 directory. Then, you
can either create the app-defaults directory under the /usr/lib/X11
directory, or you can simply put a symbolic link in the /usr/lib/X11
directory to point to the app-defaults directory in the path,
$OPENWINHOME/lib/app-defaults.
2-19

XVT Platform-Specific Book for Motif
2.8.1.1. Name of the Resource File in the App-Defaults Directory

The name of the file in the app-defaults directory used by XVT
applications is specified by the base_appl_name field of the
XVT_CONFIG structure.

2.8.1.2. Names of Resources

You can change the look of dialogs, controls, and menubars by
prepending the name of the resource with an asterisk. For example,
to change the background color in dialogs, controls, and menubars,
add the following line to your file in app-defaults:

*background: pink

You can be more specific by using the class name of the widget you
want to change. For example, to change the background color of
only WC_PUSHBUTTON controls, add the following line to your file in
app-defaults:

*XmPushButton.background: pink

2.8.1.3. Sample App-Defaults File to Change Fonts and Colors

The following is a sample app-defaults file that would change the
foreground and background color of all dialogs, controls, and
menubars to green and pink, respectively. This code also changes
the font of pushbuttons and editable text to an rk24 font:

*foreground: green

*background: pink

*XmPushButton.fontList: rk24

*XmText.fontList: rk24
2-20

Using XVT/XM
2.8.2. Method 2: Using Intrinsics to Change Widget
Attributes

The second method programmatically changes the attributes of a
particular widget by using direct Intrinsics routines. This is the most
difficult of the three methods, but it gives you the most control over
individual widgets.

2.8.2.1. Getting the Widget

You can get the widget for most XVT objects if you have an XVT
WINDOW for the object. For dialogs, you already have a
WINDOW, but for controls, you have to get the WINDOW before
you can get the widget. To get the WINDOW for a control, use the
following code:

WINDOW window;
window = xvt_win_get_ctl(parent_win, CONTROL_ID);

Before you can get the widget, you need to include the following
header file:

#include <X11/Intrinsic.h>

Without this #include file, your compiler will not know what a widget
is. Once you have the WINDOW, use the following code:

Widget widget;
widget = (Widget)xvt_vobj_get_attr(window,

ATTR_X_WIDGET);

Now you have the widget for the XVT object.

2.8.2.2. Setting Up Attributes to Change

Although changing the height or width, or other simple changes,
does not require much work, changing fonts or colors requires more
work. The Motif reference manual provides some information, but it
is likely you'll have to refer to the O'Reilly manuals to get all the
information you need.

2.8.2.3. Using XtVaSetValues to Change Attributes

Once the attribute(s) are ready to be set, you can use a simple
Intrinsics call to make the change. The following changes the height
and width of a dialog, without calling xvt_vobj_move():

XtVaSetValues(widget, XmNheight, (XtArgVal)322,
XmNwidth, (XtArgVal)477, NULL);
2-21

XVT Platform-Specific Book for Motif
The attributes to be changed are paired with the value to which they
are changing. The last parameter in this routine must always be
NULL.

2.8.2.4. Sample C Code to Change Fonts

The following sample C code will change fonts using the Intrisics
method:

#include <X11/Xlib.h>
#include <X11/Intrinsic.h>
#include <Xm/Xm.h>

Widget widget;
Display *display;
XFontStruct *Xfont;
XmFontList fontlist;

widget = (Widget)xvt_vobj_get_attr(
xvt_win_get_ctl(win, PUSHBUTTON_ID),
ATTR_X_WIDGET);

display = (Display *)xvt_vobj_get_attr(win,
ATTR_X_DISPLAY);

if ((Xfont = XLoadQueryFont(display,
"rk24")) == NULL)xvt_dm_post_error(
"couldn't open rk24 font\n");

else {
fontlist = XmFontListCreate(Xfont,

XmSTRING_DEFAULT_CHARSET);
XtVaSetValues(widget, XmNfontList, fontlist,

NULL);
}

2.8.3. Method 3: Using UIL

UIL is Motif's resource language. It requires only adding (or
changing) attributes in the proper section of the UIL file. This
method is easy to use, but you can use it only on a subset of widgets
created by XVT.

2.8.3.1. Restrictions for Using UIL to Make Non-portable Changes

This method works only for dialogs and controls in dialogs created
by xvt_dlg_create_res(). It will not work for controls in windows or for
dialogs or controls in dialogs created from xvt_dlg_create_def().

2.8.3.2. Basic UIL Syntax

The following is a sample of generic UIL code generated by the xrc
compiler:
2-22

Using XVT/XM
object
XVT_DLG_256 : XmBulletinBoardDialog {

arguments {
XmNdialogStyle = XmDIALOG_MODELESS;
XmNdialogTitle = "List Box Exerciser";
.
.
.

};
controls {

XmForm control_256_1;
XmText control_256_16;
.
.
.

};
callbacks {

MrmNcreateCallback =
procedure xvt_create_dlg_cb(256);

};
};

The only place you need to make changes is in the "arguments"
section of the UIL file of the control or dialog that is changing.

2.8.3.3. Syntax for Changing Colors and Fonts

Let xrc create the UIL file for you, and then make the changes. When
the changes are done, you need to put the entire dialog code back
into the URL file in a #transparent statement. You cannot put just a
portion of the dialog into a #transparent statement.

To change the background and foreground colors of a particular
object in UIL, add the following lines to the “arguments” section of
the object you are changing:

XmNbackground = color('pink');
XmNforeground = color('green');

To change the font of a particular object in UIL, add the following
line to the “arguments” section of the object you are changing:

XmNfontList = font('rk24');

Remember to put the dialog back into a #transparent statement after
making the changes.

2.8.3.4. Sample UIL Code to Change Fonts and Colors

The following shows the UIL code for changing the background and
foreground colors and the font for the "Add" push-button in the "List
Box Exerciser” dialog (in the dlg example):
2-23

XVT Platform-Specific Book for Motif
object
button_256_1 : XmPushButton {

arguments {
XmNx = 0;
XmNy = 0;
XmNwidth = 60;
XmNheight = 20;
XmNmarginBottom = 1;
XmNhighlightOnEnter = true;
XmNhighlightThickness = 1;
XmNrecomputeSize = false;
XmNshowAsDefault = 1;
XmNlabelString = "Add";
XmNalignment = XmALIGNMENT_CENTER;
XmNbackground = color('pink');

! user added line
XmNforeground = color('green');

! user added line
XmNfontList = font('rk24');

};
callbacks {

MrmNcreateCallback = procedure xvt_create_ctl_cb(1);
};

};

2.8.4. Widgets Used by XVT/XM

The following table shows the relevant widgets used by XVT/XM:

Windows:
Top-level XmMainWindow =>

XmDrawingArea
Child XmScrolledWindow =>

XmDrawingArea
Dialogs:
WD_MODAL XmBulletinBoard
WD_MODELESS XmBulletinBoard

Controls:
WC_CHECKBOX XmToggleButton
WC_RADIOBUTTON XmToggleButton
WC_TEXT XmLabel
WC_EDIT XmText
WC_LBOX XmScrolledWindow =>

XmList
WC_HSCROLL XmScrollBar
WC_VSCROLL XmScrollBar
WC_PUSHBUTTON XmPushButton
WC_LISTBUTTON XmText & XmArrowButton &

XmScrolledWindow =>
XmList
2-24

Using XVT/XM
WC_LISTEDIT XmText & XmArrowButton &
XmScrolledWindow =>
XmList

WC_GROUPBOX XmFrame => XmLabel
WC_ICON XmLabel w/ pixmap

2.8.5. Helpful Reference Manuals

The following is a list of helpful reference manuals:

Open Software Foundation. OSF/Motif Programmer's Reference,
Revision 1.1. Englewood Cliffs, NJ: Prentice Hall. ISBN 0-13-
640681-5.

The Definitive Guides to the X Window System, by O'Reilly &
Associates, Inc.:

Volume 1: Xlib Programming Manual. ISBN 0-937175-11-0.

Volume 2: Xlib Reference Manual. ISBN 0-937175-12-9.

Volume 4: X Toolkit Intrinsics Programming Manual.
ISBN 0-937175-62-5.

Volume 5: X Toolkit Intrinsics Reference Manual, Second
Edition. ISBN 0-937175-57-9.
2-25

XVT Platform-Specific Book for Motif
2-26

Development Environment
3
DEVELOPMENT ENVIRONMENT

3.1. Introduction

If you are using XVT-Design or XVT-Architect, you will rarely, if ever,

need to deal directly with makefiles, include files, compiler options,

libraries and linkers. Unless you need to modify the makefile

templates supplied by XVT-Design, you’ll only need to refer to the

information in this section (3.1).

This chapter gives detailed information on building XVT/XM
applications.

Your compiled XVT/XM application consists of the following files:

• The binary executable file your_app for UNIX.

• The binary resource file your_app.uid, which contains
descriptions of your windows, dialogs, controls, menubars,
and strings.

• XVT portable help binary files (*.csc).

• Portable image files (*.bmp).

See Also: See the document Install.txt for Motif for more information on
setting environment variables and logical names.

3-1

XVT Platform-Specific Book for Motif
3.2. UNIX Development Environment

3.2.1. Executing Makefiles

XVT-Design and XVT-Architect generate makefile templates that you can use in your UNIX

environment.

For UNIX, use the make utility to process makefiles. You can
adapt the makefiles that accompany the sample programs for use in building your
application.

3.2.2. Include Files

XVT-Design and XVT-Architect generate code that automatically includes all necessary

header files.

To build XVT applications, you must include the XVT-specific header file xvt.h in
addition to any other application-specific
header files.

3.2.3. Compiler Flags

XVT provides a compiler optimization flag, XVT_OPT, for runtime optimization of the PTK.
This flag is described further in the XVT Portability Toolkit Guide. To use the flag with
your UNIX compiler, you must add a define for the XVT_OPT symbol on the compiler line.

See Also: For details about how to define a symbol in a compile statement,
see the user’s manual for your particular operating system’s compiler.

3.2.4. Libraries

XVT-Design’s and XVT-Architect’s makefile templates supply a default configuration that

links the appropriate libraries automatically.

3.2.4.1. Shared and Static XVT Libraries

See Also: For up-to-date information on library names, see the Readme file in the doc directory.

3-2

Development Environment
XVT/XM provides the following libraries for building applications:

libxvtxmapi*.a XVT API library
libxvtxmba*.a XVT Base library
libxvtxmhb*.a Bound help viewer library
libxvtxmhi*.a Standalone help viewer library

You must link the libraries on the link line in the following order:

libxvtxmapi*.a <libxvtxmhb*.a or libxvtxmhi*.a>
libxvtxmba*.a

XVT/XM provides static versions of libxvtxmapi*.a, libxvtxmba*.a, libxvtxmhb*.a. and
libxvtxmhi*.a. On some platforms, XVT/XM also provides shared versions of
libxvtxmba*.a, libxvtxmhb*.a, and libxvtxmhi*.a. If you link with the shared versions
of the libraries, they must be present at runtime.

If you link your applications with the static XVT libraries, you do not have to ship the
libraries to your customers. However, if you link your applications with the shared XVT
libraries, then you must ship the shared XVT libraries with your product.

Tip: To link with the static versions of the libraries, give a full pathname to the libraries in your
makefile.

Tip: To link with the shared versions of the libraries:

1. Use the -L flag to indicate the path to the XVT libraries.

2. To use the bound help viewer, specify:

-lxvtxmapi* -lxvtxmhb* -lxvtxmba*

as part of the link command.

To use the standalone help viewer, specify:

-lxvtxmapi* -lxvtxmhi* -lxvtxmba*

as part of the link command.

Note: If you are using XVT/XM on an AIX platform, append _shr to the name of a library to get
the shared version, e.g., xvtxmba*_shr.

See Also: For more information about linking libraries, see the user’s manuals for your particular
operating system and linker.
3-3

XVT Platform-Specific Book for Motif
3.2.4.2. System Libraries

In addition to the XVT libraries, XVT/XM applications require
linking with the following system libraries (or shared versions of
them):

libMrm.a Motif resource manager library
libXm.a Motif widget libary
libXt.a X toolkit instrinsics library
libX11.a X lib functions library
libm.a Math functions library

See Also: Some platforms may require additional system libraries. See the
makefiles that accompany the sample programs for further
information.

3.2.4.3. Linking helpview

XVT/XM provides helpview object files in binary format. You may
link helpview using either static or dynamic libraries. The sample
makefile Makefile.lnk in the src/helpview directory shows the
combination of static and shared libraries used by XVT to link
helpview.

See Also: To use XVT’s hypertext online help system, see section 3.4 of this
manual and the “Hypertext Online Help” chapter in the XVT
Portability Toolkit Guide.

3.2.5. Building Utility Programs

All XVT/XM customers receive a command line version of
errscan in the bin directory and the source code in the
src/errscan directory. You can build either the command line
version of this utility or you can build it with a GUI interface (named
errscan_app).

Tip: To build the errscan utility program:

1. Move to the src/errscan subdirectory.

2. To build the command line version of errscan:

Type: make errscan

3. To build the GUI version of errscan:

Type: make errscan_app

Executables are placed in the bin directory.
3-4

Development Environment
3.2.6. For Source Customers Only:
XVT/XM Development Environment

This section contains information pertinent to XVT/XM source
customers. If you are using the XVT/XM binary product, you can
skip this section.

For source customers, XVT/XM supplies makefiles for the utility
programs xrc, helpc, helpview, and maptabc.

Building Utility Programs

Tip: To build the xrc or maptabc applications:

1. Move to the src/xrc directory.

2. Type: make

Executables are placed in the bin directory.

See Also: For further information about the maptabc application, see the XVT
Portability Toolkit.

Tip: To build the help compiler helpc, the help viewer helpview, and
the supporting help libraries:

1. Move to the src/helpc directory.

2. Type: make

Executables are placed in the bin directory, and libraries are placed
in the lib directory.

Building Libraries

Tip: To build the XVT/XM libraries:

1. Move to the src/ptk directory.

2. Type: make

Libraries are placed in the lib directory.
3-5

XVT Platform-Specific Book for Motif
3.3. Compiling Resources

If you use XVT-Design or XVT-Architect, you will probably never

need to deal directly with resource compiler options. XVT-Design and

the xrc compiler code resources automatically. The information here

is provided for reference purposes only.

3.3.1. Using xrc

XVT-Design can be configured to invoke xrc for you, either directly

as part of the code generation process or via a generated makefile.

Tip: To compile XVT URL resources with xrc, use command lines
similar to the following:

UNIX:

//If using Motif 1.2.x
xrc -r mtf12 -I../include -DLIBDIR=../lib sample.url

//If using Motif2.x
xrc -r mtf20 -I../include -DLiBDIR=../lib sample.url

xrc complies URL resource files into Motif UIL (User Interface
Language) resource scripts (*.uil files).

See Also: For more information about using xrc, see the “Resources and URL”
chapter in the XVT Portability Toolkit Guide.
For a list of xrc options, see the online XVT Portability Toolkit
Reference.

3.3.2. Using the Native Resource Compiler (uil)

The Motif Toolkit includes tools that you can use to make Motif
resources. The native resource compiler uil compiles resource
scripts into resource files that have an extension of .uid.

Compile your resource scripts (*.uil files) with the uil command,
just as you do for non-XVT applications.

Here’s a typical command:

uil sample.uil

Entering this command creates a file named sample.uid that can be
bound with your application at runtime.

3-6

Development Environment
Normally, you use xrc to compile menus, dialogs, windows, and
strings. Its output is a series of UIL statements, which you then
compile with uil. If a resource can’t be written in URL, you’ll have
to code it directly in the UIL language and embed it in your URL
script with a #transparent statement.

The XVT-Design tag SPCL:User_Url lets you add resource definitions

to your application resource file.

See Also: For more information on using uil, see the OSF/Motif
Programmer’s Guide.
For more information on creating Motif-specific resources, refer to
section 2.4.1.
Refer to ATTR_RESOURCE_FILENAME in the online XVT Portability
Toolkit Reference for information on setting the base name of the
resource file.

3.4. Building Your Application with the Help System

XVT-Design supplies a default configuration in its makefile template

that links with the bound help viewer. If necessary, you can modify

this configuration to suit your needs.

XVT's hypertext online help system requires a help viewer. For
XVT/XM, you can bind the portable viewer to the application. An
application should link with only one of the two help libraries
discussed below.

Note: XVT/XM currently supports only the XVT bound help viewer and
the standalone help viewer, helpview.

See Also: For information on the help viewers, see the “Hypertext Online
Help” chapter in the XVT Portability Toolkit Guide.
For information on the portable help compiler command options,
refer to the online XVT Portability Toolkit Reference.

3.4.1. Portable Viewer

See Also: For up-to-date information about library names, see the Readme in
the doc folder.

3-7

XVT Platform-Specific Book for Motif
XVT/XM provides the XVT portable hypertext help viewer in
bound and standalone forms. You must use the XVT help compiler
helpc to produce XVT-portable binary help files for the help viewer
to use.

Tip: To compile help text source files for use with the portable viewer,
use command lines similar to the following:

UNIX:

helpc -f xvt -i../../include sample.csh

Tip: To bind the help viewer to your application or to use the standalone
help viewer, link with one of the following libraries (in addition to
the base XVT libraries):

libxvtxmhb*.a Bound help viewer library
libxvtxmhi*.a Standalone help viewer library

Caution: If you are providing context-sensitive help from modal XVT
windows or dialogs, XVT strongly recommends that you use the
portable standalone viewer. The bound viewer is a modeless window
in XVT. Opening a modeless window from a modal object may
result in undefined behavior.

3.4.2. Object Click Mode

Object click mode for XVT’s hypertext online help system is not
standard look-and-feel for Motif. Therefore, XVT/XM does not
automatically provide an application menu item which enables this
feature for users. If your XVT/XM application requires context
sensitive help using object click mode, you must define the symbol,
XVT_HELP_OBJCLICK, for compiling URL resources. When this
symbol is defined, XVT/XM includes the resource for the Object
Click Mode menu item in the standard menu. Use a command line
similar to the following for compiling URL resources:

UNIX:

//If using Motif 1.2.x
xrc -r mtf12 -I../../include

-DLIBDIR=../../lib -DXVT_HELP_OBJCLICK
sample.url

//If using Motif 2.x
xrc -r mtf20 -I../../include DLIBDIR=

../../lib -DXVT_HELP_OBJCLICK Sample.url
3-8

Development Environment
Note: Although the command shown here is printed on several lines,
you should enter a command line as a single line.

Alternatively, you may define the symbol prior to including url.h in
your application URL resources:

#define XVT_HELP_OBJCLICK
#include "url.h"
3-9

XVT Platform-Specific Book for Motif
3-10

Appendix A
A
APPENDIX A:
NON-PORTABLE ATTRIBUTES,
ESCAPE CODES, AND MENU FIELDS

A.1. Non-portable Attributes
The xvt_vobj_set_attr and xvt_vobj_get_attr functions allow you to
manipulate XVT attributes. Non-portable attributes let you fine-tune
your application to make it more closely adhere to the look-and-feel
of the underlying platform, or to add functionality not provided by
the XVT application interface. This section provides a list of the
non-portable attributes for use with XVT/XM.

See Also: Additional non-portable attributes may be listed in the readme file
in the doc directory.

XVT-Design provides a special tag, SPCL:Main_Code, that lets you

supply code in the Action Code Editor (ACE) before calling

xvt_app_create. This enables you to set or get system attributes

before the XVT library assumes control.

A-1

XVT Platform-Specific Book for Motif
ATTR_IME_USE_STATUSAREA

Note: This attribute is for AIX only.

Description: This attribute allows the window’s status bar to indicate that the IME
is associated with the window.When this attribute is set to FALSE, the
IME appears to be global, and there is no visual way to identify the
window to which the IME belongs.Setting this attribute to TRUE
allows the window’s status bar to indicate that the IME belongs to
that particular window.

Uses win argument: No
xvt_vobj_get_attr returns: BOOLEAN
xvt_vobj_set_attr effect: Window status bar when

the IME is present
xvt_app_create use: Must use before
Default value: FALSE

ATTR_PS_PRINT_COMMAND

Description: This attribute is a string pointer that points to the command to
execute on the PostScript print file after the print file has been
generated.

If this attribute is not set or is set to NULL, no command is executed.

If this attribute is set, it should be a shell command line containing
the substring %s which will be replaced with the current printer
output filename. After the substitution, the command is passed to the
system for execution. The command lp %s, for example, will send the
print file to the default printer.

The portable help viewer (standalone and bound) sets the print
filename to helpview.ps via ATTR_PS_PRINT_FILE_NAME.

If the print command is not set, the portable help viewer sets the
print filename to lp %s.

After printing, the help viewer code restores the original values of
these attributes. If you are linking your application with the portable
bound help viewer and do not want it to use this default command,
you should set the ATTR_PS_PRINT_COMMAND attribute before the
help viewer is called. To avoid having any command executed, set
this attribute to a blank (not NULL) command string.

See Also: For more information about PostScript printing in XVT/XM, see
section 2.6.
A-2

Appendix A
Uses win argument: No
xvt_vobj_get_attr returns: char*
xvt_vobj_set_attr effect: Causes subsequent printing to

construct and execute print
command

xvt_app_create use: Must use after
Default value: NULL

ATTR_PS_PRINT_FILE_NAME

Description: This attribute is a string pointer that points to the name of the printer
output file used by the PostScript printing feature. If the attribute is
set, print output is placed in the specified filename. If this attribute
is not set or is set to NULL, the function tmpnam is called to get the
name of the file for the print output.

Be aware that, by default, XVT uses the same name for the
PostScript file each time you print something from within the same
application. To generate unique names for your PostScript print
files, set the attribute ATTR_PS_PRINT_FILE_NAME to a different
filename before each call to xvt_print_create_win.

See Also: For more information about PostScript printing in XVT/XM, see
section 2.6.

Uses win argument: No
xvt_vobj_get_attr returns: char*
xvt_vobj_set_attr effect: Causes the printing function to

use the name specified in the
attribute if set, or calls tmpnam
to create the print filename if
NULL

xvt_app_create use: Must use after
Default value: NULL
A-3

XVT Platform-Specific Book for Motif
ATTR_X_DISPLAY

Description: This attribute gets the X display pointer corresponding to the display
on which the XVT application is running.

Uses win argument: No
xvt_vobj_get_attr returns: Display*
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Must use after
Default value: None
A-4

Appendix A
ATTR_X_DISPLAY_TASK_WIN

Description: This attribute controls whether the task window menubar appears
when there are no other menubar-carrying windows visible on the
screen.

Caution: Setting this attribute to FALSE can effectively hang your application
if the application doesn’t create a dialog or window at startup or
doesn’t terminate the application when the last dialog or window is
closed.

Uses win argument: No
xvt_vobj_get_attr returns: BOOLEAN
xvt_vobj_set_attr effect: Task menubar appears if TRUE,

does not appear if FALSE
xvt_app_create use: Can use either before or after
Default value: TRUE

ATTR_X_DLG_PARENT

Description: This attribute allows the user to set the parent of subsequently
created dialogs to be the specified window. The window must be a
top-level window, child window, or a dialog. If NULL_WIN is
specified, the standard XVT/XM method of dialog parenting is used
(i.e., dialogs are parented to the screen window).

Uses win argument: No (window is passed in as the
value)

xvt_vobj_get_attr returns: WINDOW (XVT type)
xvt_vobj_set_attr effect: Specifies parent WINDOW for

dialogs; specifying NULL_WIN
causes dialogs to be parented to
SCREEN_WIN

xvt_app_create use: Must use after
Default value: NULL_WIN
A-5

XVT Platform-Specific Book for Motif
ATTR_X_MASK_SERVER_EVENTS

Description: This attribute determines the level at which events are masked.

If the attribute is TRUE, setting an event mask for an XVT window
or dialog also masks the events at the server. This reduces message
traffic between the server and the application. Not all events are
masked at the server level, but at the very minimum,
E_MOUSE_MOVE events are masked. At the server level,
E_MOUSE_DBL events are masked if other E_MOUSE button events are
masked.

 If the attribute is FALSE, events are masked only at the XVT level.

Uses win argument: No
xvt_vobj_get_attr returns: BOOLEAN
xvt_vobj_set_attr effect: Masks events at server level if

TRUE or at XVT level if FALSE
xvt_app_create use: Can use either before or after
Default value: FALSE

ATTR_X_PLACE_WINDOW_EXACT

Description: This attribute controls top-level window placement as follows:

• If TRUE, the client area of all subsequently created top-level
windows is placed at the coordinates specified in the RCT
structure passed to the window creation function.

• If FALSE, the window manager can place a top-level window
wherever it chooses. The placement of the window varies
according to the user’s environment.

Uses win argument: No
xvt_vobj_get_attr returns: BOOLEAN
xvt_vobj_set_attr effect: Places all subsequently created

top-level windows at exact
coordinates if TRUE or

wherever
window manager chooses if
FALSE

xvt_app_create use: Can use either before or after
Default value: FALSE
A-6

Appendix A
ATTR_X_SELECTION_BUFF

Description: This attribute allows your application to select the X buffer for its
cut, copy, and paste functions. The value of this attribute is one of
three integers:

0 - Use the Motif clipboard buffer.

1 - Use the X primary selection buffer (which is used by xterm).

2 - Use the Motif clipboard for cut and copy, and if the primary
selection buffer contains data, the primary selection buffer
is cleared. Use the primary selection buffer for paste (if the
primary selection buffer contains data) otherwise, paste
from the Motif clipboard.

Uses win argument: No
xvt_vobj_get_attr returns: Previously set value
xvt_vobj_set_attr effect: Changes the selection buffer;

see description above
xvt_app_create use: May use before or after
Default value: 0
A-7

XVT Platform-Specific Book for Motif
ATTR_X_SET_FOCUS_DEICONIZE

Description: This attribute (TRUE or FALSE) tells xvt_scr_set_focus whether to do
anything to an iconized window:

• If TRUE, when the window is iconized, xvt_scr_set_focus
deiconizes (opens) the window and gives it focus. When the
window is not iconized, xvt_scr_set_focus works normally.

• If FALSE, when the window is iconized, xvt_scr_set_focus does
nothing. When the window is not iconized, xvt_scr_set_focus
works normally.

Uses win argument: No
xvt_vobj_get_attr returns: BOOLEAN
xvt_vobj_set_attr effect: Changes the way

xvt_scr_set_focus assigns
focus to iconized windows; see
description above

xvt_app_create use: Must use after
Default value: FALSE

ATTR_X_USE_USERS_STRING

Description: The functions xvt_dm_post_ask, xvt_dm_post_error, xvt_dm_post_fatal_exit,
xvt_dm_post_message, xvt_dm_post_note, and xvt_dm_post_warning normally
format their string arguments using printf-like conventions. Because
of this formatting, a 256-character limit is imposed on the length of
the formatted strings. Setting this attribute to TRUE removes this
limit, but the strings are not formatted. If you need to format them,
use sprintf and pass the formatted string to the xvt_* function.

• If TRUE, the strings are used verbatim, without parsing. The
string’s length is unlimited.

• If FALSE, the strings are formatted. The maximum length of
the formatted string is 256 characters.

Uses win argument: No
xvt_vobj_get_attr returns: BOOLEAN
xvt_vobj_set_attr effect: Parses string if FALSE or uses it

verbatim if TRUE
xvt_app_create use: Can use either before or after
Default value: FALSE
A-8

Appendix A
ATTR_X_WIDGET

Description: This attribute gets the client widget of an XVT window. For the task
window, the client widget is the menubar; for the screen window, the
client widget is not defined.

Uses win argument: Yes
xvt_vobj_get_attr returns: Widget
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Must use after
Default value: None

ATTR_XOR_REF_COLOR

Description: On X color workstations having a color palette (those that use the
“PseudoColor” visual), you draw in XOR mode by XORing the
pixel value corresponding to the foreground color (as set in the
drawing tools) with the existing pixel values in the display buffer.
The resulting pixel value may index into an undefined entry in the
color palette; the color might therefore be indistinguishable from the
background. The blinking caret might behave the same way if
displayed over colored backgrounds.

When you set the per-window attribute ATTR_XOR_REF_COLOR to
a particular color, XVT/XM calculates the pixel value used for
XOR-mode drawing so that if you XOR it with the pixel value
corresponding to the attribute, the application produces a pixel with
the foreground color set in the drawing tools. That is, if you set
ATTR_XOR_REF_COLOR to the assumed background color of a
window on which you expect to perform XOR-mode drawing, you
get the desired foreground color.

ATTR_XOR_REF_COLOR is set to COLOR_WHITE by default for each
window.

Since the caret is a rectangle drawn in XOR-mode, it inherits the
XOR-mode difficulties. To make the caret display properly against
non-white backgrounds, set ATTR_XOR_REF_COLOR before calling
any xvt_*_set_caret_visible function.

Note: Text edit objects use the ATTR_XOR_REF_COLOR attribute to display
selections and when setting the caret. Since text edit objects manage
their own events independent of the contained window, you should
assume that this attribute can change any time you call any text edit
function, including xvt_tx_process_event.
A-9

XVT Platform-Specific Book for Motif
Example: Suppose that you have a window whose background is blue. Before
doing any XOR-mode drawing, set ATTR_XOR_REF_COLOR to
COLOR_BLUE. Since the attribute is implemented only on some
platforms, ifdef the code as follows:

#ifdef ATTR_XOR_REF_COLOR
set_value(win, ATTR_XOR_REF_COLOR, COLOR_BLUE);

#endif
... code to draw in XOR mode ...

Uses win argument: Yes
xvt_vobj_get_attr returns: Reference color
xvt_vobj_set_attr effect: Desired foreground color

(depending on background
color of window to be XOR’d)

xvt_app_create use: Must use after
Default value: COLOR_WHITE
A-10

Appendix A
A.2. Variations on Portable Attributes
These portable attributes have slight variations in meaning in order
to support differences on the native Motif platform.

ATTR_EVENT_HOOK

Description: A pointer to a hook function that is called whenever a native
X event is generated for a window or dialog in your application.
XVT calls the hook function after XtAppNextEvent and before
XtDispatchEvent.

Your application can process this message data in any appropriate
manner—however, modifying this data will have no effect on any
default processing by XM. If your hook function returns FALSE,
XVT does not process the event further. If your hook function
returns TRUE, XVT processes the event normally.

Prototype: BOOLEAN event_hook_function(XEvent * xevent);

XEvent * xevent
Native event.

Uses win argument: No
xvt_vobj_get_attr returns: Pointer to function returning

BOOLEAN or NULL
xvt_vobj_set_attr effect: Installs hook or uninstalls hook

if value is NULL
xvt_app_create use: Can use either before or after
Default value: NULL

See Also: You can see the internal ATTR_EVENT_HOOK function in the file
hook.c in the samples/hook directory. You might want to use
the code in this file as a template for your own custom function.
The X11/Xlib.h file contains the XEvent definition.
A-11

XVT Platform-Specific Book for Motif
ATTR_KEY_HOOK

Multibyte-nonaware Application

If your application uses a single-byte character code set and you
have set the value of ATTR_MULTIBYTE_AWARE as FALSE (default),
then ATTR_KEY_HOOK behaves as follows:

Description: A pointer to a hook function that is called after native xKeyEvent key
events are received and before E_CHAR events are sent to your
application. The xevent parameter is a pointer to data passed
internally to Motif message procedures by XVT/XM.

If you need to perform key translation, you must modify data in the
xevent parameter. Cast xevent to a variable of type XKeyEvent. Modify
the values in the XKeyEvent variable. You may also modifiy the value
of ch. The values of shift and control are currently ignored. XVT uses
the xevent and ch parameters to construct an E_CHAR event.

If your hook function returns FALSE, XVT does not process the event
further. If your hook function returns TRUE, XVT processes the
event normally. In either case, the E_CHAR event is passed to your
application’s XVT event handler.

Prototype: BOOLEAN XVT_CALLCONV1 key_hook(XEvent * xevent, int * ch,
BOOLEAN * shift, BOOLEAN * control);

XEvent * xevent
Native event.

int * ch
Resulting character code.

BOOLEAN * shift
Resulting shift state (ignored).

BOOLEAN * control
Resulting control key state (ignored).

Uses win argument: No
xvt_vobj_get_attr returns: Pointer to function returning

BOOLEAN or NULL
xvt_vobj_set_attr effect: Replaces internal key hook

function with a custom function
or re-enables internal function
if NULL

xvt_app_create use: Can use either before or after
Default value: NULL
A-12

Appendix A
Multibyte-aware Application

If your application is multibyte-aware (in other words, you have set
the value of ATTR_MULTIBYTE_AWARE as TRUE), then
ATTR_KEY_HOOK behaves as follows:

Description: A pointer to a hook function that is called after native xKeyEvent key
events are received and before E_CHAR events are sent to your
application. The xevent parameter is a pointer to data passed
internally to Motif message procedures by XVT/XM.

If you need to perform key translation, you must modify data in the
xevent parameter. Cast xevent to a variable of type XKeyEvent. Modify
the values in the XKeyEvent variable. You may also modify the values
of xvtevent. XVT uses the xevent parameter to construct an E_CHAR
event. If your key hook function translates a character to a virtual
key, then it should also set the event
xvtevent->v.chr.virtual_key field to TRUE.

Multibyte characters are composed of one or more key presses. Your
key hook function must return a value depending on the status of
composed characters. If your hook function returns 0, then an error
occured and XVT does not process the event further. If your hook
function returns 1, then your hook function is done composing a
character event and XVT processes the event normally. If your hook
function returns 2, then your hook function is at an intermediate state
in composing a character event and XVT should not dispatch the
event yet.

Prototype: int XVT_CALLCONV1 key_hook(XEvent * xevent,
EVENT * xvtevent, WINDOW win);

XEvent * xevent
Native event.

EVENT * xvtevent
Resulting XVT event.

WINDOW win
Event window.
A-13

XVT Platform-Specific Book for Motif
Uses win argument: No
xvt_vobj_get_attr returns: Pointer to key hook function

or NULL
xvt_vobj_set_attr effect: Replaces internal key hook

function with a custom function
or re-enables internal function
if NULL

xvt_app_create use: Can use either before or after
Default value: NULL

See Also: You can see the internal ATTR_KEY_HOOK function in the file hook.c
in the samples/hook directory. You might want to use the code in
this file as a template for your own custom function. The X11/Xlib.h
file contains the XEvent definition.

ATTR_NATIVE_GRAPHIC_CONTEXT

Description: A value that represents the underlying graphics context (i.e., a GC)
used by the native window system for a particular window. The
window must be a valid XVT WINDOW that is not a control.

Uses win argument: Yes
xvt_vobj_get_attr returns: GC
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Must use after
Default value: None

ATTR_NATIVE_WINDOW

Description: A value that represents the underlying window object (i.e., an X
Window) used by the native window system, for a particular window.
The window must be a valid XVT WINDOW that is not a control.

Note: For the XVT SCREEN_WIN, the value of this attribute is the X Window
that corresponds to the root window (i.e., the desktop). For the XVT
TASK_WIN, the value of this attribute is zero.

Uses win argument: Yes
xvt_vobj_get_attr returns: Window (X type)
xvt_vobj_set_attr effect: Illegal
xvt_app_create use: Must use after
Default value: None
A-14

Appendix A
A.3. Non-portable Escape Codes
The xvt_app_escape function enables you to set or get
XVT/XM-specific information that you cannot set or get using
the xvt_vobj_set_attr or xvt_vobj_get_attr functions. The function
xvt_app_escape’s escape codes and the associated parameter lists are
given below, with a brief explanation of types
and values. The escape code is an integer whose value is defined
internally by XVT.

XVT_ESC_XM_GET_COMBO_WIDGETS

Description: This escape gives you non-portable access to the individual widgets
that compose the WC_LISTEDIT and WC_LISTBUTTON controls.

Prototype: xvt_app_escape(XVT_ESC_XM_GET_COMBO_WIDGETS, WINDOW win,
Widget * text_wid, Widget * list_wid,
Widget * arrow_button_wid, Widget * row_column_wid);

WINDOW win
The WINDOW of a combo control.

Widget * text_wid
A pointer to the widget that is the edit or label portion of the
control to the left of the arrow button.

Widget * list_wid
A pointer to the widget that is the list (XmList) portion of the
control.

Widget * arrow_button_wid
A pointer to the widget that is the arrow button portion of the
control.

Widget * row_column_wid
A pointer to the XmRowColumn widget that contains the text_wid
and the arrow_button_wid.

Tip: If you need only one of the widgets, pass NULL pointers for the items
you don’t need when calling xvt_app_escape.
A-15

XVT Platform-Specific Book for Motif
XVT_ESC_XM_GET_GRP_BOX_WIDGETS

Description: This escape retrieves the widgets within a WC_GROUPBOX.

Prototype: xvt_app_escape(XVT_ESC_XM_GET_GRP_BOX_WIDGETS,
WINDOW win, Widget * label_wid, Widget * frame_wid);

WINDOW win
The WINDOW of a group box control.

Widget * label_wid
A pointer to the widget that is the label on the group box.

Widget * frame_wid
A pointer to the widget that is the area that encloses label_wid and
any controls that are in it. Note that the frame_wid is not the parent
of the controls that are in the group box.

Tip: If you need only one of the widgets, pass NULL pointers for the items
you don’t need when calling xvt_app_escape.

XVT_ESC_XM_LOWER_GRP_BOX_FRAME

Description: This escape lowers the group box so that it doesn’t obscure any
controls that may be underneath it. This function ensures that the
group box appears lowest in the stacking order of its sibling controls
so that it seems to contain them.

Prototype: xvt_app_escape(XVT_ESC_XM_LOWER_GRP_BOX_FRAME,
WINDOW win);

WINDOW win
The WINDOW of a group box control.
A-16

Appendix A
XVT_ESC_XM_PICT_TO_XIMAGE

Description: This escape extracts a pointer to an XImage (XImage *) from an XVT
PICTURE. XVT/XM provides this escape specifically for backward
compatibility with Release 3. Your application must explicitly
destroy the XImage (see XDestroyImage in O'Reilly’s Xlib Reference
Manual).

Prototype: xvt_app_escape(XVT_ESC_XM_PICT_TO_XIMAGE,
PICTURE pict, XImage ** ximage);

PICTURE pict
The picture from which to extract the XImage.

XImage ** ximage
A pointer to an XImage pointer. The XImage * is returned through
this argument.

Example: This example shows how to use the XVT_ESC_XM_PICT_TO_IMAGE
attribute:

PICTURE pict;
XImage * ximage;
...
/* create an empty XImage of the correct size */
xvt_pict_open(win, &rct);
xvt_dwin_clear(win, COLOR_WHITE);
pict = xvt_pict_close(win);

xvt_app_escape(XVT_ESC_XM_PICT_TO_XIMAGE, pict,
&ximage);

xvt_pict_destroy(pict);
app_function_to_draw_into_ximage(ximage);
xvt_app_escape(XVT_ESC_XM_XIMAGE_TO_PICT, * ximage,

&pict);
xvt_dwin_draw_pict(win, pict, &drawrct);
xvt_pict_destroy(pict);
...
A-17

XVT Platform-Specific Book for Motif
XVT_ESC_XM_SET_CTL_BKG_COLOR

Description: This escape sets the background color for a control. It is particularly
useful for controls created in windows, because you can use it to set
the control’s color to blend in with the window.

Prototype: xvt_app_escape(XVT_ESC_XM_SET_CTL_BKG_COLOR, WINDOW win,
COLOR color);

WINDOW win
The WINDOW of a control.

COLOR color
An XVT COLOR value.

See Also: For more information about the portable way to set the background
color for a control, see the description of xvt_ctl_set_colors in the online
XVT Portability Toolkit Reference.

XVT_ESC_XM_XIMAGE_TO_PICT

Description: This escape converts an XImage to an XVT PICTURE. XVT provides
this escape specifically for backward compatibility with Release 3.
When your application is finished with the PICTURE returned by this
escape, the application must use xvt_pict_destroy to destroy the
PICTURE.

Prototype: xvt_app_escape(XVT_ESC_XM_XIMAGE_TO_PICT,
XImage * ximage, PICTURE * pict);

XImage * ximage
A pointer to an XImage structure. The XImage is converted to an
XVT PICTURE.

PICTURE * pict
A pointer to an XVT PICTURE. The PICTURE produced from the
XImage is returned through this argument.

Example: See the example for the escape code XVT_ESC_XM_PICT_TO_XIMAGE.
A-18

Appendix A
A.4. Non-portable MENU_ITEM Fields
The MENU_ITEM structure contains some non-portable, platform-
specific fields that supplement the portable fields described in the
online XVT Portability Toolkit Reference. This section describes the
non-portable fields for XVT/XM.

Prototype: typedef struct s_mitem {
...
char * accel; /* menu accelerator */
char * acceltext; /* accelerator string */
...

} MENU_ITEM;

accel String

accel is a string that describes the MENU_ITEM accelerator. The format
is the same as the translation table syntax outlined in O’Reilly’s X
Toolkit Intrinsics Programming Manual. XVT/XM uses the
modifiers Shift, Control and Meta (XVT’s Alt).

Example: An accelerator of Control-Shift-F5 is “CTRL Shift <key>F5”.
Similarly, an accelerator of Alt-a is “META <key>a”.

acceltext String

acceltext is a string that replaces the default string generated by any
accelerators. This string appears to the right of the button label.

Note: When a MENU_ITEM is returned from xvt_menu_get_tree, both the accel
and acceltext fields are pointers to space that has already been
allocated. As a result, the application cannot concatenate characters
onto the end of an accel or acceltext string. If the application modifies
the MENU_ITEM structure to contain different accel or acceltext strings,
adequate space must be allocated for the strings. The function
xvt_res_free_menu_tree attempts to free these strings if the pointers are
non-NULL.
A-19

XVT Platform-Specific Book for Motif
ATTR_X_PROPAGATE_ECHAR

Description: This attribute controls whether character events are passed to a
window's event handler when a control has focus. When this
attribute is FALSE, only navigational characters, such as TAB, are sent
the the window's event handler as an E_CHAR event. Setting this
attribute to TRUE will send all character events generated.

Uses win argument: No
xvt_vobj_get_attr returns: BOOLEAN
xvt_vobj_set_attr effect: Window receives all character

events for controls
xvt_app_create use: Must use before
Default value: FALSE

ATTR_X_R45_MODALITY

This attribute allows for the XVT release 4.5 modal model to be
instated. The model for modality changed after XVT release 4.5. In
release 4.5 all objects in the application were sensitized when a
modal window or dialog was created. In releases after 4.5, only
menubars are sensitized.

Uses win argument: No
xvt_vobj_get_attr returns: BOOLEAN
xvt_vobj_set_attr effect: Changes the modality model
xvt_app_create use: Must use before
Default value: FALSE
A-20

Appendix A
ATTR_X_EXPOSE_COMPRESSION_TYPE

Description: This attribute allows three compression types for exposure events:
XVT_COMPRESS_NONE, XVT_COMPRESS_ALL, and
XVT_COMPRESS_OPT. XVT_COMPRESS_NONE does not compress any
exposure events. XVT_COMPRESS_ALL will compress all qued
exposure events into a single rectangular area. XVT_COMPRESS_OPT
will compress all queued exposure events into the smallest single
rectangular area.

Uses win argument: No
xvt_vobj_get_attr returns: long
xvt_vobj_set_attr effect: Changes compression type
xvt_app_create use: Can use before or after
Default value: XVT_COMPRESS_ALL

ATTR_X_TABLE_PROPORTIONAL_THUMB

Description: This allows an XPO table (DSC) or CCTable (DSC++) thumb to be set
to proportional or fixed.

Uses win argument: No
xvt_vobj_get_attr returns: BOOLEAN
xvt_vobj_set_attr effect: Changes table thumb
xvt_app_create use: Must use before
Default value: TRUE
A-21

XVT Platform-Specific Book for Motif
A-22

Appendix B
A
APPENDIX B:
THE XVT/XM LOOK-AND-FEEL

A.1. Focus Models
This section provides information on Motif focus models and how
the focus models affect the interpretation of keyboard events.

A.1.1. Window Managers and Input Focus

The window manager is responsible for moving input focus among
the various windows on the screen. Most window managers give the
user a choice of focus policies. Motif’s window manager, mwm,
offers two choices, “explicit” and “pointer”:

Explicit focus (click-to-type model)
The user must click the mouse in a window or on one of its
borders to switch the focus to that window.

Pointer focus (pointer-driven model)
The window manager gives focus to a window when the
mouse pointer enters a window and removes focus when the
pointer leaves.

The window manager is always in control of distributing focus
among the windows it manages. Thus XVT top-level windows and
dialogs always receive focus from the window manager based on the
focus policy defined in the user’s environment.

A.1.2. Child Windows or Controls

The window manager has no control over the distribution of input
focus within a window hierarchy. If a window contains child
windows or controls, the window manager’s focus policy does not
A-1

XVT Platform-Specific Book for Motif
extend to child windows. Within the hierarchy, the application is
responsible for moving focus.

A.1.3. Keyboard Events

Even though the window manager can’t give focus to child
windows, X can still send keyboard events to them. This is possible
because X does not require that a window receive a FocusIn event
prior to receiving keyboard events. The X server delivers keyboard
events to the window with focus or to any of its descendants if they
contain the mouse pointer.

Figure A.1 shows a window hierarchy in which a window A has a
child B, and window B has a child C.

Figure A.1. A window hierarchy

For the windows illustrated above, Table A.1 shows which window
receives keyboard events, based on the position of the mouse
pointer. Each cell indicates the window that will receive characters
from the keyboard, given the location of the pointer and the window
that has focus.

Table A.1. Windows receiving keyboard events

Keyboard Focus in a Window Hierarchy

Location of Pointer

A B C

A A B C

Window with
focus B B B C

C C C C

Window C

Window B

Window A
A-2

Appendix B
Window A is a top-level window, and thus it can get focus from the
window manager. If the application does nothing to move the focus
(i.e., does not call xvt_scr_set_focus), X delivers keyboard events as if
a pointer-driven model is in effect, even though the window
manager is not changing input focus.

A.2. XVT/XM Focus Policy
The Motif Window Manager always gives focus to the outermost
widget (or TopLevelShell widget) of the window hierarchy. Motif then
uses a virtual focus model to deliver keyboard events. In other
words, Motif uses the X Intrinsics toolkit to redirect keyboard events
to the object (window or control) that has been assigned as the focus
object (even though the X server’s idea of who has focus hasn’t
changed).

Consequently, if your application is using ATTR_EVENT_HOOK to
watch for KeyPress or KeyRelease events, they can be delivered to any
X Window in your application. The Xt Intrinsics library will redirect
the events appropriately.

A.2.1. Default Focus Model

In XVT/XM (as well as Motif), the focus model defaults to a click-
to-type model. For example, in Figure A.1, if window A has focus,
all character events are delivered to window A, regardless of the
position of the mouse pointer.

See Also: For a comparison of the two focus models used by Motif, refer to
section A.1.1.

A.2.2. Changing Focus

To give focus to one of the other windows, the user must move
the pointer and click the mouse button in it. The application then
receives an E_FOCUS event with the active field equal to FALSE for the
previous focus window, and a subsequent E_FOCUS event with the
active field equal to TRUE for the window in which the mouse was
clicked. The new focus window receives all subsequent E_CHAR
events. Clicking on a control also gives it focus and ensures that its
parent receives the correct E_FOCUS event, if necessary.

If focus leaves the window hierarchy and then returns, the focus is
restored to the last window or control that had the focus. (The focus
is not returned to the client area of the top-level window.)
A-3

XVT Platform-Specific Book for Motif
A.3. Keyboard Navigation
Keyboard navigation in dialog controls is handled automatically by
XVT/XM. No special processing of characters is required.

On the other hand, keyboard navigation is not automatic in XVT
window controls. You may elect to use the XVT navigation object
to handle E_CHAR events for keyboard navigation in windows, or
you may implement your own navigation mechanism.

Caution: If you implement you own navigation scheme, there are some
considerations you must keep in mind—these are discussed in the
following two subsections, next.

When a control in a window has focus and the user types characters,
characters not processed internally by the control are passed as
E_CHAR character events to the control’s parent (container) window.
Your application event handler then must process these characters
for the desired behavior (focus change, selection, etc.).

The portable attribute ATTR_PROPAGATE_NAV_CHARS controls the
delivery of those character events necessary for navigation to
windows (including modal windows). This attribute is automatically
set if you have chosen to use the XVT navigation object.

See Also: For more information about XVT’s navigation object, XVT_NAV, see
the “Keyboard Navigation” section of the “Windows” chapter in the
XVT Portability Toolkit Guide.

A.3.1. Controls and Navigation Keys

Different controls propagate different navigation keys as E_CHAR
events to their parent window:

• All controls send the following keys: Tab, Back Tab (XVT’s
K_BTAB), and osfCancel (usually Escape).

• All controls except WC_LBOX also pass osfActivate (usually
Return) to the application. A WC_LBOX treats osfActivate as a
double-click.

• The following controls also dispatch arrow keys as E_CHAR
events: WC_PUSHBUTTON, WC_RADIOBUTTON,
WC_CHECKBOX, WC_TEXT, WC_ICON, and WC_LISTBUTTON.
The other controls interpret arrow keys as traversal within the
widget.
A-4

Appendix B
A.3.2. Application Focus Traversal Lists

Note: This section applies only if you are not using XVT’s navigation
object, XVT_NAV, and instead, have chosen to implement your own
mechanism for keyboard navigation.

Since the user can change focus to controls by clicking on them, the
control that currently contains the focus can be “out of sync” with
any application traversal list. If the application relied on an internal
list to decide the control that should receive focus when the user
presses the Tab key, the focus would likely jump to a control that
the user didn’t expect.

Instead, your application should use xvt_scr_get_focus_vobj to “inquire”
which control (if any) has focus, and hence to which control the
focus should be directed when the user traverses via the keyboard.

A.4. Task Window Menubar
In Motif applications, when no visible window with a menubar is
displayed, a “ghost window” (or ghost menu) appears. The ghost
window exists solely to display the task window menubar.

The ghost window is necessary because in Motif the task window
has no physical representation, but simply corresponds to the screen.
A user would be unable to make menu selections (or open windows)
if no window (in this case, the ghost window) containing a menubar
were present.

As soon as the user opens a visible window containing a menubar,
the ghost window disappears.
A-5

XVT Platform-Specific Book for Motif
A-6

Appendix C
A
APPENDIX C:
FREQUENTLY ASKED QUESTIONS

Q: I've just upgraded from an earlier release of XVT/XM. When I
recompile my application, I get an XVT Fatal Error. What's wrong?

A: Each time you upgrade to a newer version of XVT/XM, you must
not only recompile your programs with the new libraries, but also
rerun xrc on your URL file. The resource IDs of the strings that your
application is looking for change slightly from release to release.
Delete your .uid file and rerun xrc on your URL file.

Q: Why do I get an XVT Fatal Error followed by “Can’t open prolog
file” when I try to print?

A: This problem is the result of an invalid XVTPATH variable. In order
to print, you must set XVTPATH to include the print directory of the
XVT library installation.

Example: This example shows how to set the environment variable (inside a
C-shell) to a fictitious path for printing:

setenv XVTPATH /xvtdsc45/xm12_x86_sco/print

See Also: For more information about printing, see section 2.6.
A-1

XVT Platform-Specific Book for Motif
Q: Why am I getting the message: “Warning: Couldn't open file xxx.uid
- MrmNOT_FOUND” followed by an XVT Fatal Error?

A: This message appears when your application cannot find its
resources. For an application to recognize the location of its
resources, you need to either start the application from the directory
that contains the UID file, or you need to set the UIDPATH
environment variable.

See Also: For more information on resource filenames and UIDPATH, see
section 2.4.1.

Q: How do I use multiple UIL/UID files with XVT/XM?

A: Follow these two basic rules if you create multiple UIL files for your
application:

• Divide your UIL file into multiple files

• Change xxinit.c to recognize multiple UID files

The easiest way to divide your large UIL file into multiple UIL files
is to cut-and-paste your dialogs into another file. Move only your
dialogs. Leave all the menubars, strings, help, standard dialogs and
any information at the bottom of the file, such as value MWS_xxxxx, in
the first UIL file.

You can find the beginning of any of your dialogs by looking for
XVT_DLG_xxx (where xxx is the resource ID assigned to the dialog).
Then cut-and-paste the dialog and all of its controls. The controls are
labeled control_xxx_yy or sssss_xxx_yy, where sssss is the type of control
that is being created, xxx is the dialog ID, and yy is the control ID
(e.g., list_256_18 for a listbox, label_256_20 for a static text, and so
forth). Be sure to cut-and-paste all the controls of a particular dialog,
since you can’t have a dialog split between UIL files.

You must include the first 40 lines of the first UIL file in the second
and any subsequent UIL files.

Note: The first 14 lines are comments; you can omit them if desired.
A-2

Appendix C
The required lines from the first UIL file (without the optional
comments) are shown here:

module APPL1
names = case_sensitive value

! new line "macro" for creating multi-line strings
NL : compound_string('', separate = true);

! dialog/control creation flags
dlg_disabled : 1;
dlg_invisible : 2;
ctl_readonly : 1;
arrow_button_height : 29;
arrow_button_width : 23;
frame_shadow_width : 3;

procedure
xvt_create_dlg_cb(integer);
xvt_create_travs_ctl_cb(integer);
xvt_create_ctl_cb(integer);
xvt_create_special_cb(integer);
xvt_kbd_traversal(integer);
xvt_motif_dlg_button_cb(integer);
xvt_create_menu();
xvt_do_menu();
xvt_scroll_cb(integer);

Add the following lines to the bottom of the second and subsequent
UIL files:

end module;

! ---
! End of file
! ---

The last three lines are comments and can be omitted if desired.

Once you have split your UIL file, you need to change the xxinit.c
file to recognize all of your UID files. Remember—there is a one-to-
one correspondence between UIL and UID files.

Tip: To change the xxinit.c file to recognize multiple UID files:

Change the array size of the variable uidfiles in the function
xvtxm_app_init in xxinit.c.

The default array of one char * is already declared. Add additional
strings to the uidfiles array to indicate you are using multiple UID
files. Change the number being passed to MrmOpenHierarchy to reflect
the exact number of UID files you are using.
A-3

XVT Platform-Specific Book for Motif
Example: The existing xvtxm_app_init code shown here opens the UID file:

/* open the Mrm hierarchy */
uidfiles[0] = xvt_malloc ((strlen(name) + 5)

* sizeof(char));
sprintf (uidfiles[0], "%s.uid", name);
if (MrmOpenHierarchy ((MrmCount)1, uidfiles, NULL, hier)

!= MrmSUCCESS)
return FALSE;

After splitting the example UIL file into two files, examp.uid and
examp1.uid, you would change the code in xvtxm_app_init as follows:

/* open the Mrm hierarchy */
uidfiles[0] = xvt_malloc ((strlen(name) + 5) *

sizeof(char));
sprintf (uidfiles[0], "%s.uid", name);
uidfiles[1] = xvt_malloc ((strlen("examp1") + 5) *

sizeof(char));
strcpy(uidfiles[1], "examp1.uid");
if (MrmOpenHierarchy ((MrmCount)2, uidfiles, NULL, hier)

!= MrmSUCCESS)
return FALSE;

Q: How do I use color with controls in my application?

A: You can use the following two Portability Toolkit functions to set
colors for controls in your application:

void xvt_ctl_set_colors(WINDOW ctl_win,
// WINDOW ID of the control

 XVT_COLOR_COMPONENT *colors,
// colors to set or unset

 XVT_COLOR_ACTION action)
// set or unset the colors

and

void xvt_win_set_ctl_colors(WINDOW win,
// WINDOW ID of the window or dialog

 XVT_COLOR_COMPONENT *colors,
// colors to set or unset

 XVT_COLOR_ACTION action)
// set or unset the colors

xvt_ctl_set_colors sets or unsets the colors for a single control. This
function overrides any color values you set previously for the
control, but only for the XVT_COLOR_COMPONENT of the colors
array. All other colors used by the specified control are not affected.
To set the default colors for a control, use NULL for the value of
colors. An action value of XVT_COLOR_ACTION_SET sets the control
A-4

Appendix C
colors for the color components specified in the colors parameter.
An action value of XVT_COLOR_ACTION_UNSET sets the control
colors for the color components specified in the colors parameter to
colors inherited from the control's container, the colors owned by the
application, or the system default.

xvt_win_set_ctl_colors sets or unsets the colors for all existing controls
in window win and all controls that you create after setting the colors.
It will not change the colors of controls in other windows. This
function overrides any color values you set previously for the
controls in the window, but only for the XVT_COLOR_COMPONENT of
the colors array. All other colors used by the window's control are
not affected.

Note: For controls with color components set individually, the
components that were set will not be affected by this color change.
The components that were not set will be affected. For example, if a
pushbutton has set blue for the foreground color and then the
window has set a background component of red, the background of
the pushbutton will be red.

To set the default colors for controls in a window, use NULL for the
value of colors. XVT_COLOR_ACTION_SET and
XVT_COLOR_ACTION_UNSET work as described above. Note that this
function does not affect the colors of the container decorations or
any other colors that appear in the container itself.

The following Portability Toolkit functions allow you to get the
currently-defined color settings:

XVT_COLOR_COMPONENT *xvt_ctl_get_colors(
WINDOW ctl_win)

XVT_COLOR_COMPONENT *xvt_win_get_ctl_colors(
WINDOW win)

Q: When compiling my application with the XVT PTK 4.x release, I
sometimes get the following XVT internal warning:

WARNING: API function already marked in frame
Category: Error messaging facility (Error Message Frame problems)
Function: xvt_app_process_pending_events
xvt_app_process_pending_events
File: ./verrmsg.c line: 405

What does this mean and how can I correct the problem?

A: With error handling in XVT PTK 4.x, each time a function call is
made, it is “marked.” When it returns, it is “unmarked,” so that XVT
can report which call caused the error.
A-5

XVT Platform-Specific Book for Motif
Since 4.x was released, we have learned that the marking and
unmarking of function calls does not happen correctly in certain
cases, particularly, in cases where the application interacts with the
X toolkit directly in such a way that causes recursion. Thus, the
warning occurs. The warning is harmless and should not affect the
operation of the application at all.

To prevent the message, however, you can override the error
message handler by creating one that filters out the warning
message. You can install such a message handler from the window
event handler for C customers, as follows:

static BOOLEAN XVT_CALLCONV1
ErrHandler XVT_CALLCONV2
#ifdef XVT_CC_PROTO
(
XVT_ERRMSG err, /* Error Message Object */
DATA_PTR context /* Context, (not used here) */
)
#else
(err, context)
XVT_ERRMSG err;
DATA_PTR context;
#endif
{

/* Check for error signal(s) we want to ignore */
if (xvt_errmsg_get_msg_id(err) ==
ERR_EMF_FRAME_MARKED)

 return TRUE; /* forget this message,
it's OK */

/* Pass the remaining signals to the default
handler */

 return FALSE;
}

You can also override the warning in the task window event handler
or prior to calling xvt_app_create do, as follows:

case E_CREATE:
xvt_vobj_set_attr (win, ATTR_ERRMSG_HANDLER,

(long)ErrHandler);

If you are using C++, you can install an error handler by placing the
following line in header file:

BOOLEAN ErrHandler(XVT_ERRMSG err, DATA_PTR context);

Place the following line in an implementation file after the #include
statements:

extern BOOLEAN ErrHandler(XVT_ERRMSG err,
DATA_PTR context);

Place the following function definition in the implementation file:
A-6

Appendix C
BOOLEAN XVT_CALLCONV1
ErrHandler XVT_CALLCONV2
#ifdef XVT_CC_PROTO

(
XVT_ERRMSG err, /* Error Message Object */
DATA_PTR context /* Context, (not used here) */
)
#else
(err, context)
XVT_ERRMSG err;
DATA_PTR context;
#endif
{
 /* Check for error signal(s) we want to ignore */
 if (xvt_errmsg_get_msg_id(err) == ERR_EMF_FRAME_MARKED)
 return TRUE; /* forget this message, it's OK */

 /* Pass the remaining signals to the default

handler */
 return FALSE;
}

Then place the following line in cstartup.cxx after the #includes (You
need to have a header file with the function prototype included):

extern BOOLEAN ErrHandler(XVT_ERRMSG err,
DATA_PTR context);

Finally, in CApplication() theApplication:

CApplication0 theApplication;
// add the following ATTR statement here
xvt_vobj_set_attr (NULL_WIN, ATTR_ERRMSG_HANDLER,

(long)ErrHandler);
theApplication.Go(

In summary, install the event handler so that it ignores the warning
message.

Q: How do I use color with controls in my application?

A: You can use the following two Portability Toolkit functions to set
colors for controls in your application:

void xvt_ctl_set_colors(WINDOW ctl_win,
// WINDOW ID of the control

XVT_COLOR_COMPONENT *colors,
// colors to set or unset

XVT_COLOR_ACTION action)
// set or unset the colors

and
A-7

XVT Platform-Specific Book for Motif
void xvt_win_set_ctl_colors(WINDOW win,
// WINDOW ID of the window or dialog

XVT_COLOR_COMPONENT *colors,
// colors to set or unset

XVT_COLOR_ACTION action)
// set or unset the colors

xvt_ctl_set_colors sets or unsets the colors for a single control. This
function overrides any color values you set previously for the
control, but only for the XVT_COLOR_COMPONENT of the colors
array. All other colors used by the specified control are not affected.
To set the default colors for a control, use NULL for the value of
colors. An action value of XVT_COLOR_ACTION_SET sets the control
colors for the color components specified in the colors parameter.
An action value of XVT_COLOR_ACTION_UNSET sets the control
colors for the color components specified in the colors parameter to
colors inherited from the control's container, the colors owned by the
application, or the system default.

xvt_win_set_ctl_colors sets or unsets the colors for all existing controls
in window win and all controls that you create after setting the
colors. It will not change the colors of controls in other windows.
This function overrides any color values you set previously for the
controls in the window, but only for the XVT_COLOR_COMPONENT of
the colors array. All other colors used by the window's control are
not affected.

Note: For controls with color components set individually, the
components that were set will not be affected by this color change.
The components that were not set will be affected. For example, if a
pushbutton has blue set for the foreground color and the window has
red set for the background color, the background of the pushbutton
will be red.

To set the default colors for controls in a window, use NULL for the
value of colors. XVT_COLOR_ACTION_SET and
XVT_COLOR_ACTION_UNSET work as described above. Note that this
function does not affect the colors of the container decorations or
any other colors that appear in the container itself.

The following Portability Toolkit functions allow you to get the
currently-defined color settings:

XVT_COLOR_COMPONENT *xvt_ctl_get_colors(
WINDOW ctl_win)

and

XVT_COLOR_COMPONENT *xvt_win_get_ctl_colors(
WINDOW win)
A-8

Appendix C
Q: Where are all new features of the PTK documented?

A: New functionality is outlined in the XVT Portability Toolkit
Reference and in the XVT Portability Toolkit Guide.

In addition to documenting new functionality, the online XVT
Portability Toolkit Reference contains sections on each of the
following topics:

• XVT Portable Attributes

• XVT Events

• XVT Data Types

• XVT Constants

• XVT Functions

• URL Statements

• Help File Statements

• Tools

Q: How do standard fonts map to multibyte fonts?

A: XVT does not automatically map to multibyte fonts. In order for
your application to use multibyte fonts, you must first
Internationalize and Localize your application, using the methods
detailed in Chapter 19 of the XVT Portability Toolkit Guide. You
must also install the multibyte fonts appropriate for the language you
intend to use, according to your system guidelines. This will allow
the fonts to be available to your XVT application.

Presumably, you will be translating your application to one or more
languages. If you have properly internationalized your application,
all your text and font references exist only in your resource file.
When you translate your text, you should also setup the font and
font_map resource appropriate for each language.

To set a multibyte font, you must modify the URL font or font_map
statements of your application to contain native fonts appropriate for
the language.

XVT supplies the following LANG_* xrc compiler options (files in
your ptk/include directory):

• LANG_JPN_SJIS supports Japanese in Shift-JIS code (file
ujapsjis.h)

• LANG_GER_IS1 supports German in ISO Latin 1
A-9

XVT Platform-Specific Book for Motif
• LANG_GER_W52 supports German in Windows 1252

• Files for English, French, and Italian are also provided

These options and others are listed and discussed further in the XVT
Portability Toolkit Guide and the Guide to XVT Development
Solution for C++.

XVT cannot guarantee which character set your customers will use.
There is more than one set available for many languages. Because
the font to which you map must be available on your customer's
system in order for your application to run, a survey of your
proposed customer base may be in order.

The availability of these fonts and other system setup issues should
become part of the installation requirements for your application, or
the fonts should be installed with your application.

Q: I've completed development and thoroughly tested my application. I
understand the XVT Portability Toolkit has compile time
optimization. How do I enable it?

A: In order to understand how XVT compile time optimization works,
some knowledge of the XVT Portability Toolkit implementation is
required. The XVT Portability Toolkit is implemented in two layers.
The top API layer, the functions of which are listed in the XVT
Portability Toolkit Reference, is called directly by your application.
This layer performs error checking of all input parameters and
sometimes other validation before calling the internal layer. It is the
internal layer that contains the implementation of the functionality.

XVT provides a compile time symbol, XVT_OPT, which, when
defined during application compilation, redefines the top level
function names to directly call the internal API functions through
macros. This bypasses the parameter checking provided by the top
layer and eliminates an extra stack level for each XVT API function.
You can also leave XVT_OPT undefined, allowing for the specific
optimization of your application code. The header file xvt_opt.h
contains the macro definitions of the XVT API functions that are
optimized.

The optimization will not eliminate all error checking from the XVT
Portability Toolkit. Rather, it will eliminate only those errors related
to XVT API function parameters. Also, because the top layer sets up
the error frames for function information, any errors that do occur
may have fictitious results for the function stack trace.
A-10

Appendix C
XVT recommends this option be used only after you have completed
development and have thoroughly tested your application.
Attempting to use this option too early in your development process
may result in application crashes and other odd behavior due to
improperly called functions that would otherwise have been checked
and diagnosed by the top API layer.

Q: How are the text edit objects after version 4.5 different from the text-
edit objects in previous versions?

A: Text-edit controls have been enhanced to work more like other
objects in the XVT Portability Toolkit. The text edits after 4.5 have
two improvements over those in previous versions. First, they have
been placed inside a child window. Second, you can now use some
of the same routines to manipulate controls and text-edits.
Additionally, if you find you still need the previous types of text-
edits, you can continue to use them.

In releases after 4.5, text-edits have been placed inside a child
window, ensuring that they have more consistent behavior with
other controls. For instance, the insertion point that appears in
editable controls now acts more consistently. You can be assured
that only one control will possess the insertion point at any one time.
Also, to maintain backward compatibility, the previous text-edit
functions will still work. That is, you may continue to use text-edit
controls that are not contained in a child window. To use old text-
edit features, read about using the attribute
ATTR_R40_TXEDIT_BEHAVIOR in the XVT Portability Toolkit Guide.

Since the old-style text-edit is fundamentally different from other
controls, it required specialized text-edit functions. However, you
can manipulate the new text-edit features with many of the generic
control and window functions. For instance, with the old-style text-
edit, code would have to decide whether a text-edit or some other
control should receive focus, requiring the use of two functions,
xvt_tx_set_active() and xvt_scr_set_focus_vobj(). The new text-edit lets you
use xvt_scr_set_focus_vobj() to clean up some code.
xvt_scr_set_focus_vobj() can be helpful if an application needs to handle
arrays of native controls mixed with text-edits.

Note: Not all the ctl functions work on text-edits. Check the XVT
Portability Toolkit Guide for specific functions you can use.
A-11

XVT Platform-Specific Book for Motif
Q: I'm not sure I understand the M_* values for DRAW_MODE as
stated in the XVT Portability Toolkit Reference. What exactly am I
supposed to see?

A: The following “Draw Mode Definitions” section shows the different
drawing modes supported by XVT. There is also an explanation of
what these modes will do if you are drawing in black or white on
either a black or a white source pixel.

See Also: For more information, see “Draw_Mode” under “XVT Data Types” in
the XVT Portability Toolkit Reference.

Note: On systems that use a 256-color palette, and not 24 bit color,
information in the charts will hold true only for black and white
because the palette indices are used for ORing and XORing, not the
color values themselves. Because there are no definitive (or at least
portable) rules about what color is held in a given index, there are
absolutely no guarantees as to what your results will be. 129 xor 1 will
always be 128, but index 129 might be yellow, 1 might be white, and
128 might be off-puce. The application can attempt to force a
palette, but the colors present will be a random mix based on what
applications are currently running and what applications have run in
the past in the same session.

The following code and draw mode definitions demonstrate the
problem more clearly:

typedef enum { /* drawing (transfer) modes */
M_COPY,
M_OR,
M_XOR,
M_CLEAR,
M_NOT_COPY,
M_NOT_OR,
M_NOT_XOR,
M_NOT_CLEAR

} DRAW_MODE;

Draw Mode Definitions

M_COPY:

• If you draw black, source pixel will be forced to black

• If you draw white, source pixel will be forced to white

M_OR:

• If you draw black, source pixel will be forced to black

• If you draw white, source pixel will be left as is
A-12

Appendix C
M_XOR:

• If you draw black, source pixel will be inverted

• If you draw white, source pixel will be left as is

M_CLEAR:

• If you draw black, source pixel will be forced to white

• If you draw white, source pixel will be left as is

M_NOT_OR:

• If you draw black, source pixel will be left as is

• If you draw white, source pixel will be forced to black.

M_NOT_CLEAR:

• If you draw black, source pixel will be left as is

• If you draw white, source pixel will be forced to white

M_NOT_COPY:

• If you draw black, source pixel will be forced to white

• If you draw white, source pixel will be forced to black

M_NOT_XOR:

• If you draw black, source pixel will be left as is

• If you draw white, source pixel will be inverted

Q: What is the difference between NText and CText?

A: NText and CText each display a single line of text and provide
alignment options within their frames. Although their basic
functions are similar, each class has unique characteristics that make
it better than the other in different situations.

The NText class is derived from the CNativeView class. Native views
have the look-and-feel of objects provided by the native window
manager. They look slightly different from platform to platform.
Visually and functionally they fit in with the analogous graphical
items on the target platform. They are not implemented by XVT-
DSC++, but by the native toolkit, so you have less flexibility in
manipulating them. Native views don't know how to print
themselves. Since native views are derived from CView, they have all
of the capabilities of other objects at the view level. As a native
view, NText is defined by platform-specific resources. For example,
it uses the system font and color as defined by the window manager.
A-13

XVT Platform-Specific Book for Motif
You should use NText when you want your application, or parts of
your application (certain dialog boxes, for example), to have the
look-and-feel of objects created by the native window manager.

The CText class is derived from the CView class. Unlike NText, which
is drawn by the native window manager, CText creates drawn text
which looks the same across all platforms. It allows user and
program control over its font properties and colors. For example, it
allows you to choose from a variety of font families (Times,
Helvetica) and styles (italics, boldface). It can dynamically change
its size as its contents change. It can change its placement and
alignment at runtime. It can also output itself to a printer.

You should use CText when you want more creative control over the
appearance of your text, when you want your text to appear the same
across all platforms, or when you want to give the user creative
control over the appearance of text in your application.

See Also: For more information, see “CText” and “NText” in the XVT
Development Solution for C++ Reference and also look for
references to CText and NText in the Guide to XVT Development
Solution for C++.

The “Textual Views” chapter in Introduction to C++ for Developers
is also helpful.

Q: Is there a way to implement zooming in DSC++?

A: The following solution does not use CUnits and will result in correctly
updated wireframes, scrolling, sizing, dragging, and so on.

Create a new class called ViewInfo, for example. The purpose of
ViewInfo is to keep track of the location where the view was created.
Each time that a new view is inserted in the CScroller, create an
associated ViewInfo. Fill the associated ViewInfo with the view's
creation-frame and a pointer to this view. This ViewInfo instance is
then appended to a RWOrdered.

When the zoom factor changes, for example, to 150%, iterate
through the RWOrdered, and tell the view, which is pointed to size 1.5
times its original frame. Once all views have processed, call
xvt_dwin_invalidate_rect on the CScroller. Everything should successfully
redraw. If a CWireFrame has been moved, it generates a WFSizeCmd,
and the DoCommand looks up in the RWOrdered to update the creation
coordinates according to the actual zooming factor.

The following code illustrates:
A-14

Appendix C
class ViewInfo : public RWCollectable
{
public:

ViewInfo(CView* theView, const CRect& theRect) ;
~ViewInfo() ;
virtual CRect& SetFrame(const CRect& theRect) ;
virtual CRect GetFrame(void) ;
virtual CView* GetView(void) ;

protected:
CRect itsCreationFrame;
CView* itsView;

private:
} ;

A fundamental problem is equating the Size() method with zooming.
Here are the issues:

• What happens when a view is resized in the usual way? For
example, as a pane in a splitter window, a subview may be
resized to be twice as wide. Is this equivalent to zooming by
200%?

• What happens when a view is moved in the usual way? Will
the associated ViewInfo object need to refresh itsCreationFrame?
How would this be done?

• What happens when a native control is zoomed? For
example, if a NListButton is told to zoom (resize), the edit box
will remain the same height.

• What happens when a CPicture (or a CPictureButton, etc.) is told
to resize? Will the picture stay intact?

• What happens to subviews within subviews? The splitter will
be resized, but the oval will stay the same.

It should be possible to resolve all of these issues without the need
to subclass everything. Expand on what has been started in the
ViewInfo class above, and envision a type of visitor attached to the
switchboard called a CZoomHandler.

A CZoomHandler will have a zooming factor attribute. If this is set to
100%, it will not do anything. A CZoomHandler will intercept
E_UPDATE events at the Switchboard and perform a deep traversal
through the window's object hierarchy, via DoDraw(). The
CZoomHandler will render each view as it sees fit: On some views, it
may just temporarily reset its size attributes and then call its Draw()
method. On others, it may do its own drawing to handle some of the
tougher issues listed above.
A-15

XVT Platform-Specific Book for Motif
Q: How do you create global variables for use in a DSC++
application?

A: The best way to use variables that can be accessed globally from
your application is to use them in a real global object, such as the
CApplication- derived object. The application object should
encapsulate the variables and make them accessible only through
member functions. For instance, if the application object has a
private variable named theVariable, then the application object might
have a member function named SetTheVariable() and another called
GetTheVariable(). This approach is a standard mode of operation in
most object-oriented applications.

Some prefer to use the CGlobalUser class. This class, however, does
not encapsulate and protect data as well as using a more object-
oriented approach as described above. In case you choose to use the
CGlobalUser class, the following paragraphs describe how.

The CGlobalUser class object has application global scope and can be
used to access any global variables you may need. You can find
documentation for this class in the XVT Development Solution for
C++ Reference.

The CGlobalUser class is utilized as follows:

1. Copy the file CGlobalUser.h from the pwr/include directory
to your development directory. You should rename the original
file so that the compiler will see your own copy.

2. Add public class variables to your copy of the header file as
follows:

///////////////////////
//Add items as needed//
///////////////////////

class CGlobalUser : public CNotifier
{

public:
CGlobalUser(void) {}
XVT_HELP_INFO xd_help_info;
FILE_SPEC* initFile;
SECURITY_LEVEL userLevel;

};

3. In your application's startup member function, create an
instance of CGlobalUser and pass it to CBoss: IBoss as follows:
A-16

Appendix C
///////////////////////////////
// Call IBoss to instantiate //
// the CGlobalUser object //
///////////////////////////////

void CDEMOApp::StartUp();
{

CApplication::StartUp();
IBoss(new CGlobalUser);
DoNew();

}

4. Access the global variables through the CBoss's GU pointer, as
follows:

...
// Access the global userLevel
GU->userLevel = SUPER_USER;
...

5. Destroy the GU pointer in the application's ShutDown member
function, as follows:

////////////////////////////////////
// Destroy GU and set it to NULL //
////////////////////////////////////

void CDEMOApp::ShutDown(void)
{

delete GU;
GU = NULL;
CApplication::ShutDown();

}

Q: In the Application-Document-View hierarchy, can I have more
levels of Document-View? For example, can I have a hierarchy like
the following:

In other words, if there are only three levels in the hierarchy, I have
to put all data access/management code in one document and then
use this single document to maintain all its views, as illustrated
below?

Document View Document1 View1Application

Document View

Document2 View2
A-17

XVT Platform-Specific Book for Motif
A: No, you cannot have multiple levels of documents using the DSC++
framework. CDocument objects must be parented to one CApplicaton
instance, just as CWindow objects are parented to a single CDocument
instance. However, this arrangement gives you plenty of power for
managing document data.

It might help to make a distinction between two different concepts
that are used in the DSC++ framework. One is the “Application-
Document-View” concept, and another is known as the “Model-
View-Controller” design pattern. These two patterns can be used
separately or together to build your application's data-flow structure.

It is true that you have only one level of views that are windows into
the data in a document. However, it makes sense that there is only
one level of complexity in this model. The real purpose of the App-
Doc-View idea is to help the developer visualize which windows are
looking at which separate groups of data.

In the App-Doc-View paradigm, it is the document's role to be the
conduit of data flow between the data level and the presentation
level of a two- or three-tier architecture. A document represents, in
all its complexity, an entire, independent data set. Even if your
presentation draws its data from several different sources, it can still
be thought of as one data set, managed by a single document.

The App-Doc-View concept helps in laying out applications that
have many windows that look into one data set, and a separate
collection of windows that look into an entirely different data set. In
your case, you may not have this type of complexity. More complex
documents probably should be broken up into more manageable
models, where the document manages (creates and destroys) these
models. Each model is designed to solve one piece of the overall
project.

In some cases, you may have a single window that looks into two
separate data sets. In such a situation, the “Model-View-Controller”
design pattern will be more appropriate. This design is borrowed

Document ViewApplication

Document View

SubView2

SubView1
A-18

Appendix C
from the Smalltalk programming environment to help keep all the
windows into a data set in sync so they all have the same data at the
same time.

An MVC object structure can be as complicated as needed. When
the state of one model changes, all other dependent models may be
automatically notified and updated via the controllers to which the
models are registered.

You can implement this with a document that owns many data
models (use the CModel class). Each model has a controller that
decides whether windows can change or read the data. You register
each of the views with the data controller (use CController). These
views can be implemented as CViews, CSubviews, or CWindows. When
the data in the model changes, the controller will send a message to
the appropriate views so that they can update themselves with the
data. The document would manage both the data models and the
views themselves.

In Architect, you can visualize the layout with the Application-
Document-View graph. However there is no visual way to represent
the Model-View-Controller idea in Architect because this design
pattern has less to do with the layout of the application, and more to
do with the internal data structures.

These two separate concepts have their own unique uses as generic
design patterns. Thinking about object-oriented programs in terms
of abstract design patterns has proven quite useful to many object-
oriented programmers. A good book on the topic is Design Patterns:
Elements of Reusable Object-Oriented Software by Gamma, Helm,
Johnson, and Vlissides.

Q: How do you print hidden views, multiple pages, or native controls in
DSC++?

A: The default behavior of Architect-generated code is to print the
contents of a window on a single print page. DSC++ has built-in
functionality for printing the screen images of most drawn or
rendered objects, including CSubView-derived objects. Anything
which lies beyond the boundaries of the window is clipped in the
printed output. There is no functionality in DSC++ or the XVT
Portability Toolkit (PTK) for printing images of native controls,
specifically anything that inherits from the class CNativeView. If your
application only needs to be able to produce simple screen shots of
custom views drawn on a single page, you probably do not need to
override any printing methods.
A-19

XVT Platform-Specific Book for Motif
However, many applications need to be able to print text or graphics
on multiple pages. Others may need to print portions of the view that
demonstrate how to print the contents of a text editor object on
multiple pages.

To understand Printing in DSC++, consider that there may be
several overloaded versions of DoPrint acting in a single print
process. CPrintManager has the DoPrint member function, CDocument has
DoPrint, and CView also has DoPrint. These three implementations
coexist, and they do different tasks. If you look at the DSC++
hierarchy, you can see they cannot override one another.

Printing is started when the user selects the Print option from the File
menu. This generates the standard M_FILE_PRINT menu command.
The menu command goes to your window's DoMenuCommand method.
It propagates up from there to the default CWindow menu, then the
default CDocument menu command. CDocument will then call the
CDocument-derived DoPrint Method.

If your application overrides the CView::DoPrint, note that your
overridden DoPrint function will not get called with the default
Architect code. This is because the CView class does not inherit from
CDocument, and it is the CDocument DoPrint that gets called by default.
You will need to add your own code to call the proper print method.
Usually this code is added at the window object level.

At the document level, the DoPrint method inserts each of the
document's windows as an entry (or page) in the print queue, and
calls the CPrintManager::DoPrint. The CPrintManager's DoPrint starts a PTK
print thread. If you override CView::DoPrint, your function should also
call CPrintManager::DoPrint.

The PrintThread function looks at every item in the print queue and
opens a print page for each one. It calls an item's DoPrintDraw and then
closes the page. This way each view in the queue gets exactly one
page.

The default DoPrintDraw, generally at the CView level, simply sets the
output device to be the printer, prepares the clipping region of the
view, and calls the view's PrintDraw. PrintDraw is not called if the view
is invisible. PrintDraw then does the drawing to the print page. In
many cases, PrintDraw just calls Draw, the same routine that draws to
the screen. Drawing to the screen or to the print page works
interchangeably, depending on how the output device is set.

The secret to printing multiple pages it to override the DoPrint method
that inserts pages into the print queue. Every time the CPrintManager's
Insert method is called results in a page of printed output. If you want
A-20

Appendix C
a view to appear on several pages, call Insert once for each page with
the same view as its parameter. If the objects to be printed are within
a virtual frame, you can scroll hidden views into the visible portion
of the frame before you enter the views in the print queue.

The overridden DoPrint also needs to figure out how many pages a
view will occupy. Often times, this requires converting from printer
dot units to pixel units. For this, you need to create a units object
with dynamic mapping for your application.

Q: How do I deallocate unused colors in an X application?

A: Deallocation of unused colors is provided through XVT_PALETTE
objects introduced in Release 4. Palettes of type XVT_PALETTE_USER
will allow the application to allocate any available color cells. These
color cells are deallocated when the palette object is destroyed. This
gives applications some control over color cell allocation/
deallocation in a shared colormap. Currently, the palette
implementation does not use private X colormaps, so complete
“portable” control over all server colors is not possible. (XVT apps
are “good X apps.” They share all available color resources with all
other X apps on the same server.)

Q: I want to use an 8-bit character set from another country. How do I
get XVT to modify this?

A: Do the following:

1. Get a font in the new character set for X.

2. Set the locale for your new country using either setlocale(LC_ALL,
"") or XtSetLanguageProc(NULL, NULL, NULL). (The locale setting
changes certain items because of cultural differences, such as
the way times and dates are displayed, the placement of
decimals in numbers, etc.)

Note: The parameters may vary from Motif machine to machine.

If you use setlocale(LC_ALL, ""), also use #include <locale.h>.

3. Set your LANG environment variable to the new locale. For
example, for Norway: setenv LANG NORWAY.

4. Modify xsstrings.h to recognize the new font by altering the old
FF_* font setup. You'll need to replace (not add to) one of the
existing XVT defined fonts.
A-21

XVT Platform-Specific Book for Motif
This will not affect programs like Design because they need to be
rebuilt with the modifications in place in order for the changes to
occur.

Note: This method will not work for multibyte character sets, like Japanese
Kanji.

Q: How can I change native widget characteristics of objects created
by XVT?

A: The following code will make an edit control non-editable and
remove the blinking cursor:

Arg args[15];
int n;

n = 0;
 XtSetArg(args[n], XmNeditable, False); n++;
 XtSetArg(args[n], XmNblinkRate, 0); n++;
 XtSetArg(args[n], XmNcursorPositionVisible,

False); n++;
 XtSetValues(<WIDGET>,args,n);

where <WIDGET> is determined by using ATTR_X_WIDGET.

To change other Motif object characteristics check your Motif
manual for specific names and settings:

Q: When a palette is used in XVT for Motif platforms, the colormap is
filled and other applications cannot allocate colors. Allocation of as
few as sixteen colors can result in 200 colors being placed in the
colormap, which can contain only 256 colors. The colormap may
also be filled by use of a pixmap or image. How can I use colors in
XVT for Motif and not fill the colormap?

If you do not set attribute ATTR_DEFAULT_PALETTE_TYPE prior to
starting your application, a default of XVT_PALETTE_STOCK is used.
On Motif, this leads to problems with filling the colormap. To avoid
the problem, set ATTR_DEFAULT_PALETTE_TYPE to
XVT_PALETTE_CURRENT or XVT_PALETTE_USER prior to calling
xvt_app_create.

See Also: For information on palette types, see 12.5.3 Color Palettes in the
XVT Portability Toolkit Guide.

Note: XVT allocates colors on an application basis rather than a window
basis in order to prevent flashing when different windows receive
focus. All windows, therefore, share their palettes with each other
and with all other applications. If some application has already
A-22

Appendix C
allocated a large number of colors, the XVT application will have
fewer available to it for modification (in the event of
XVT_PALETTE_USER). Your application should always check how
many colors are available to it to modify, and when not enough are
available, it should gracefully handle the condition either by
reducing requirements or by alerting the user to close some
applications and restart.

Q: When an XVT error occurs, how do I stop the error from displaying
to a dialog, since I would like to retrieve the information and act
upon it?

A: Make an error callback function and assign it to
ATTR_ERRMSG_HANDLER. This callback should trap all error codes
and assign them to a global variable defined by the application. You
can then check the global after each function call.

This implementation allows the programmer to completely change
how the error is handled, once it is signaled, by overloading the error
handler callbacks. The implementation also allows you to isolate the
error handling in just a few functions so that if you ever need to
change how a particular error is handled, you only need to change
the one function. There is no need to search through your code
looking for all the possible instances of the error code.

Additionally, with this implementation, you can completely modify
the error message text assigned to any error code in the error
message file, as well as retrieve the entire XVT API calling stack to
where the error occurred, using xvt_errmsg_get_api_name. You can also
get the source file and line number where the error was signaled. The
application can create its own error codes and signals to get the same
information in the application source files.

Q: ATTR_PRINTER_WIDTH and ATTR_PRINTER_HEIGHT don't
work on Motif. How can I get this information?

A: ATTR_PRINTER_WIDTH and ATTR_PRINTER_HEIGHT represent the
default dimensions of the printer, independent of page orientation.
Therefore, these values do not change in response to a change in
page orientation for a specific print record.

The application can determine whether the orientation has changed
for a specific print record in response to a print setup dialog if you
use either of the following methods:
A-23

XVT Platform-Specific Book for Motif
1. Call xvt_app_escape(XVT_ESC_GET_PRINTER_INFO, ...) to determine
the printable area's height, width, and resolution. The height and
width returned reflect the page orientation. This method does
work for XM.

2. Get the client rect of the print window and examine the rect's
height and width, which also reflect the page orientation. (This
method works only if the print window exists, of course.)

Note: The return value from xvt_dm_post_page_setup() indicates whether the
user may have changed the print record as a result of the dialog.

Q: When compiling with the PWRNoError option, all assertions from
the XVT application framework are suppressed. What should I do
about my code, which expects these assertions?

A: Since the testing of the condition is suppressed by this option, make
sure your program does not depend on any side effects that are a
product of evaluating the condition.

For example, PwrAssert(itsImageId!=NULL_IMAGE, kImageErr, "Unable to
construct image.") would not be evaluated, so a NULL_IMAGE could be
returned.

This option is described in the Error.h file in the pwr/include
directory.

Q: When running Design and our application, we get the message,
“Warning: Name: XVT_MB_1, Class: XmRowColumn,
XtGrabKeyboard failed” and the system crashes if we click on the
task window while a file is loading. Why is this?

A: Unfortunately, there's nothing you can do about this situation with
respect to Design. This error could occur in any application that uses
the task menubar.

Following is a description of what is happening and why, and
suggestions for application code you may be developing:

When a window that carries a menubar is created, the task window
is no longer needed, so XVT hides it. However, the user may try to
make a menu selection from the task window while XVT is
attempting to hide it. The net affect is that while the new window is
coming up, the task window is being removed. The menu the user
selected from the task window menu bar eventually pops up briefly.
After it pops up and then goes away, the application attempts to
A-24

Appendix C
restore focus to the menu button that was pressed on the task menu
bar. The task menu bar, however, is now hidden so it is no longer
valid to put focus on it. This is when the error occurs.

XVT has reviewed this situation in detail and has determined that
there is no satisfactory solution to the problem. Following are some
ideas for you to consider in your application:

1. Don't use the task menubar. Instead, create a W_DOC style
window initially when your application starts up (similar to
several of the XVT examples). As long as you always have a
window with a menubar, the task window will not be displayed.
Also, you can completely eliminate the use of the task window
with the attribute ATTR_X_DISPLAY_TASK_WIN.

2. You could add some non-portable code that would make the
task window insensitive just before creating the new window.
You would then have to change it back when the task window
was displayed again. For example, in response to choosing
M_FILE_NEW from the task menu, you could make the following
calls:

Widget widget;
widget = (Widget)get_value(TASK_WIN,

ATTR_X_WIDGET);
XtSetSensitive(widget, FALSE);
if (!create_res_window(WIN_101, TASK_WIN, EM_ALL,

win_101_eh, 0L))
xvt_error("Can't open window");

Then in the E_DESTROY of the window, you could make these
calls:

Widget widget;
widget = (Widget)get_value(TASK_WIN,

ATTR_X_WIDGET);
XtSetSensitive(widget, TRUE);

When we used this method, the crash did not occur.

3. Another idea is to install an event_handler, before creating the new
window, that would discard all ButtonPress and KeyPress events.
You would then need to set the event_handler back to NULL in the
E_CREATE of the new window.

Q: How does XVT get my machine’s fonts?

A: XVT uses the X fonts defined in xsstrings.h as “possible” fonts for
its four types of XVT fonts, System, Fixed, Times and Helvetica.
A-25

XVT Platform-Specific Book for Motif
When you run an XVT program, the XListFonts function gets called
to load up a table that tells exactly which X fonts (out of the ones
listed in xsstrings.h) to use for each of the four XVT fonts and to
verify that at least one of the SYSTEM_NORMAL fonts exists. For each
of the four XVT font families, XListFonts gets called with each of the
font name strings from xsstrings.h. The first one to be found for
each font is the one XVT uses for the font family. Those font strings
contain “*” characters for things like point size. So XlistFonts returns
to XVT all actual fonts that match the font string with the “*”
wildcards. This means that it could return several fonts of the same
family, but of different sizes.

If one of the system normal fonts is not found, an XVT error #36894
is generated. If XVT can't find any of the X fonts defined for one of
the non-system fonts like Times, for example, it will automatically
use the System normal font when a program requests a Times font.

XListFonts (and xlsfonts) looks in a file called Families.list or fonts.dir
in the font directory (xset -q will tell you the font directory) for the
fonts available on the machine. Families.list or fonts.dir has a
mapping between a font name and an actual file that contains the
font. (Families.list is generated by a Unix program called bldfamily.
fonts.dir is created by mkfontdir.)

It is possible that if Families.list/fonts.dir is corrupt that XListFonts
might find a font in Families.list/fonts.dir that doesn't really exist.
In that case, the XVT program will work just fine, thinking it has the
fonts it needs and won't generate an error until XLoadQueryFont is
called to actually load the font. XVT will then generate the error,
“XVT internal error #46016 - xvtxi_win_font: Current font is not
defined.” In this situation, you may have to run bldfamily/
mkfontdir. After running bldfamily/mkfontdir, you must run xset
fp rehash so that the server rereads the font databases.

Q: How do I specify accelerators on the fly in my XVT code?

A: The only platform for which on-the-fly accelerator specification is
possible is Motif. For all other platforms, you cannot add or change
accelerators after your program has started.

See Also: For information on how to specify accelerators on the fly, see the X
Toolkit Intrinsics documentation.
A-26

Appendix C
Q: Running an XVT program on Dec Alpha (OSF1) results in errors
like:

X Toolkit Warning:

Name: mb1001_i32026

Class: XmPushButtonGadget

Illegal mnemonic character; Could not convert X
KEYSYM to a keycode

Why is this?

A: The problem is that on Dec Alpha, the key you press to erase or
delete a character generates the keysym “Delete.” On the Alpha,
unlike most Unix keyboards, there is no key that generates
“BackSpace.” XVT attempts to define an accelerator that uses the
keysym “BackSpace.” Because there is no such keysym, you get the
“Could not convert X KEYSYM to a keycode” error.

There are two possible solutions:

1. modify the xrc-generated UIL file, changing the BackSpace
accelerator to Delete. For example, change

XmNaccelerator = "Meta <Key>BackSpace";

 to

XmNaccelerator = "Meta <Key>Delete";

2. Use xmodmap to change the Delete key to generate BackSpace
with the following command:

xmodmap -e "keysym Delete = Backspace"

Q: How do I use the CGlobabUser class for Motif?

A: To use the CGlobalUser class for Motif, you need to make a copy of
CGlobalUser.h and put it in your local directory. Then you need to
remove the one from pwr/include so that at compile time, yours will
be used.

You can then make references in CGlobalUser for variables you desire
to be global. You access these with the GU pointer, as follows:

void MyApp::StartUp(void)
{

CApplication::StartUp();
IApplication(new CGLobalUser);
...

GU->itsHelp = xvt_help_open_helpfile(&hf, 0);
A-27

XVT Platform-Specific Book for Motif
Q: How can I change the color of a menubar in XM?

The following is the native code you need to change the color of a
menubar. The E_CREATE of the window is a good place to put it.

#include <X11/Xlib.h>
#include <X11/Intrinsic.h>
#include <Xm/Xm.h>

Display *dsp;
XColor rgb_def, hardware_def;
Colormap cmap;

Widget wid;
Widget parent;
Widget menu_wid;

int status1;

/* Get the X widget handle for the XVT window */
wid = (Widget)get_value(win, ATTR_X_WIDGET);

/* Get the X widget handle for the parent of the XVT
window */

parent = XtParent(wid);

/* Get the X widget handle for the menubar */
XtVaGetValues(parent, XmNmenuBar, &menu_wid, NULL);

/* Get the X display handle */
dsp = (Display *) get_value(win,ATTR_X_DISPLAY);

/* Get the X default colormap handle */
cmap = XDefaultColormap(dsp,0);

/* Get the XColor structures for a given color
string */

status1 = XLookupColor(dsp, cmap, "yellow", &rgb_def,
&hardware_def);

/* Get the actual XColor structure from the default
color map */

status1 = XAllocColor(dsp, cmap, &hardware_def);

/* Set the background color for the menubar */
XtVaSetValues(menu_wid, XmNbackground,

hardware_def.pixel, NULL);

Q: How can I change the font on the menubar via an app-defaults
resource file in Motif?

A: The buttons across the menubar are XmCascadeButton widgets and the
pulldown menu is an XmMenuShell widget. You can change the font
(which will modify the size to match) of these two items by adding
the following code to the app-defaults resource file:

*XmCascadeButton*fontList: rk24
A-28

Appendix C
*XmMenuShell*fontList: rk24

Both must be used.

Q: How can I specify the title and icon used when a window is iconized
in DSC?

A: There is no portable way in XVT to change the icon and title
associated with a window. You can do it non-portably, however, in
Motif and OpenLook.

The following code fragment, to be placed in the E_CREATE of the
window you want the icon to be associated with, demonstrates how
to change the name of the icon associated with a given window and
how to change the icon itself.

Note: This is extensible non-portable code. We intend for this to be a
starting place for you in making this extension. If you have further
questions, please refer to the X manuals for details on these
functions.
A-29

XVT Platform-Specific Book for Motif
/* includes */
#include <X11/Xlib.h>
#include <X11/Intrinsic.h>

/* top of file, global data */
Display *display;
XWMHints * wmhints_p;
 .
 .
 .
window_event_handler (win, ep)
WINDOW win;
EVENT *ep;
{
 char *data;
 static char name[4];
 unsigned int width, height;

 Widget widget;
 XTextProperty text_prop_p;

 switch (ep->type) {
 case E_CREATE:

 /* the following lines set the icon pixmap */
 display = (Display *) xvt_vobj_get_attr (

NULL_WIN, ATTR_X_DISPLAY);
 widget = (Widget) xvt_vobj_get_attr (

win, ATTR_X_WIDGET);

 while(XtParent(widget) != NULL)
 widget = XtParent(widget);

 wmhints_p = XGetWMHints (
display, XtWindow (widget));

 if (wmhints_p == NULL) {
 xvt_dm_post_error ("XGetWMHints failed");
 }
A-30

Appendix C
/* function def below */
data = get_data (&width, &height);

wmhints_p->icon_pixmap =
XCreateBitmapFromData(display,

XtWindow(widget), data, width, height);

if (wmhints_p->icon_pixmap == 0)
xvt_dm_post_error (

"XCreateBitmapFromData failed");

wmhints_p->flags = IconPixmapHint;

XSetWMHints(display, XtWindow(widget),
wmhints_p);

/* the following lines set the icon name */

/* get the current WMIconName structure */
if (XGetWMIconName(display, XtWindow(widget),

&text_prop_p) == 0) {
xvt_dm_post_error ("XGetWMIconName failed");
}

/* set the new name -- this obviously should
*be something more meaningful than
*"New"...maybe some combination of
* get_title and stripping off all of the
*characters before the - then strcpy the rest
*of the string into text_prop_p.value.
*/

sprintf(name, "New");

text_prop_p.value = name;

XSetWMIconName(display, XtWindow(widget),
&text_prop_p);

.

.

.
} /* event handler */

static char *
#if XVT_CC_PROTO
get_data(unsigned int *width, unsigned int *height)
#else
get_data(width, height)
unsigned int *width;
unsigned int *height;
#endif
{
/*This function will just return a few hard coded
*values, but would be the one that opened a file, read
*it in, put it into the proper format etc. The
*information here is produced by the x utility bitmap.
*We could also use XReadBitmapFile. */
A-31

XVT Platform-Specific Book for Motif
#define bmapfile_width 64
#define bmapfile_height 64
static char bmapfile_bits[] = {

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

.

.

.
0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x03,
0x38, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xfc,
0x07, 0x00, 0x00, 0x00};

 *width = bmapfile_width;
 *height = bmapfile_height;
 return (bmapfile_bits);
}

Note: The contents of the file (bmapfile_bits) were obtained from an
xbitmap program.

On the E_DESTROY:

printf ("E_DESTROY\n");
XFreePixmap(display, wmhints_p->icon_pixmap);
XFree (wmhints_p);

Q: How can I specify the title and icon used when a window is iconized
in DSC++?

There is no portable way in XVT to change the icon and title
associated with a window. You can do it non-portably, however, in
Motif and OpenLook. The following commented code demonstrates
how to specify the icon and icon name associated with a window.
The code contains two files, pwr_icon.cxx and pwr_icon.h.

Note: This is extensible non-portable code. We intend this to be a starting
place for you in making this extension. If you have further questions,
please refer to the X manuals for details on these functions.
A-32

Appendix C
// pwr_icon.cxx

#if (XVTWS == MTFWS)

#include "pwr_icon.h"
#include <X11/Xlib.h>
#include <X11/Intrinsic.h>

// Used locally to incapsulate the actual bitmap.
static unsigned char* get_data (unsigned int* width,

unsigned int* height) {

#include "pwr.h"

*width = pwr_width;
*height = pwr_height;

return (unsigned char *) pwr_bits;
} // End get_data

void Set_Window_Icon(CWindow* Win) {

WINDOW itsXVTWindow = Win->GetXVTWindow();

Display *display;
XWMHints * wmhints_p;

unsigned char *data;
static unsigned char name[128];
unsigned int width, height;

Widget widget;
XTextProperty text_prop_p;

// the following lines set the icon pixmap

display = (Display *) xvt_vobj_get_attr (
NULL_WIN, ATTR_X_DISPLAY);

widget = (Widget) xvt_vobj_get_attr(
itsXVTWindow, ATTR_X_WIDGET);

while(XtParent(widget) != NULL)
widget = XtParent(widget);

wmhints_p = XGetWMHints (display, XtWindow (widget));
if (wmhints_p == NULL) {

xvt_dm_post_error ("XGetWMHints failed");
}

data = get_data (&width, &height);

wmhints_p->icon_pixmap =
XCreateBitmapFromData(display,

XtWindow(widget), (char *) data, width,
height);

if (wmhints_p->icon_pixmap == 0)
xvt_dm_post_error (

"XCreateBitmapFromData failed");

wmhints_p->flags = IconPixmapHint;
A-33

XVT Platform-Specific Book for Motif
XSetWMHints(display, XtWindow(widget), wmhints_p);

// the following lines set the icon name

// get the current WMIconName structure
if (XGetWMIconName(display, XtWindow(widget),

&text_prop_p) == 0) {
xvt_dm_post_error ("XGetWMIconName failed");

}

char title[128];
xvt_vobj_get_title(itsXVTWindow,title,128);

// We want the window’s title to be: "Debugger -
//Register Window" and we want the icon’s title to be
//"Register Window".
int start = 0;
int end = strlen(title) - 1;

while((end > 0) && ((title[end] == ' ') || (
title[end] == '\t'))) end--;

while((start < end) && (title[start] != '-')) start++;
if((start < end) && (title[start] == '-')) start++;
while((start < end) && ((title[start] == ' ') || (

title[start] == '\t')))
start++;

// Ideally, at this point, start is less than end. If
//not, the title did not contain the "-" (dash) we
//were looking for or the title was null. In the first
//case, use title as is. In the second case, use PWR
//as the title.

if(strlen(title) == 0) {
strcpy(title,"PWR");
start = 0;
end = strlen(title) - 1; }

else if(start >= end) {
start = 0;
end = strlen(title) - 1;

}

// Now put the title into name.
int i, j;
j = 0;
for(i=start; i<=end; i++) {

name[j++] = title[i];
}

text_prop_p.value = name;
text_prop_p.nitems = strlen((char *) name);

XSetWMIconName(display, XtWindow(widget),
&text_prop_p);

} // End Set_Window_Icon

#endif
A-34

Appendix C
pwr_icon.h

#if (XVTWS == MTFWS)

//Tested under Sun Sparc 20, running Solaris 2.4
// and Motif

ifndef ICON_DEFINITION_H
#define ICON_DEFINITION_H

#include "xvt.h"
#include "PwrDef.h"
#include CWindow_i

The following routine allows you to associate an Icon with your
CWindows in XVT-DSC++, running under Motif:

void Set_Window_Icon(CWindow* Win);

You should create the actual icon with the X Windows bitmap editor
called “bitmap.” The bitmap must be 32 width by 30 tall and be
called pwr. It will be included in the body of Set_Window_Icon. Calling
it pwr will give a definition similar to the following:

#define pwr_width 32
#define pwr_height 30
static char pwr_bits[] = {

0xf0, 0x00, 0xc0, 0x03, 0xf8, 0x00, 0xc0, 0x07,
0x0c, 0xf3, 0x33, 0x0c, 0x0c, 0xf7, 0x3b, 0x0c,
0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c,
0x00, 0x0c, 0x0c, 0x00, 0x00, 0x0c, 0x0c, 0x00,
0x00, 0x0c, 0x0c, 0x00, 0x00, 0xf0, 0x03, 0x00,
0x00, 0xf0, 0x03, 0x00, 0xfc, 0xff, 0xff, 0x0f,
0xfc, 0xff, 0xff, 0x0f, 0x0c, 0xff, 0x3f, 0x0c,
0x0c, 0xff, 0x3f, 0x0c, 0xc0, 0xff, 0xff, 0x00,
0xc0, 0xff, 0xff, 0x00, 0xfc, 0xff, 0xff, 0x0f,
0xfc, 0xff, 0xff, 0x0f, 0xcc, 0xff, 0xff, 0x0c,
0xcc, 0xff, 0xff, 0x0c, 0x00, 0xff, 0x3f, 0x00,
0x00,0xff, 0x3f, 0x00, 0xfc, 0xff, 0xff, 0x0f,
0x0c, 0xf0, 0x03, 0x0c, 0x0c, 0xf0, 0x03, 0x0c,
0x00, 0xc0, 0x00, 0x00, 0x00, 0xc0, 0x00, 0x00,
0x00, 0xc0, 0x00, 0x00, 0x00, 0xc0, 0x00, 0x00};

This definition should be in a file called pwr.h. If you call this
procedure in all of your windows, they will all have the icon you
defined, but the name will correspond to the name you gave the
window in Architect. Note that the actual name that shows up at the
top of a CWindow consists of two parts, the application name and the
window name. These are separated by a dash. For example,
“MyApplication - My Primary Window.”

The Icon name in this case would be, “My Primary Window,” and
that would be shortened to “My Prim” or something similar. You
should keep this in mind when giving the window a name in
Architect.
A-35

XVT Platform-Specific Book for Motif
The factory sets the window's name only after the window's
constructor has been called. Because of this you need to call
Set_Window_Icon after the factory creates it, which means that you
must call it in the document after it is created by the document, and
not the Window.

Because there are multiple places to create Windows the code must
be included in multiple places. First, at the top of your document's
body file, insert the following:

#if (XVTWS == MTFWS)
//If compiling for Motif
#include "pwr_icon.h"
#endif

In your document's BuildWindow routine after it creates all the
automatic windows, insert the following:

#if (XVTWS == MTFWS)
//If compiling for Motif
const RWOrdered* WindowList = GetWindows();
RWOrderedIterator win_next = RWOrderedIterator(

*WindowList);

CWindow* win;
while((win = (CWindow *) win_next()) != 0) {

Set_Window_Icon(win);
}

#endif

Anywhere else in your document's code where you create a Window
with something like the following:

itsData.itsAnotherWindow = (AnotherWindow *)
vbxFactory.CreateWindow(this,AnotherWindow);

Follow with:

#if (XVTWS == MTFWS)
//If compiling for Motif

Set_Window_Icon(itsData.itsAnotherWindow);
#endif

void Set_Window_Icon(CWindow* Win);

#endif
#endif

Also, at the close of the application, you need to free memory with
the following:

XFreePixmap(display, wmhints_p->icon_pixmap);
XFree (wmhints_p);
A-36

Appendix C
Q: Why won't a Motif application accept the -font command line
argument?

A: Motif uses the FontList resource to determine the font used for
displaying text and ignores the “font” resource. So while the
Intrinsics recognize the “-font” command-line option, and will place
the corresponding value in the resource database, Motif applications
will not be affected.

The “-xrm” command-line flag allows users to specify an arbitrary
string to be placed in the resource database. This flag can be used to
specify any resource on the command line, using the same syntax as
a resource file.

Q: How do I fill a CStringCollectionRWC to use it in an NListBox
constructor?

A: Following is an example of how to insert items into a
CStringCollectionRWC for the constructors of CListBox, NListBox,
NListButton, etc.:

RWOrdered mylist;
CStringRWC teststr("item1");
if (!mylist.insert(&teststr)) printf(

"item1 failed insert!\n");
CStringRWC teststr2("item2");
if (!mylist.insert(&teststr2)) printf(

"item2 failed insert!\n");
CStringRWC teststr3("item3");
if (!mylist.insert(&teststr3)) printf(

"item3 failed insert!\n");

CStringCollectionRWC mycollection(mylist);

NListButton *newlist = new NListButton(
this,CRect(10,10,100,100),mycollection);

Q: Can we define which pixels on the screen are disturbed by the
cursor?

A: User defined cursors can now include a mask bitmap that defines
which pixels on the screen are disturbed by the cursor. These marked
pixels should be identical to the marked pixels in the cursor bitmap
but one pixel wider at all boundaries.

The previous implementation of user defined cursors is still
supported. It uses a default mask bitmap equal to the dimension of
the cursor bitmap, typically 16 pixels in both dimensions.
A-37

XVT Platform-Specific Book for Motif
For example, to use a user defined cursor, lasso, with a minimal
mask, do the following:

1. Create the lasso cursor bitmap with the X bitmap client:

bitmap lasso.h

2. Create the mask for lasso by starting with the lasso.h bitmap
and include all pixels that touch the boundary of the marked
pixels in lasso.h:

cp lasso.h lassomask.h
bitmap lassomask.h

3. In the file that defines the user-defined cursor resources, insert
code that identifies the mask bitmap, lasso_mask, as follows.

Note: The ID symbol for the lasso bitmap mask must be equal to the ID
symbol for the lasso cursor incremented by exactly 1000.

...
#include "lasso.h"
#include "lassomask.h"
...
static CURSOR_RESOURCE lasso_cursor, lasso_mask;
...

static RESOURCE_INFO
resource_table[] = {

...
{"CURSOR", CURSOR_LASSO, (char *)&lasso_cursor},
{"CURSOR", CURSOR_LASSO + 1000, (

char *)&lasso_mask}, /* NOTE + 1000 */
...
{ NULL, 0, NULL}

};

RESOURCE_INFO *
resource_table_init()
{

...
bld_cursor(&lasso_cursor, lasso_height,

lasso_width, lasso_x_hot, lasso_y_hot,
lasso_bits);

bld_cursor(&lasso_mask, lassomask_height,
lassomask_width, lassomask_x_hot,
lassomask_y_hot, lassomask_bits);

...
return(resource_table);

}

See Also: Refer to XVT/XM Resource Specifics on page 2-5 for more
information on Motif resource specifics.

Note: Some platforms such as the IBM RS6000 require that the cursor
bitmap be inverted. This is accomplished by creating the cursor and
A-38

Appendix C
cursor mask bitmap in the normal manner and selecting the Invert
All option before the writing the bitmap to file.

Q: How do I move project files between platforms and how does it affect
the layout of the application?

A: The following example involves creating a project file on a PC
running an XTERM emulator, then moving the project file to an
RS6000 machine, running Design from the console. Although in
other situations, the numbers and platforms may vary, the concepts
remain the same.

When you are running Design from the PC/Xterm and go into the
Layout->Grid menu option, you might see something like “currently
7 x 13” next to the Chars RadioButton. Then, when Design is run on the
RS6000, the same dialog shows “currently 8 x 13.”

This is because when XVT-Design runs, it calculates the average
size (in pixels) of a character, based on the FF_SYSTEM 12 point
font. It then uses these calculations to display the windows and
controls. This calculation is necessary because the font used in
controls varies from platform to platform. If Design didn't calculate
the character size this way, you would end up with controls that were
too small on some platforms and too large on others, in relation to
the font used in the controls.

Therefore, in the above scenario, when you run Design on the PC/
Xterm, it determines a character is 7x13, but if you run it on the
RS6000, it determines a character is 8x13.

Technical Note 122 discusses the scaling macros used by xrc. This
same concept is used internally by XVT-Design. To generate a
layout that will look appropriate on the machine you are moving to,
Design determines how to scale the controls by dividing the
dimensions on the destination machine by the dimensions on the
source machine.

???Is Tech Note 122 still correct???

In the scenario just described, if you create a window 760 pixels
wide on the PC and move it to the RS6000 (which uses 8x13),
Design calculates 760 * 8 / 7 = 868 (width * destination dimension
/ source dimension). The resulting width of the same window on the
RS6000 is 868.

To prevent resizing of the windows, one option is not to reload the
project into Design on the RS6000, but rather just to move the source
A-39

XVT Platform-Specific Book for Motif
code over and recompile. The generated URL code (from the PC/
Xterm machine) should show URL_SRC_WIDTH as 7 and
URL_SRC_HEIGHT as 13. In the generated URL code, the
URL_DEST_WIDTH is set to equal the URL_SRC_WIDTH and the same
is true for the HEIGHT. Therefore, if you just recompile the code, the
dimensions of the window/controls will not change. However, you
may end up with the wrong size windows and controls for your
destination machine.

If you end up with the wrong size windows, then you can define the
URL_DEST_WIDTH and URL_DEST_HEIGHT macros to 8x13 (or
whatever you deem is appropriate) as described in Technical Note
122. Essentially you will be doing the same thing as Design does
internally.

Design 3.0 (???Is this part true for the latest version too. Is it Design
5???) has 3 additional configuration file options that you can set to
help with converting projects between platforms, objectScaling,
charHeight, and charWidth.

objectScaling turns scaling on (TRUE is the default) or off (FALSE). If
scaling is turned off, Design will make no attempt to scale the
windows/controls/dialogs as discussed just discussed.

With charHeight and charWidth, you can tell Design what size character
to use when scaling as discussed above, rather than allowing Design
to pick the character size by which to scale.

Q: Is it possible to hide the horizontal scrollbar of a ListBox, since by
default the vertical and horizontal scrollbar appear?

A: Scrollbars are placed automatically on list boxes. XVT does this
because the other option in Motif is to have the scrollbars appear
only when they are needed. That is, the existence of the horizontal
scrollbar will change based on the width of items in the list box, and
the existence of the vertical scrollbar will change based on the
number of items in the list box. As the number of items exceeds the
size of the list box, a vertical scrollbar will appear, and if the width
of any of the items is larger than the width of the list box, a
horizontal scrollbar will appear.

If you want the appearance of the list box to remain constant
regardless of the size or number of items, you must have both
vertical and horizontal scrollbars.

If you are sure the size of the items won't exceed the size of the list
box, or if you don't mind the scrollbars appearing and disappearing,
A-40

Appendix C
then you can change an attribute of the ListBox widget to allow the
list box to appear without scrollbars.

There are two methods of changing the attribute of the ListBox. You
can either change the UIL file, or change the attribute of the widget
programmatically. However, you can only use the UIL method for
ListBoxes that were created in dialogs using create_res_dialog. If your list
box is in a window, or if you are creating your dialogs using
create_def_dialog or create_dialog, you will have to use the programmatic
method.

To change the UIL file, let xrc create the UIL file for you, and then
find the dialog that contains the ListBox. (Look for XVT_DLG_XXXX
where XXXX is the resource ID of your dialog.) Then locate the
XmScrolledList widget in this dialog and find the “arguments” section
of the widget. In the arguments section, you can find a line that looks
something like:

 XmNscrollBarDisplayPolicy = XmSTATIC;

You should change this line to:

 XmNscrollBarDisplayPolicy = XmAS_NEEDED;

Once you have changed the line, you will need to put the entire
dialog code back into the URL file in a #transparent statement.

To change the attribute of the widget from programmatically, you
will need to add some code to your window or dialog event handler,
probably in the E_CREATE case, as follows. You will also need to add
the two include files.

#include <X11/Intrinsic.h>
#include <Xm/Xm.h>

.

.

.
WINDOW ctl_window;
Widget listbox;

switch (ep->type) {
case E_CREATE:
.
.
.

ctl_window = xvt_win_get_ctl(win,
LISTBOX_ID);

listbox = (Widget)xvt_vobj_get_attr(
ctl_window, ATTR_X_WIDGET);

 XtVaSetValues(listbox,
XmNscrollBarDisplayPolicy,XmAS_NEEDED,
NULL);

 break;
A-41

XVT Platform-Specific Book for Motif
This code will change the behavior of your ListBox to show scrollbars
only when they are necessary. Also, the size of the ListBox will
remain constant regardless of the number of items it contains.

With the programmatic method, you can remove the horizontal
scrollbar. The size of your list box, however, will shrink or grow
according to the amount of room it needs to fit the text horizontally
in the list box. You can make this change only at creation time,
meaning that you can change your UIL code (or put this in a
#transparent statement in your URL code) and create the dialog with
create_res_dialog.

To remove the horizontal scrollbar if the list box is in a dialog, then
you will need to modify the value of the XmNlistSizePolicy resource for
the ListBox in the application's UIL file. For instance, the following
is one of the ListBox definitions from dlg.uil:

object
list_255_3 : XmScrolledList {

arguments {
XmNx = 0;
XmNy = 0;
XmNwidth = 494;
XmNlistSizePolicy = XmCONSTANT;
XmNvisibleItemCount = 10;
XmNscrollBarDisplayPolicy = XmSTATIC;
XmNhighlightOnEnter = true;
XmNhighlightThickness = 1;

};
callbacks {

MrmNcreateCallback =
procedure xvt_create_travs_ctl_cb(4);

};
};

Notice that XmNlistSizePolicy is set to XmCONSTANT. This maintains a
horizontal scrollbar and prevents the list from changing in size. If
you change this to XmVARIABLE, the list grows or shrinks to match
the size of the largest item, and there is no horizontal scrollbar. The
third option is to use XmRESIZE_IF_POSSIBLE.

This attribute can be specified only at creation time, so it is best to
initially define the dialog in URL, generate the UIL code, and then
cut-and-paste the UIL definition of the whole dialog into a #transparent
statement in your URL file. This makes your URL code non-
portable but allows you to remove the scrollbar.
A-42

Index

XVT/XM

INDEX
A
accelerators, defining, 19
Action Code Editor (ACE), 6, 1
Alt key, 19
app-defaults directory, 18, 19

for changing widget attributes, 19
name of resource file in, 20

application
cursors, 11
icons, 7, 11
resource file, 5

application programming
extensibility, 1
look-and-feel, 1
multibyte characters, 2
optimizing performance, 2
program "hangs", 5
providing help for users, 7

Application-Document-View concept, 18
arrow keys, 4
ATTR_EVENT_HOOK, 11, 3
ATTR_IME_USE_STATUSAREA, 2
ATTR_KEY_HOOK, 12
ATTR_MULTIBYTE_AWARE, 12
ATTR_NATIVE_GRAPHIC_CONTEXT, 2, 14
ATTR_NATIVE_WINDOW, 2, 14
ATTR_PROPAGATE_NAV_CHARS, 4
ATTR_PS_PRINT_FILE_NAME, 17, 3
ATTR_R40_TXEDIT_BEHAVIOR, 11
ATTR_X_DISPLAY, 4
ATTR_X_DISPLAY_TASK_WIN, 5
ATTR_X_DLG_PARENT, 5

ATTR_X_EXPOSE_COMPRESSION_TYPE,
21

ATTR_X_MASK_SERVER_EVENTS, 6
ATTR_X_PLACE_WINDOW_EXACT, 6
ATTR_X_PROPAGATE_ECHAR, 20
ATTR_X_R45_MODALITY, 20
ATTR_X_SELECTION_BUFF, 7
ATTR_X_SET_FOCUS_DEICONIZE, 8
ATTR_X_TABLE_PROPORTIONAL_THUMB,

21
ATTR_X_USE_USERS_STRING, 8
ATTR_X_WIDGET, 9
ATTR_XOR_REF_COLOR, 9
attributes

changing widget, 19
GUI objects, 17
non-portable, 1
portable, 11

B
background color

setting for control, 18
window, 9

base_appl_name, 6, 18
binary

executable file, 1
resource file, 1

bitmap (X Window System icon editor), 7, 11
buffer, using, 7

C
caret color, 9
CGlobalUser.h file, 16
I-1

XVT Platform-Specific Book for Motif
character codeset, setting, 3–4
character events, 2, 12, 4
child windows, 1
click-to-type focus model, 1, 3
clipboard, 7
code, non-portable, 2
color

using with controls, 7
color palette and XOR mode drawing, 9
color, background for controls, 18
compile time optimization, 10
compiler

list of supported, 2
optimization, 2
resource (uil), 6

compiler options
LANG_* xrc, 9

compiling
conditionally, 1
resources, 6

container objects, 4
controls

icons used as controls, 11
keyboard navigation in dialogs and windows,

4
navigation keys, 4
using color with, 4, 7

conventions
for code, vi
general manual, v

copying data, 7
CSet++ (for AIX) compiler, 2
C-shell, 3, 1
CText, 13
xrc

building on UNIX, 5
compiles menus, dialogs, windows, and

strings, 7
produces UIL script file, 6
transforms URL into UIL resource scripts, 6
upgrading to new version of XVT/XM, 1

cursor.txt file, 11
CURSOR_RESOURCE object

declaring, 9
initializing, 9

cursors
creating using bitmap, 7
masks, 11
Motif, 7

cutting data, 7

D
data, copying and pasting, 7
directories

app-defaults, 18, 19
doc, 1, 2, 11, 1
include, 1
print, 17, 1
samples/hook, 11, 14
src/errscan, 4
src/helpview, 4

doc directory, 1, 2, 11, 1
document hierarchy, 17
double-click, confirms selection, 4
draw mode definitions, 12

M_CLEAR, 13
M_COPY, 12
M_NOT_CLEAR, 13
M_NOT_COPY, 13
M_NOT_OR, 13
M_NOT_XOR, 13
M_OR, 12
M_XOR, 13

DRAW_MODE, 12
drawing in XOR mode, 9

E
E_CHAR events, 2, 12, 4
E_FOCUS events, 3
encapsulated font model, 14
environment variables

LANG, 3
OPENWINHOME, 15, 18
UIDPATH, 6, 2
XVTPATH, 1

error handling, 5
error message handler

overriding, 6
errscan

building on UNIX, 4
I-2

Index
command line version, 4
source code, 4

errscan_app, 4
escape codes, non-portable, 15
EUC character codeset, 5
event

character, 2, 12, 4
hook, 11
masking, 6
native, 11

events, keyboard, 2–3
executable binary file, 1
explicit focus model, 1
exported xbitmapfile, 12
extensibility, 1

F
files

binary executable, 1
binary resource, 1
CGlobalUser.h, 16
cursor.txt, 11
hook.c, 11, 14
readme, 1
refman.csc, 2
resource manager, 7
UID, 2
.uid, 6, 1
.uil, 6
X11/Xlib.h, 11, 14
.Xdefaults, 17
xvt.h, 8, 2
xvt_env.h, 1
xvt_xres.h, 8
xvtprolg.ps, 17
xxinit.c, 2–3

fixed font, 16
focus

child windows, 2
explicit, 1
iconized windows, 8
pointer, 1
traversal list, 5
XVT/XM model, 3

font

descriptor string, 14–17
encapsulated model, 14
fixed, 16
for PostScript printing, 16
logical, 14
native descriptors, 14
physical, 14
screen, 14
system, 16

fonts
mapping to multibyte fonts, 9
standard, 9

foreground color of window, 9
formatted strings, 8

G
GC (X type), 2, 14
ghost window, 5
global variables, 16
graphics context, 2, 14
GUI

attributes, 17
look-and-feel, 1
native platform, 1

H
help directory, 4
help system, See online help
help viewer libraries

libxvtxmhb*.a (bound), 8
libxvtxmhi*.a (standalone), 8

helpc
building on UNIX, 5
builds portable binary help files, 8
See Also online help

helpview
building on UNIX, 5
linking, 4
support for, 7
See Also online help

hook.c file, 11, 14
HP-UX, 3
hypertext online help, See online help

I
ICON_RESOURCE object
I-3

XVT Platform-Specific Book for Motif
declaring, 9
initializing, 9

iconized windows, 8
icons

as controls, 11
creating using bitmap, 7
Motif, 7

images
extracting from PICTUREs, 17
portable image files, 1

IME
AIX, 4
HP-UX, 3
Solaris, 5
when to use, 2

include directory, 1
input method editor, See IME
installing XVT/XM, 1
internal warning messages

overriding, 5
international characters, 2
Intrinsics, 19

for changing widget attributes, 21

J
Japanese characters, 3–5

K
Kanji key, 3
keyboard

accelerators, 19
events, 2–3
focus, See focus
international characters, 2
Kanji key, 3
key translation, 13
navigation, See keyboard navigation
remap for Japanese input, 4
Shift-JIS input, 4
traversal, 5

keyboard navigation
in normal window, 4
to iconized window, 8

kks input server, 3

L
LANG environment variable, 3
LANG_* xrc compiler options, 9
LANG_GER_IS1, 9
LANG_GER_W52, 10
LANG_JPN_SJIS, 9
language, See Japanese characters, multibyte

characters
libm.a library, 4
libMrm.a library, 4
libraries

building, 5
help viewer, 8
libm.a, 4
libMrm.a, 4
libX11.a, 4
libXm.a, 4
libXt.a, 4
libxvtxmapi*.a, 3
libxvtxmba*.a, 3
libxvtxmhb*.a, 3
libxvtxmhi*.a, 3
linking shared or static, 3
provided by XVT/XM, 3
shipping with your application, 3
system, 4

libX11.a library, 4
libXm.a library, 4
libXt.a library, 4
libxvtxmapi*.a library, 3
libxvtxmba*.a library, 3
libxvtxmhb*.a library, 3, 8
libxvtxmhi*.a library, 3, 8
link libraries, 2
localization, 3–4
logical font, defined, 14
look-and-feel, 1

M
M_CLEAR, 13
M_COPY, 12
M_NOT_CLEAR, 13
M_NOT_COPY, 13
M_NOT_OR, 13
M_NOT_XOR, 13
I-4

Index
M_OR, 12
M_XOR, 13
Macintosh, 2
MacOS, 2
Makefile.lnk, 4
makefiles, 2
manual, conventions used in, v
masking events, 6
masks, cursor, 11
MENU_ITEM fields, non-portable, 19
menubar, of task window, 5, 9, 5
Meta key, 19
modal dialogs and online help, 8
modal windows and keyboard navigation, 4
Model-View-Controller concept, 18
Motif

accessing the IME, 3
clipboard buffer, 7
conditional compilation, 2
look-and-feel, 1
reference manuals, 25
resource compiler (uil), 6
resource manager file, 7
UIL compiler, 6
User Interface Language (UIL), 6
Window Manager, 2, 1

MS-Windows 95, See Windows 95
MS-Windows NT, See Windows NT
multibyte characters, 2, 13, 9
multibyte fonts, 9
mwm

focus policy, 1
native resource language, 6

N
native

events, 11
font descriptors, 14–17
functionality, 1
window, 14

native-platform GUI functionality, 1
navigation, keyboard, 4
non-portable

access to widgets, 15
attributes, 1

code, 2
escape codes, 15
MENU_ITEM fields, 19

NText, 13

O
O'Reilly & Associates, Inc.

reference manuals, 25
object click mode, 8
online help

accessing, 2
building your application with, 7
linking, 4
modal windows and dialogs, 8
portable help binary files, 1
viewers, 8

OPENWINHOME environment variable, 15, 18
optimizing, XVT applications, 2
OSF/Motif Programmer's Reference, 25
osfCancel, 4

P
parent window, 5
pasting data, 7
performance, improving, 2
physical fonts

defined, 14
See Also font

PICTURE
contains pointer to XImage, 17
converting from XImage, 18

pointer-driven focus model, 1
Portability Toolkit, See XVT Portability Toolkit
portable attributes, 11
PostScript

name of printer output file, 3
printing, 16
standard native description strings, 16

print directory and XVTPATH, 17, 1
printing, 16–17, 3

hidden views, 19
multiple pages, 19
native controls, 19

PseudoColor visual, 9
PTK, See XVT Portability Toolkit
I-5

XVT Platform-Specific Book for Motif
R
readme file, 1
reference (online), See online help
refman.csc file, 2
remapping the keyboard, 4
resource manager file

contents of, 7
sample, 8
See Also resources

RESOURCE_INFO array, initializing, 9
resources

and Universal Resource Language (URL), 6
application can’t locate, 2
compiling, 6
creating portable, 6
cursors and icons, 7
filenames, 6
how resources are loaded, 17
multiple files, 2
X toolkit, 17
XVT/XM, 5

root window, 14

S
samples/hook directory, 11, 14
screen fonts, 14
screen window

client widget, 9
native window, 14
when specified as parent, 5

server, kks, 3
shared libraries, 3
Shift-JIS, 4
source code, 5
SPCL:Main_Code tag, 1
SPCL:User_Url, 6, 7
src/errscan directory, 4
stacking order, of widgets, 16
static libraries, 3
string formatting, 8
Sun SPARC

Solaris, using IME, 5
system font, 16
system libraries, 4

T
task window

client widget, 9
menubar, 5
native window, 14

text edit functions and colors, 9
text edit objects, 11
tmpnam, 17, 3
top-level window, 5, 6
traversal lists, 5

U
.uid file, 6, 1
UID files

application can’t locate, 2
choosing name for file, 6
using multiple UID/UIL files, 2

UIDPATH environment variable, 6, 2
UIL

compiler, 6
for changing widget attributes, 22
generating with xrc, 6
restrictions for using, 22
script file, 6
syntax, 22

.uil file, 6
uil resource compiler, 6
Universal Resource Language, See URL
UNIX

Motif implementation supported, 2
upgrading XVT/XM, 1
URL

code menus, dialogs, and strings, 6
FONT, FONT_MAP statement, 14
ICON statement, 11
specify icon as control, 11
upgrading to new version of XVT/XM, 1

W
warning messages

overriding, 5
WC_LISTBUTTON, 15
WC_LISTEDIT, 15
widgets

arrow keys cause traversal, 4
I-6

Index
changing attributes of, 19
changing with app-defaults, 19
changing with Intrinsics, 21
changing with UIL, 22
changing with XtVaSetValues, 21
combination, 15–16
inquiring native widget, 9
TopLevelShell widget, 3
used by XVT/XM, 24

window
focus to child, 1
focus to iconized, 8
ghost, 5
handles, accessing, 2
native, 14
parent, 5
placement, 6
root, 14
top-level, 5, 6

Window (X type), 2, 14
Windows 95, 2
Windows NT, 2

X
X display pointer, 4
X icon editor, 7, 11
X logical font description, 15
X resources, 17
X toolkit intrinsics library

UNIX system library, 4
X11/Xlib.h file, 11, 14
.Xdefaults file, 17
XImage

converting to PICTURE, 18
extracting from PICTURE, 17

xlsfonts, 15
XOR mode drawing, 9
XtAppNextEvent, 11
XtDispatchEvent, 11
XtVaSetValues

for changing widget attributes, 21
XVT Portability Toolkit

backward compatibility, 17
new features, 9
upgrading from earlier versions, 1

xvt.h header file, 8, 2
XVT/Mac, 2
XVT/Win32, 2
XVT/XM

compiled application, 1
installing, 1
libraries

building on UNIX, 5
look-and-feel, 1
printing, 17
resource specifics, 5
source code, 5
supported platform, 2
upgrading from earlier versions, 1
using, 1

xvt_*_set_caret_visible, 9
xvt_app_escape, 15
XVT_COLOR_ACTION_SET, 8
XVT_COLOR_ACTION_UNSET, 8
XVT_COLOR_COMPONENT, 8
XVT_CONFIG structure, 6, 18
xvt_ctl_create, 12
xvt_ctl_create_def, using to create icons as

controls, 11
xvt_ctl_set_colors, 7, 8
xvt_dlg_create_def, using to create icons as

controls, 11
xvt_dm_post_ask, 8
xvt_dm_post_error, 8
xvt_dm_post_fatal_exit, 8
xvt_dm_post_message, 8
xvt_dm_post_note, 8
xvt_dm_post_warning, 8
xvt_dwin_draw_icon, 7, 9, 10
xvt_env.h file, 1
XVT_ESC_XM_GET_COMBO_WIDGETS, 15
XVT_ESC_XM_GET_GRP_BOX_WIDGETS,

16
XVT_ESC_XM_LOWER_GRP_BOX_FRAME,

16
XVT_ESC_XM_PICT_TO_XIMAGE, 17
XVT_ESC_XM_SET_CTL_BKG_COLOR, 18
XVT_ESC_XM_XIMAGE_TO_PICT, 18
XVT_FILESYS_UNIX, 2
xvt_font_set_native_desc, 14
I-7

XVT Platform-Specific Book for Motif
XVT_HELP_OBJCLICK, 8
xvt_menu_get_tree, 19
XVT_NAV navigation object, 4–5
XVT_OPT, 2, 10
xvt_print_create_win, 3
xvt_res_free_menu_tree, 19
xvt_scr_get_focus_vobj, 5
xvt_scr_set_focus, 8, 3
xvt_scr_set_focus_vobj(), 11
xvt_tx_process_event, 9
xvt_tx_set_active(), 11
xvt_vobj_get_attr, 1, 15
xvt_vobj_set_attr, 1, 15
xvt_win_create_def, using to create icons as

controls, 11
xvt_win_set_ctl_colors, 8
xvt_win_set_cursor, 7, 9
xvt_xres.h file, 8
xvt_xres_build_cursor, 10
xvt_xres_build_icon, 10
xvt_xres_create_table, 9, 10
XVT-Design

Action Code Editor (ACE), 6, 1
coding resources with, 5
development environment, 1
including header files with, 2
invoking xrc, 5, 6
online help, 7
resource compiler options, 6
resource manager file, 7
setting or getting system attributes using

SPCL:Main_Code, 1
XVTPATH environment variable, 1
xvtprolg.ps file, 17
xvtxm_app_init, 3
xxinit.c file, changing to recognize multiple UID

files, 2–3

Z
zooming in Power++, 14
I-8

	XVT/XM
	Preface
	About This Manual
	XVT takes pride in its documentation, and continually seeks to improve it. If you find a documentation error, please contact Customer Support. They will forward your suggestion to XVT’s documentation team.
	Conventions Used in This Manual
	In this manual, the following typographic and code conventions indicate different types of information.
	General Conventions
	This symbol and typestyle highlight information specific to using XVT-Design, XVT’s visual programming tool and code generator.
	Code Conventions

	Chapter 1: Introduction 1-1
	Chapter 2: Using XVT/XM 2-1
	Chapter 3: Development Environment 3-1
	1
	Introduction
	Welcome to XVT/XM. This platform-specific book (PSB) contains information about using the latest release of the XVT Portability Toolkit (XVT/XM) on your particular platform. If you had an earlier version of XVT/XM, this manual replaces the previous p...
	1.1. Changes to Existing Features
	1.2. Compilers Supported by XVT/XM
	XVT/XM supports the following platforms and compilers:

	1.3. Viewing the Online XVT Portability Toolkit Reference
	The online XVT Portability Toolkit Reference can be accessed by changing to the bin directory and entering the following command:

	1.4. XVT Implementations and Operating Systems
	The XVT library is currently available for several different window systems and operating systems:

	2
	Using XVT/XM
	2.1. Introduction
	This chapter addresses various platform-specific issues that you may need to consider while using XVT/XM. The information here assumes you are familiar with developing Motif applications from a general standpoint. If not, see the OSF/Motif Programmer...

	2.2. Extensibility
	2.2.1. Conditional Compilation
	If, in your application, you need to provide some native-platform GUI functionality not available in the XVT Portability Toolkit, then the small percentage of your code that provides that functionality will be non-portable. In this case, you must com...

	2.2.2. Accessing Window Device Contexts and Handles
	Given an XVT WINDOW, your application can access its native window handle (X type, Window) or graphics context (GC).
	To get the X graphics context associated with an XVT WINDOW (includes only drawable windows of type W_DOC, W_PLAIN, W_DBL, W_MODAL, WTASK if drawable, and W_NO_BORDER):

	2.3. Invoking an Input Method Editor
	An Input Method Editor (IME) is provided by Motif to allow application users to enter multibyte or other non-ASCII characters from a keyboard that does not support these characters. On UNIX, users may select an environment variable for the language.
	HP-UX
	1. Start the kks input server as part of the system startup by entering the following command lines:
	2. For each shell in which you need to execute an Input Method Editor, set the LANG environment variable for the locale and character codeset. For example, to set the locale and character codeset for Japanese (EUC):
	3. For each shell, enter the command that starts the IME:
	4. Execute your XVT application from the shell.

	IBM AIX

	Normally, the AIX server requires no special startup for users wishing to invoke an Input Method Editor.
	1. Set the LANG environment variable for the locale and character codeset. For example, to set the locale and character codeset for Japanese (Shift-JIS):
	2. Enter a command to start the aixterm window:
	3. Enter a command to remap the keys on the keyboard for Shift-JIS input:
	4. From the aixterm window, start your application.
	Sun SPARC Solaris
	1. Configure the X11 server as part of the system startup by entering the following command lines:
	2. For each shell in which you need to execute an Input Method Editor, set the LANG environment variable for the locale and character codeset. For example, to set the locale and character codeset for Japanese (EUC):
	3. Execute your XVT application from the shell.

	2.4. XVT/XM Resource Specifics
	If you use XVT-Design, you probably won’t need to code native resources directly. XVT-Design and the xrc compiler code resources automatically. (XVT-Design can be configured to invoke xrc for you, either directly as part of the code generation proc...
	This section provides information on using URL (XVT’s Universal Resource Language) with XVT/XM. It also tells you how to code XVT/XM-specific resources.
	2.4.1. Creating Portable Resources with URL
	The XVT-Design tag SPCL:User_Url in the Action Code Editor (ACE) lets you add platform-specific resources.
	Motif’s native resource language is User Interface Language (UIL). The xrc compiler produces a UIL script file, which the Motif UIL compiler uses to produce the binary resource UID file. The process is analogous to coding a program in C and compili...
	Resource File Location

	At runtime, XVT/XM applications look for resources in a file named your_app.uid. In the filename your_app.uid, your_app matches the base_appl_name field of the XVT_CONFIG structure.

	2.4.2. Cursors and Drawn Icons
	You cannot define icons (needed by xvt_dwin_draw_icon) or cursors (needed by xvt_win_set_cursor) directly in URL. Create your icons and/ or cursors using bitmap, the X Window System icon editor. The bitmap editor generates a file containing the image...
	Using XVT-Design, you can specify a resource manager file in the Extended Files window. The XVT-Design-generated makefile builds and links in the resource file manager.

	2.4.2.1. Sample Resource Manager File (rmsample.c)
	This example shows a complete resource manager file:
	Include Files for the Resource Manager File

	At the top of your resource manager file, use #include to include these files:
	Declarations and Statements for the Resource Manager File

	For each individual icon or cursor, declare an object of type ICON_RESOURCE or CURSOR_RESOURCE. (These types are defined in xvt_xres.h.) For example, if you had two icons and two cursors, the declarations might look like this:
	Additional Required Initialization

	Even though the declarations have set up the data structures, the ICON_RESOURCEs and CURSOR_RESOURCEs require further initialization. You must create a function named xvt_xres_create_table, which XVT calls. The function has this prototype:
	Here are the prototypes for these functions:

	2.4.2.2. Cursor Masks
	X cursors consist of a shape and a mask. The mask determines which pixels on the screen are modified by the cursor. By default, XVT uses a mask equal to the dimensions of the cursor bitmap. You can create your own cursor mask by creating another curs...

	2.4.3. Icons as Controls
	You can treat icons as controls in windows and dialogs. The two different ways to do this are:
	1. Create your icon using the X Window System icon editor, as explained in section 2.4.2.
	2. Add an ICON statement in your URL file. A sample ICON statement follows:
	3. To your .url file, add a #transparent statement that tells the UIL compiler about your icon. Here is an example of a #transparent statement used to define an icon:
	1. Create the icon using the X Window System icon editor, as explained in section 2.4.2.
	2. Add a #transparent statement to your URL file (see step 3 above).
	3. Create a WIN_DEF structure with the type specified as WC_ICON, and initialize its elements as follows:

	2.5. XVT’s Encapsulated Font Model
	2.5.1. Font Terminology
	This section uses the following XVT-defined terms to describe XVT’s encapsulated font model:

	2.5.2. Native Font Descriptors for Screen Display
	To specify a particular physical font, your application can use a native font descriptor, which is a string of data fields. You can include this string as a parameter to xvt_font_set_native_desc, or in URL as part of a FONT or FONT_MAP statement.
	2.5.2.1. XVT/XM Font Descriptor Version Identifier
	2.5.2.2. XVT/XM Font Fields
	For Motif platforms, the native font descriptor string must contain enough information to populate an “X logical font description,” which is a 13-part font specification. The following table shows the information used to map a logical font.
	For XVT/XM, the native font descriptor string has this structure:

	2.5.3. Native Font Descriptors for Printing
	When using XVT/XM, print fonts are specified differently than screen fonts.
	2.5.3.1. XVT/XM Font Descriptor Version Identifier
	For XVT/XM, the print font descriptor version identifier format is POS<vers>. In this release of XVT/XM, the font descriptor version number is “01,” so the print font descriptor version identifier is POS01.

	2.5.3.2. XVT/XM Print-specific Font Fields
	Because the XVT/XM Portability Toolkit uses PostScript software to print, the native print font descriptor string must contain enough information to completely specify a PostScript font. The following table shows the information required to specify a...
	The PostScript font descriptor string has this structure:

	2.5.3.3. Standard PostScript Native Descriptor Strings
	The following standard combinations are available by default:

	2.6. Printing in XVT/XM
	Printing from XVT/XM generates a PostScript file. Print output is placed in a file created by the C library function tmpnam.
	2.6.1. Print Files and XVTPATH
	XVT/XM requires a number of files, located in the print directory of the XVT/XM installation, to generate a PostScript file. These files include the font metrics files and the file xvtprolg.ps, which contains PostScript driver functions. For printing...

	2.6.2. Fonts Used in Printing

	2.7. Using X Resources
	X toolkit resources specify GUI object (widget) attributes. Resources are specified in the .Xdefaults file or in application class- specific files.
	UNIX

	The .Xdefaults file is (typically) loaded into the X server at the start of the session. Any changes the user makes to .Xdefaults take effect only in a new session, or after an invocation of xrdb reloads the resource database.

	2.8. Making Changes to the Widgets Used by XVT/XM
	This section presents three methods for making changes to the widgets used by XVT/XM. At the end of this section is a list of widgets used by XVT for particular objects, as well as a list of reference manuals that are helpful when extending the XVT/X...
	These methods are not appropriate for changing fonts and colors of XVT top-level and child windows since the XVT drawing routines (xvt_dwin_draw_text(), xvt_dwin_draw_rect(), and so on) do not use the Motif widgets.
	When you make changes to the widgets outside of XVT, the XVT library doesn’t know that these changes have been made. Consequently, you may see some unexpected results. For example, if you changed the font of a push-button or oblong button after is ...
	2.8.1. Method One: Using Files under App-Defaults
	2.8.1.1. Name of the Resource File in the App-Defaults Directory
	The name of the file in the app-defaults directory used by XVT applications is specified by the base_appl_name field of the XVT_CONFIG structure.

	2.8.1.2. Names of Resources
	You can change the look of dialogs, controls, and menubars by prepending the name of the resource with an asterisk. For example, to change the background color in dialogs, controls, and menubars, add the following line to your file in app-defaults:

	2.8.1.3. Sample App-Defaults File to Change Fonts and Colors
	The following is a sample app-defaults file that would change the foreground and background color of all dialogs, controls, and menubars to green and pink, respectively. This code also changes the font of pushbuttons and editable text to an rk24 font:

	2.8.2. Method 2: Using Intrinsics to Change Widget Attributes
	The second method programmatically changes the attributes of a particular widget by using direct Intrinsics routines. This is the most difficult of the three methods, but it gives you the most control over individual widgets.
	2.8.2.1. Getting the Widget
	You can get the widget for most XVT objects if you have an XVT WINDOW for the object. For dialogs, you already have a WINDOW, but for controls, you have to get the WINDOW before you can get the widget. To get the WINDOW for a control, use the followi...

	2.8.2.2. Setting Up Attributes to Change
	2.8.2.3. Using XtVaSetValues to Change Attributes
	2.8.2.4. Sample C Code to Change Fonts
	The following sample C code will change fonts using the Intrisics method:

	2.8.3. Method 3: Using UIL
	2.8.3.1. Restrictions for Using UIL to Make Non-portable Changes
	2.8.3.2. Basic UIL Syntax
	2.8.3.3. Syntax for Changing Colors and Fonts
	Let xrc create the UIL file for you, and then make the changes. When the changes are done, you need to put the entire dialog code back into the URL file in a #transparent statement. You cannot put just a portion of the dialog into a #transparent stat...

	2.8.3.4. Sample UIL Code to Change Fonts and Colors

	2.8.4. Widgets Used by XVT/XM
	The following table shows the relevant widgets used by XVT/XM:

	2.8.5. Helpful Reference Manuals
	The following is a list of helpful reference manuals:

	3
	Development Environment
	3.1. Introduction
	If you are using XVT-Design or XVT-Architect, you will rarely, if ever, need to deal directly with makefiles, include files, compiler options, libraries and linkers. Unless you need to modify the makefile templates supplied by XVT-Design, you’ll on...
	This chapter gives detailed information on building XVT/XM applications.
	Your compiled XVT/XM application consists of the following files:

	3.2. UNIX Development Environment
	3.2.1. Executing Makefiles
	XVT-Design and XVT-Architect generate makefile templates that you can use in your UNIX environment.
	For UNIX, use the make utility to process makefiles. You can adapt the makefiles that accompany the sample programs for use in building your application.

	3.2.2. Include Files
	XVT-Design and XVT-Architect generate code that automatically includes all necessary header files.
	To build XVT applications, you must include the XVT-specific header file xvt.h in addition to any other application-specific header files.

	3.2.3. Compiler Flags
	XVT provides a compiler optimization flag, XVT_OPT, for runtime optimization of the PTK. This flag is described further in the XVT Portability Toolkit Guide. To use the flag with your UNIX compiler, you must add a define for the XVT_OPT symbol on the...

	3.2.4. Libraries
	XVT-Design’s and XVT-Architect’s makefile templates supply a default configuration that links the appropriate libraries automatically.
	3.2.4.1. Shared and Static XVT Libraries
	XVT/XM provides the following libraries for building applications:
	You must link the libraries on the link line in the following order:
	1. Use the -L flag to indicate the path to the XVT libraries.
	2. To use the bound help viewer, specify:

	3.2.4.2. System Libraries
	In addition to the XVT libraries, XVT/XM applications require linking with the following system libraries (or shared versions of them):

	3.2.4.3. Linking helpview
	XVT/XM provides helpview object files in binary format. You may link helpview using either static or dynamic libraries. The sample makefile Makefile.lnk in the src/helpview directory shows the combination of static and shared libraries used by XVT to...

	3.2.5. Building Utility Programs
	All XVT/XM customers receive a command line version of errscan in the bin directory and the source code in the src/errscan directory. You can build either the command line version of this utility or you can build it with a GUI interface (named errsca...
	1. Move to the src/errscan subdirectory.
	2. To build the command line version of errscan:
	3. To build the GUI version of errscan:

	3.2.6. For Source Customers Only: XVT/XM Development Environment
	This section contains information pertinent to XVT/XM source customers. If you are using the XVT/XM binary product, you can skip this section.
	Building Utility Programs
	1. Move to the src/xrc directory.
	2. Type: make
	1. Move to the src/helpc directory.
	2. Type: make

	Building Libraries
	1. Move to the src/ptk directory.
	2. Type: make

	3.3. Compiling Resources
	If you use XVT-Design or XVT-Architect, you will probably never need to deal directly with resource compiler options. XVT-Design and the xrc compiler code resources automatically. The information here is provided for reference purposes only.
	3.3.1. Using xrc
	XVT-Design can be configured to invoke xrc for you, either directly as part of the code generation process or via a generated makefile.

	3.3.2. Using the Native Resource Compiler (uil)
	The Motif Toolkit includes tools that you can use to make Motif resources. The native resource compiler uil compiles resource scripts into resource files that have an extension of .uid.
	Here’s a typical command:
	The XVT-Design tag SPCL:User_Url lets you add resource definitions to your application resource file.

	3.4. Building Your Application with the Help System
	XVT-Design supplies a default configuration in its makefile template that links with the bound help viewer. If necessary, you can modify this configuration to suit your needs.
	XVT's hypertext online help system requires a help viewer. For XVT/XM, you can bind the portable viewer to the application. An application should link with only one of the two help libraries discussed below.
	3.4.1. Portable Viewer
	XVT/XM provides the XVT portable hypertext help viewer in bound and standalone forms. You must use the XVT help compiler helpc to produce XVT-portable binary help files for the help viewer to use.

	3.4.2. Object Click Mode
	Object click mode for XVT’s hypertext online help system is not standard look-and-feel for Motif. Therefore, XVT/XM does not automatically provide an application menu item which enables this feature for users. If your XVT/XM application requires co...
	Alternatively, you may define the symbol prior to including url.h in your application URL resources:

	A
	Appendix A: Non-portable Attributes, Escape Codes, and Menu Fields
	A.1. Non-portable Attributes
	The xvt_vobj_set_attr and xvt_vobj_get_attr functions allow you to manipulate XVT attributes. Non-portable attributes let you fine-tune your application to make it more closely adhere to the look-and-feel of the underlying platform, or to add functio...
	XVT-Design provides a special tag, SPCL:Main_Code, that lets you supply code in the Action Code Editor (ACE) before calling xvt_app_create. This enables you to set or get system attributes before the XVT library assumes control.

	ATTR_IME_USE_STATUSAREA
	ATTR_PS_PRINT_COMMAND
	ATTR_PS_PRINT_FILE_NAME
	ATTR_X_DISPLAY
	ATTR_X_DISPLAY_TASK_WIN
	ATTR_X_DLG_PARENT
	ATTR_X_MASK_SERVER_EVENTS
	ATTR_X_PLACE_WINDOW_EXACT
	ATTR_X_SELECTION_BUFF
	ATTR_X_SET_FOCUS_DEICONIZE
	ATTR_X_USE_USERS_STRING
	ATTR_X_WIDGET
	ATTR_XOR_REF_COLOR

	A.2. Variations on Portable Attributes
	These portable attributes have slight variations in meaning in order to support differences on the native Motif platform.
	ATTR_EVENT_HOOK
	ATTR_KEY_HOOK
	Multibyte-nonaware Application
	If your application uses a single-byte character code set and you have set the value of ATTR_MULTIBYTE_AWARE as FALSE (default), then ATTR_KEY_HOOK behaves as follows:
	Multibyte-aware Application

	If your application is multibyte-aware (in other words, you have set the value of ATTR_MULTIBYTE_AWARE as TRUE), then ATTR_KEY_HOOK behaves as follows:

	ATTR_NATIVE_GRAPHIC_CONTEXT
	ATTR_NATIVE_WINDOW

	A.3. Non-portable Escape Codes
	The xvt_app_escape function enables you to set or get XVT/XM-specific information that you cannot set or get using the xvt_vobj_set_attr or xvt_vobj_get_attr functions. The function xvt_app_escape’s escape codes and the associated parameter lists a...
	XVT_ESC_XM_GET_COMBO_WIDGETS
	XVT_ESC_XM_GET_GRP_BOX_WIDGETS
	XVT_ESC_XM_LOWER_GRP_BOX_FRAME
	XVT_ESC_XM_PICT_TO_XIMAGE
	XVT_ESC_XM_SET_CTL_BKG_COLOR
	XVT_ESC_XM_XIMAGE_TO_PICT

	A.4. Non-portable MENU_ITEM Fields
	The MENU_ITEM structure contains some non-portable, platform- specific fields that supplement the portable fields described in the online XVT Portability Toolkit Reference. This section describes the non-portable fields for XVT/XM.
	accel String

	accel is a string that describes the MENU_ITEM accelerator. The format is the same as the translation table syntax outlined in O’Reilly’s X Toolkit Intrinsics Programming Manual. XVT/XM uses the modifiers Shift, Control and Meta (XVT’s Alt).
	acceltext String

	acceltext is a string that replaces the default string generated by any accelerators. This string appears to the right of the button label.
	ATTR_X_PROPAGATE_ECHAR
	ATTR_X_R45_MODALITY
	ATTR_X_EXPOSE_COMPRESSION_TYPE
	ATTR_X_TABLE_PROPORTIONAL_THUMB

	A
	Appendix B: The XVT/XM Look-and-Feel
	A.1. Focus Models
	A.1.1. Window Managers and Input Focus
	A.1.2. Child Windows or Controls
	A.1.3. Keyboard Events
	Figure A.1. A window hierarchy
	Table A.1. Windows receiving keyboard events

	A.2. XVT/XM Focus Policy
	The Motif Window Manager always gives focus to the outermost widget (or TopLevelShell widget) of the window hierarchy. Motif then uses a virtual focus model to deliver keyboard events. In other words, Motif uses the X Intrinsics toolkit to redirect k...
	A.2.1. Default Focus Model
	A.2.2. Changing Focus
	To give focus to one of the other windows, the user must move the pointer and click the mouse button in it. The application then receives an E_FOCUS event with the active field equal to FALSE for the previous focus window, and a subsequent E_FOCUS ev...

	A.3. Keyboard Navigation
	Keyboard navigation in dialog controls is handled automatically by XVT/XM. No special processing of characters is required.
	On the other hand, keyboard navigation is not automatic in XVT window controls. You may elect to use the XVT navigation object to handle E_CHAR events for keyboard navigation in windows, or you may implement your own navigation mechanism.
	When a control in a window has focus and the user types characters, characters not processed internally by the control are passed as E_CHAR character events to the control’s parent (container) window. Your application event handler then must proces...
	A.3.1. Controls and Navigation Keys
	Different controls propagate different navigation keys as E_CHAR events to their parent window:

	A.3.2. Application Focus Traversal Lists
	Since the user can change focus to controls by clicking on them, the control that currently contains the focus can be “out of sync” with any application traversal list. If the application relied on an internal list to decide the control that shou...

	A.4. Task Window Menubar
	In Motif applications, when no visible window with a menubar is displayed, a “ghost window” (or ghost menu) appears. The ghost window exists solely to display the task window menubar.

	A
	Appendix C: Frequently Asked Questions
	Draw Mode Definitions
	1. Copy the file CGlobalUser.h from the pwr/include directory to your development directory. You should rename the original file so that the compiler will see your own copy.
	2. Add public class variables to your copy of the header file as follows:
	3. In your application's startup member function, create an instance of CGlobalUser and pass it to CBoss: IBoss as follows:
	4. Access the global variables through the CBoss's GU pointer, as follows:
	5. Destroy the GU pointer in the application's ShutDown member function, as follows:
	1. Get a font in the new character set for X.
	2. Set the locale for your new country using either setlocale(LC_ALL, "") or XtSetLanguageProc(NULL, NULL, NULL). (The locale setting changes certain items because of cultural differences, such as the way times and dates are displayed, the placement ...
	3. Set your LANG environment variable to the new locale. For example, for Norway: setenv LANG NORWAY.
	4. Modify xsstrings.h to recognize the new font by altering the old FF_* font setup. You'll need to replace (not add to) one of the existing XVT defined fonts.
	1. Call xvt_app_escape(XVT_ESC_GET_PRINTER_INFO, ...) to determine the printable area's height, width, and resolution. The height and width returned reflect the page orientation. This method does work for XM.
	2. Get the client rect of the print window and examine the rect's height and width, which also reflect the page orientation. (This method works only if the print window exists, of course.)
	1. Don't use the task menubar. Instead, create a W_DOC style window initially when your application starts up (similar to several of the XVT examples). As long as you always have a window with a menubar, the task window will not be displayed. Also, y...
	2. You could add some non-portable code that would make the task window insensitive just before creating the new window. You would then have to change it back when the task window was displayed again. For example, in response to choosing M_FILE_NEW f...
	3. Another idea is to install an event_handler, before creating the new window, that would discard all ButtonPress and KeyPress events. You would then need to set the event_handler back to NULL in the E_CREATE of the new window.
	1. modify the xrc-generated UIL file, changing the BackSpace accelerator to Delete. For example, change
	2. Use xmodmap to change the Delete key to generate BackSpace with the following command:
	1. Create the lasso cursor bitmap with the X bitmap client:
	2. Create the mask for lasso by starting with the lasso.h bitmap and include all pixels that touch the boundary of the marked pixels in lasso.h:
	3. In the file that defines the user-defined cursor resources, insert code that identifies the mask bitmap, lasso_mask, as follows.

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X
	Z

