X
PROGRAMMER'S
GUIDE

¥ 1991-2011 Providence Software Solutions, Inc. All rights reserved.

The XI programming interface, XI manuals, and XI software may not be reproduced in
any form or by any means except by permission in writing from Providence Software
Solutions, Inc.

XI is a trademark of Providence Software Solutions, Inc.
XVT is a trademark of Providence Software Solutions, Inc.
Macintosh is a trademark of Apple Computers, Inc.

Microsoft Windows is a trademark of Microsoft, Inc.

Published by:

Providence Software Solutions, Inc.
202 New Edition Court

Cary NC, 27511

919-854-1800

919-4393034 (Fax)
http://www.xvt.com (Website)

Table of Contents

TABLE OF CONTENTS 111
TABLE OF FIGURES VIII
1
INTRODUCTION 1
LT WHAT IS X7ttt ettt ettt ee et e e e e et e e e e eeataaeeeeeeeaaaeeeeeenaataseeeeeastaseseseenaaseeeeeeanstreeseeans 1
1.2 LAYERS UPON LAYERS.cciiiiitttiieeeieitteteeeeeeieeteeeeeeaeeeeeeesiareeeeeeeestaseeeseenasseeseenessreseeeeessesseesensasreeesensnreeeeas 2
L2 0 XL e e 2
L2 2 XVT e e 3
1.2.3 THE NGIIVE SYSEEM.....c..c.cuieiiiiiiiiiit ettt ettt ettt ettt ettt 3
1.3 CONSTRUCTING AN XTI APPLICATION.uuuuutiieeiieieieeeeeeeeeeeeeeeseeeesssssssssseseeeseeseseseseesseeseesesesssssssssssssssssssseeesees 3
L.3.1 XTI PYOZVAMIING. ..ottt ettt ettt ettt e b ettt e e s 4
1.3.2 XVT PFPOGFAIMING. ..ottt ettt e et e et et e ettt et e et et e et e eneeneeeneeneen 4
| Y 61 1Y 7N 2 PRSP 5
2
AN XI INTERFACE 6
2.1 SUMMARY OF XI OBIECTS....cccetetutttieeieiiueeeeeeeiiireeeeeeesitaresessesissseeeeessssessesessressessensasesessesissssesessssssssessnnes 8
210 OBJECES. ..ottt he et et ab et b et b et eneeneeeaeenees 8
oL 2 BVOIES. ... 9
2.3 XIEVENt HANGIEE ...ttt 11
2.2 SUMMARY ...vvtteeeeitittee e eeeettee e e e eeetaeeeeeeeettaeeeeeeesaseteeeeaeataaeeeeeassssseeeeestsseeeeeaassseeeeeeaasssseeesenstseeeeeenssseeeeeannnres 11
3
CREATING AN OBJECT DEFINITION TREE 12
3.1 DESIGNING AN INTERFACE HIERARCHYuuuuuuutuutitiieieeeieieieeeeeeeeeeeeeeeeeeeesesssssssssssesereeeesesaseseeesessssssessnnnnns 13
3.2 USING THE CONVENIENCE FUNCTIONS.......coiotttiieiiititteeseesieeeeeeeesaeeeeeeessteeeesesesseeeessesssassesssasssseesssssnnees 13
4
CHARACTERISTICS OF XI OBJECTS 16
4.1 COORDINATE SYSTEM.....cciiiiiuutieiieiiteeeeeeieiieeeeeeesiaeeeeeseesasessssesisesssseissssessessesissssessssssressssesissssessssssseeees 17
L1 FOUI URILS VS~ PIXCLS.....oeeeeeeeeeeeeeeeee e et 18
VS 16) Nl 20) T | B 1SS RO 18
4.3 XTI ATTRIBUTES. ...eeeetieeuteeeeeeeiiteeeeeeeeiteeeeeeeesareeeseesaseeeeeeasaseeeeeeessseseeeeeataseeeeeassssaeseenssseseeeensreeeeeennnrerens 18
XIT _ITF4.4 INTERFACE OBJIECTS. .. ueeiuttetteeuteettenteeteestesteesseeenseesseesseasseessseesssessseesssesseesseesnsessseesssessseesnnes 19
4.4] MOAQL TNEEEFACES. ...ttt ettt ettt 19
4.4.2 VIFHUQL INEETFACES. ..ottt et ettt ettt et et e e eaeeteene e 19
4.4.3 Putting XI Interfaces in EXiSting WiNAOWS.............cc.cccuiiiiiaieiiiiest et 21
4.4.4 BACKGIOUNA COIOF ..ottt ettt ettt ettt ene s 21

4.4.5 Menu Bars 01 WIBAOWS...........cc.c.oooceeeeieeeeeee ettt 22

4.4.6 Cutting and Pasting With XL.............cccccccoioiioiiiiiiiiiiii ittt 22
God. 7 SCHOI BAFS......cuo ottt ettt ettt et ettt et et ene e beeneeeaeenaeenen 22
4.8 CLOSE BOX......ooeeieee ettt ettt ettt at ettt eae e eaeeaeeneenne s 23
4.9 SI2€ COMITOIS......cuoiiiiieeeeee ettt ettt ettt et e et et eeae e e et enaeeteeneeeeens 23
4.4 10 1CONTZE COMIFOIS. ..ottt ettt ettt ettt ene e e 23
R O > oY L AN 5 LTSS 24
XIT _LISTA.S LIST OBIECTS. ...t teuttettetteutenttenteateetesteetesutetesseetesseeteestesseentesseensesaeensesseessesssensesssenseensesseensenne 24
.51 DiESADIOA TISES........c.eeiieeeee ettt ettt 25
G.5.2 ENADICA TISTS........ocooiiieieeiee ettt et en 25
4.5.3 NO COMMRN HEAAINGS.c.occooeeieiieiiaiieieieee ettt eae et s sne s enes 25
4.5.4 HOVIZOREAL SCPOIING. ...ttt ettt et et b et besaa e be s sseense s 25
4.5.5 MOVADIE COIUMES. ...ttt ettt 26
4.5.0 RESIZING COIUMIScouoouiriiiiiiiiieieee ettt ettt ettt 27
4.5.7 Dynamically Deleting COIUMMNS.ccccouccuiiiiiiiiiiiiiitiiee sttt 27
4.5.8 Positioning and Inserting COIUMNS i1 @ LiSt..............ccocovviniiininiiiiiiiiiiieiiteee e 28
5.9 LESE BUITOMN. ...ttt ettt et ettt et ettt ettt ettt s 28
4.5.10 Removing Horizontal and Vertical Rules Of @ LiSt..............ccccovoiioiiiiiiiiiiiiiieeeeeeee e 29
4.5.11 Resizing the List when the Window is ReSIZEd...............ccceeiiieiiiieiiaese et 29
4.5.12 Changing the Number of Fixed COIUMMNS.ccccuioiiiiiioiiiiiiieeeeee et 30
4.5.13 LiSt MOUSE CUTSOFS. ..ottt ettt et ettt ettt et et ettt eneenes 30
4.5 14 TADWEAD NAVIGALION..............cooouveeeeeeiieeeeie ettt ettt ae e e s e sbe s sreesse s 30
4.5.15 AT1OW K@Y NAVIGALION.ooceeeeieeieeeeet ettt et ettt ettt e sate et esteeenseesteeenseennee e 30
4.5 10 REfIOSIMING @ LISL........c..ocoeevieiieeieeeee ettt se e sttt ens e s nseeneenns 30
XIT COLUMNA.O COLUMNS......cotruirttrterttntententententensestestestesteseestabesseebesbesaestesbessessessensententesteseeseeseebesbesaenses 31
4.6.1 DiSADIEA COIUMNS. ...ttt et et e eaae e eane s 31
4.6.2 ENGDIEd COIUMES. ..ottt ettt eae et sae e aeeneas 32
4.6.3 Autoselected Cells in @ COIUMN.................c..cccocuiiiiiiiii ittt 32
4.6.4 ReAd-ONILY COIUMILS.c.ooiiiiee ettt ettt ettt ettt ettt eneeeneenes 32
4.6.5 Autoscroll Cells in @ COIUMIN.c.cccoicuiiiiiiiieeee et 32
4.6.6 Right-JuStified COIUMMNS............cccoooiiieiiiee ettt 32
4.6.7 PaASSWOFA COIUMPS. ..ottt ettt 33
4.6.8 Platform and Well COIUMNS...................cccovevueiieceiiiieteeie ettt ese et eve et eae s eae s 33
4.6.9 Centered ColUmmn HEAINGS..............c..cc.cccoeciecuieiiiiieieiie ettt eae e sre s 33
4.6.10 Fonts for COlumm HEAAINGS...................ccoccoecuiiiiiiiiaieiiiieeeie ettt 34
4.6.11 Icons in COIUMN HEAAINGS................ccocoveeeiiiieiiiieeiieeeeie ettt ese e sae et ese s 34
4.6.12 Multiline Colummn HEAINGS...............c..ccccooviiiaiieieiie ettt seeeees 35
4.6.13 Platform and Well HEAINGS.................c.ccccueiioiiiiiiiiiiiiieieeeee ettt 36
4.7 CELLS AND ROWS.....oiiiiiiiiiiiiiiiiiicc e 36
4.7.1 Selected Rows and ENabled ROWS...............c.cccocueiiiieiiiieet ettt 36
4.7.2 COLOFS Pl Cell.........ocooieieieeieeeeee et ettt ettt ettt 37
7.3 FONLS PEF CelL........ooueoeiiieeeeee ettt ettt ettt ettt ettt ettt e 37
4.7.4 Cell RANGE SELECHION.c..eieeeieeeeee ettt ettt 38
4.7.5 Putting ICONS 11 CelIS...........oooiiiiiiiiiee ettt et 40
4.7.6 Putting BitmapPs 11 CellS...........ccoueioeieiiieiii ettt ettt ae et sae et stbeansaesaneesaenaseenns 41
A8 FORMS. ...ttt ettt ettt et e b et et e h e b b s a e bbbt n e r e 41
4.9 EDIT FIELDS....c.oiiiiiiiicieictcteee sttt sttt et sae b b saesnesbesnen 42
4.9.1 DiSADbled Edit FIOIAS............cccouiiiiiiiiii ettt 42
4.9.2 ENADIed Edit FIOIAS..........c.ccocoeiiiiiiiiieieeet ettt 42
4.9.3 Autoselected Edit FIOIAS................ccocooooeiiiiiiiiiieii ettt 42
4.9.4 Read-Only Edit FIelds...............ccccocoiiiiiiiiiiiiiiiiiiiiiieeetet ettt 42
4.9.5 AutoScroll Edit FTEIdS.............cccooeoiiieiiiieiieeee ettt 43
4.9.6 Right-justified Edit FIOIAS...............ccoccoiiiiiiiiiiieiee ettt 43
4.9.7 Password Edit FIEIds...............cocooioiiiiiiiiie ettt 43
4.9.8 Platform and Well Edit FTelds................ccccoooiiiiiiiiiiiieie et 43
4.9.9 Edit FI@ld BUITONS.cc.eieeiiieieeieee ettt ettt ettt ettt et e et mee et eneesneennens 43

4.9.10 Using XI ATR FOCUSBORDER.............cccceciiiiaiiiiieieeeeeie ettt
4.9 11 MUltiline Edit FUEIAS.oooeeeiiieeeeeeee et
B9 A2 Edit FIOIA FONLS. ... ettt
Q.10 GROUPS....uveieeeeetieeee e eeet e e e eeea e e e ettt e e e e e eetaaeeeeeeetaateeeeaaassaeeeeeassaseeeeaasbasseeeaenssssaaeeeassseseseennsreseeeenanres
o B 0 VN 11 21 33U
QT2 BUTTONS. ...ttt ettt e e e e et e e e e e et e e e eaaeeeeateeeeaeeeeeseeeeeaeeeeeseeeesseeeeaseeeeseeeeeseeeeenseeeeseeeans
12,1 TVUPES Of XI BUIIONS. ..ottt ettt et ee et e e enee
4. 12.2 USING XVT BUITONS. ..ottt ettt ettt ettt ettt ene s
4.12.3 DiSADIEA BUILOMS.oooeeeieeeeeee et eeeae e e
4. 12.4 ENADBICA BUITONS. ..ottt eae e
4.12.5 1cON ANA BItIMAD BULLONS..............ccveeeeiieiieiieeieeeeeie ettt ettt ettt ts s enaesseesaesreessesseessesseens
B 12.6 RAAIO BUILONS. ...t
B 12.7 CRECK BOXES.........c.ooeeeeeeeeeeeeeeeeeeeee ettt
B2 8 TUD BUIIOMS. ... ettt e e et e et eeeeaee e e
12,9 DEfQUIE BUTON. ..ottt ettt ettt sttt et e eae e e sreenseeneeseeneas
41210 DFAWIRG 11 BUTTONS. ..ottt ettt ettt ettt et e e
N B I V- N (O 25 SO
4.13.1 Right=jusStified StATIC TXL.........ccoooeeieeeieei ettt ettt
4.13.2 Enabled/Disabled Static TOXL............cccccc.ooouiiiiiiii et
4.13.3 FORLS fOF SHALIC TXL.....c..coueiiieeeee ettt ettt
.14 RECTANGLES....cciiutttietteeeetteeeetteeeete e e etteeeetteeeeaeeeetseeeetseeeeaseeeesseeessseeasseseeasaeeanssseassesenasseeasteeeessesensneas
TS5 LINES. .. tteietiie oottt e ettt e ettt e e ettt e e e te e e ett e e e e taeeeeateeeeatsee e aaeaeastseeeasseeesssaeasbeseassseeetseeetbeeenssaeearaeeetreeannes
4.16 WORKING WITH XV T/CH......cooiiiitiieiiiieieee ettt ettt ettt e ve et ve et eveeetaeeaveestaeeareees
.17 SUMMARY ...oieeuttieeiteeeeiteeeeteeeeetteeestseeasssasesssaeassssesassesasssaeasssssaasseeassaeassssesssseesnssaeanssasanssaesssseeesnssesennes

5
DEFINING XI OBJECTS

5.1 OBJECT DEFINITION STRUCTURES.cttttttiiiiititieeeeeeeeieeeiesataeetateeetreeeeeeeasaeeeseessessssssssssssssssaserrreeeeeeeeesees
5.2 DEFINING AN INTERFACE OBJIECTcittiiiiiiiiiie e oo eeeeeeeatataeeeeeeeteeeeeeeeeeeeeeeesesssssssssssssssassereeeeseeeeasesessesenens
5.3 DEFINING FORMS......cooiiiiiiiiiiiiieeeeeeee ettt e e e e et e e e e e e e e e et a e eeeeeeeeeeeeeeeeeeesesesesaessssssssrsasnnnnnees
5.4 DEFINING EDIT FIELDS......uuuttiiiiiiiiiiiie ettt ettt e e e ettt e e e e st e e e s senaaaeeeesenaaeeeesseaaseeessennnteeeeeeans
5.5 DEFINING LISTS .. eetttiiiiiitiieee ettt ettt e ettt e e e e et e e e e esaateeeeeseataseeessessaeeeessessasseeessasaseesseasnraeeeessnnres
5.6 DEFINING COLUMNS.....uuttiiiiiiitieeeeeeieittereeeeeesaeeeeeeesaeeeeeeeeatasesessesrassesseasaseeessessstsseeesinssaseeessessseseeesesnsrees
5.7 DEFINING CONTAINERS.ccititttrieeeieiteeeeeeeeiueeeeeeesisreeseeeesstereeessasaseeessessssessssssssssssessssssessesssssaseeessensrsees
5.8 DEFINING BUTTONS.uutiiiiiiiiiiieie et ettt eeete et e e eettee e e e ee e e e e eestaaeeeeeeeesaaaeeeeserabaseeeeeesareeeeeenarereeeesnnaes
5.9 DEFINING GROUPS.......ccuuuviiieeeiiiieeeeeieeiteeeeeeeesiaeeeeeeeetseeeeeeensaaesseseesaasseeeeasassseseesssrereeesenstasseeseesisrreeeeennrnes
5.10 DEFINING STATIC TEXT..uuviiiiiiiiieiieeeeeiieee e e eeeteeeeeeeeetaeee e eeeaaeeeeeeeetaeeeeeeestaereeeeesstsreseeeesiaseseeeesntaseseesaees
5.11 DEFINING RECTANGLES.......cceittttiieeiitteie et eeeteeeeeeeeitaeeeeeeeetaseeeseesisaeseeeeetsseeeeeeestaseeeeeesssseeeseenareeeeeennnrees
S5.12 DEFINING LINES......cooiitiiiieiiiiitie ettt eeecte e e e eette e e e e e eetae e e e e eeetaaeeeeeesasseeeeeeeataeeeeeeenstsaeeeeeeassseeeseennrees
I BRI 6 1Y VN 2 N

6
CREATING AN XI INTERFACE

7
XI EVENTS

55

55
56
57
57
58
59
60
60
61
61
61
62
62

7.1 XTI EVENT HANDLERS.....cooeiitittteeeeeiittee et eeeitaeeeeeeeeteeeeeeeeiaseeeeeesiaseeeseesetseeseeeesssseeeeenstsreseeeessreseeesenrreens 68

7.2 RESPONDING TO XIT EVENTS......ocuiiiiiiiiiiiiiiiiiieccte ettt 69
7.3 REFUSING XTI EVENTS....ccoiiiiiiiiiiiiiiii it st e 71
7.4 XTFOCUS MODEL......c.oiiiiiiiiiiiiiiiiiiiinii sttt b e st 73
741 BASIC FOCUS RULES. ..ottt et ettt eeeens 74
7.5 EVENT CATEGORIES.......ccuiiitiiiiiietiieiiitetst ettt 75
WA B Ty e e DR 1 R SRS 76
7.5.2 LESE EVORLS....c..cie ettt ettt ettt 76
7.5.3 FOFI EVERES ..ottt ettt ettt et ettt nneens 79
7.5.4 BUIEOT EVERES......c.ociieiiiie ettt ettt ettt ettt ettt 79
7.5.5 FOCUS EVOIES. ...ttt ettt ettt ettt 79
7.5.0 SPECIAL EVERES..........ccoooveeiiieiiiiee ettt ettt ettt ettt b et be e e ebe s e eteesb e st esseensenseensenseens 80
7.6 THE XI_ EVENT STRUCTURE.....c..cetittiitttiiieniteettente st estteeteesteesaseesseesaseesstesaseestesssesnseesasesnseessseesseesseen 81
8
USING XI OBJECTS 83
GETTING AN OBJECT POINTERS.1 GETTING AN OBJECT POINTER........ccocciviiiiiiiiiiiiiienicieiccccccces 83
getting an object from an event8.1.1 Getting an Object from an Event Structure....................cccoecvenn... 83
8.1.2 USiNG @ COMIFOL ID.........c..cc.ooiiieiieiiee ettt ettt ettt e e e enees 84
children of objects8.1.3 Getting an Object’s CRIlAYen.................ccccccoveiiiiiiiiiieiieeeeee e 84
parent of objects8.1.4 Getting the Parent of an ODBJect...............c.cccouieoiioiaviiciiiiiiere e 85
8.1.5 Getting the OBJECt With FOCUS............ccc.ccciesieeciieeiieeie et eeeitesteesieesiveetaesseesteesaeeseesibeenseessseans 85
8.1.6 Making a PSEUAO-ODJECL.................ccoeieiiiiiaiieiieieeeeie ettt ettt s et eae e 85
8.2 USING EDIT FIELDS.......couiiiiiiiiiiiiiiiiiiiiieiiict et 86
8.2.1 Being Notified of Typing in an Edit FIeld..................c..cccooviiviiiiiiiiiieiieiieeeieeieee e 86
8.2.2 FilleFING CRATACIEFS..........cooeveieeiieieeiee ettt ettt ettt be et e sseenaesseenaesneennens 86
8.2.3 Validating Edit Field TExt............c.cccouviiiriiiiiiiiceet ettt 87
8.2.4 Changing Edit Field AUIIDULES..............c.coccriiiiiiiiiniiiiieieieete ettt 88
8.2.5 Changing a Single AUPIDUL.cccccoouiviiiiiiiiiiiiiiicetet ettt 88
8.3 USING FORMS.....oiiiiiiiiiiiicicc s et s &9
8.3.1 Validating the CONtEnts Of @ FOFM.ccccoiiioiiiieiiiiee et 89
8.3.2 Interfacing to Databases When USiNG @ FOFML.cccccooueviiieiiiiee et 89
8.3.3 Setting the Keyboard Navigation SEQUENCE.cc.ceriiieiiaieiieieiee et 92
B4 USING LISTS. .ottt ettt 93
8.4.1 RECOVA HANCIES............c.ceeeeeeeeee ettt ettt enens 93
8.4.2 How XI Manages the Record Handle Array.................cccccoovueviiiieiieieeniieiesie et 94
8.4.3 MANAZING RECOTAS.........c..ocoeeveieeiiee ettt ettt b ettt be st e ebeenteeneenseeaeennes 94
8.4.4 DISPIAYITG TOXE......ceeeeeeeeeeeee ettt ettt ettt et et ese et nteeaeeneeeneenees 98
8.4.5 Processing USEr INPUL..............c.ccccoiiiiiiiiiiiiiiiii ittt e 98
8.4.6 Responding t0 FOCUS MOVEIERLS.cccoocuiiieiieiiee ettt 99
8.4.7 Updating Databases When USIiG @ LiSt..............cccccccccociovimiiiiiiininiininineeeicetet ettt 100
8.4.8 SCHOIING HE LISE........o.ooeeiee ettt ettt ettt ettt e et et nee s 102
8.4.9 Changing LiSt ATFTDULES............cc.ocuoiieiiiieet oottt ettt 105
8.4.10 Changing the LISt SiZe............cccueeiiieiieieii ettt see et sneeae e 106
8.5 USING CELLS....uoiiiiiiiieiiieictete et 107
8.5.1 Cell REQUEST EVENLS......c...eevveeeeeeiieeie et sie e estte sttt et e tae et e taeesseebeessbeenseeseseansaensseensaennseenseas 107
8.5.2 MAKING Cell ODBJECES..........ocvovieiieiieiieiieeeie ettt ettt ettt ete e ereese e s 108
8.5.3 Being Notified of TyPING i @ Cell.............cc.ccoooieeiiiaiiiieieeiecee et 109
8.5.4 ValidAting Cell TOXL...........ccoccooeieiieiieeii ettt ettt ettt ettt be e beesaesbeesaesse s 109
8.0 USING ROWS...cooiiiiiiiiiiiici ettt 110
8.6.1 Responding t0 Record ReGUESt EVENLS..............cc.ccccuioiiiiiiioiiiiiit sttt 111
8.6.2 MAKING ROW OBJECES.........c.couiviiiiiiiiiiieieeieeeee ettt ettt 111
8.60.3 DEIOLING @ ROW........oc.iiiiiieie ettt ettt ettt et eae e 112
8.6.4 INSEFIING @ ROW.c..oiiiiiiiieee ettt ettt ettt ettt et st eniee e 112
8.6.5 Validating the CONIENtS Of @ ROW...........cccooiiiiiiiiiei et 113
8.7 USING COLUMNS......coiimiiimiitiiiitit ettt sttt 113

vi

8.7.1 Getting @ COMMI ODBJECL.............ccocceeiiiieieiieieii ettt ettt ettt ene et se e 114

8.7.2 Changing a Column'’s HEAING.................cccccooiriiiininiieiiieeeetet ettt 114
8.7.3 Changing the Width of @ COIUMN..............cccccociiimiriiiiiiiiiiiceti ettt 114
8.7.4 Changing Columm AHFIDULES.cc.coueeueuiiiiiiiiiiiiiteee ettt ettt 114
7.5 COMUMIL EVERLS ... e ettt e e e 115
E.B USING GROUPS.coieteeiieeieiieeeeeeeeeeteeeeeeetteeeeeesetaeeeeesessaaeeeeseasaaeeeesasateseesseastastesssansaseeessennaseeeeessnrreeeas 116
8.8.1 Validating a Group of Edit Fields or Cells.............c.cccccocoiiiiiiiieoiiieiit e 116
8.0 USING BUTTONS......coiittiiieieiiitiie ettt ettt e e e e et e e e e eeaae e e e e e eaaaeeeesseaaaeeeesensaaseeseeasaaaeesesesntaseeessnnsanes 117
8.9.1 Changing BULtON ATIFTDULES.ccceevuieeiieciie et e eeiee ettt s e asaesaseesaessseeseessaeesee e 117
8.9.2 Checking Radio Buttons and CRECk BOXES.............c..cccceeieveiieiaeiieiesieeeeeie e eve e 118
8.10 USING STATIC TEXT....uvuviieiieiireieeeeeiieeee e e eeeteeeeeeeeitaeeeeeeesaseeeeeesetareseeeestaseeeseesasreeseessarseeeeesssreseeessnees 118
9
MANAGING APPLICATION DATA 119
9.1 ASSOCIATING RECORD DATA WITH AN OBJIECTcccceeiitriieeeeeiiteeeeeeeeiitreeeeeesirreeeeeesssseeeeeeeeissreseeessnreeeeas 119
9.2 USING TREE MEMORY FOR APPLICATION DATA.......coiiiiiiiiiiiiiiieeeeeeeeeeteeee et e e e e e e sessaaaaaaaaneees 121
10
MEMORY ALLOCATION 122
10.1 PERFORMANCE CONSIDERATIONS.uuuittieeieitterteeeeeieeeeeeeesisteeeeessessaseeessesnsseessssssssssessssssssessssnsaseeees 123
10.2 AUTOMATIC FREEING OF TREE MEMORYcccootiutiieiiiiiieeeeeeieiieeeeseesieeeeseeesaseesesssnssessessssnsnsesessensnnees 124
10.3 DEBUGGING TREE MEMORYcciottiuiiitiiiiitieeeeeeiiieeeeeeeesiaeeeeeesesseessessssssessessessasssssssessssesessssmsssseessnsses 124
11
MODIFYING AN XI INTERFACE 126
11.1 ADDING OBJECTS......ccoettttteeeieiieeeeeeeeiitteeeeeeeetereeeeeettasteeseesiaseseeeessseseeeseasseseeeseasasseseesesisresesessnsteseeessnnaes 126
11.2 DEFINING AN OBIECTccceeiittteeeeeiiitteeeeeeesitereeeeeeiiaseeeseesiisseeseesesseseeseesitsseeseessisssseessssssesseeesesisreseseessrees 126
11.3 INSTANTIATING AN OBIECT ...uceccieiitrreeeeeeiirreeeeeesiiseeeeeeeeisreeseeeesiseseeeeesstasseeseesssseeseesirseeseessiresseessnssssees 127
11.4 ADDING A COLUMN.....uuiiiiiiiittiieeeeeeitteeeeeeeeitreeeeeeeettreeeeeeesttareseeeeeaseeeseestssseeseeeestssseeseesssseeeeeasrrseeeeeansres 127
11.5 ADDING AN EDIT FIELD.......coiiiiiiiiiteeeeeeeeeeeeee ettt et e e e e e eeeeeeeeeesesesssssssassasssennees 128
11.6 DELETING OBIECTS.....ceiitttiiiieeeetetaeeteteeeeeeeeeteeeeeeeeeeseessesesassssssssssssesseseeeeseseeseasaseesssesesessssssssssssssssnseees 128
11.7 DELETING A COLUMNuttiiiiiitieeieeieeeeeeeeeeeeteeeeeeseseeeeessessaaseessssssaseeessssnstaseeessaseseeessessssseessssssseeeessns 129
11.8 DELETING AN EDIT FIELD......coiiiiiiiiiiiiiieeeiee ettt eeaae e e e e s enaae e e e s e snataeeesesnnsreeeesssnneeees 129
11.9 RESIZING AN X VT WINDOW.......uuuiiiiiiiiiiiieeieiiiteeeeeeeiteeeeeseestaeeeessesaaseesesssssaessessssstaseesssssareesssssssreeees 129
12
INTEGRATING XI WITH XVT APPLICATIONS 131
12.1 USING X VT CONTROLS......ccouveieeeeiireeeeeeeeiteeeeeeeestaeeeeeeesiaseeseeeseisressessessssseesessssessesasisresesessnssssesessnsses 131
12.2 DRAWING GRAPHICS.coiiureeeeeeiiireeeeeeeiteeeeeeeeitaeeeeeeesaseeeseestseseeeeesstresseseessereeesenstareeessenareeeeeennrreeees 132
L2.3 IMEENUS...ttttieeeeeiieee e e ettt eeeee e e e e et e e e e e eetae e e e e e eeataaeeeeeentaaeaeeeeeasssaeeeeeaseseeeeeasasseseeeanasreseseesasssseeeesaees 132
APPENDIX A
THE XI EXAMPLE 133
INDEX 137

vi

Table of Figures

FIGURE 1 - LAYERS UPON LAYERS

FIGURE 2 - WHAT IS PROVIDED BY XVT AND WHAT IS PROVIDED BY XI

FIGURE 3 - EXAMPLE OF AN XI INTERFACE

FIGURE 4 - TYPES OF OBJECTS IN AN XI INTERFACE

FIGURE 5 - EVENTS GENERATED IN RESPONSE TO A MOUSE CLICK ON A CELL...............

FIGURE 6 - INTERFACE DIAGRAM

FIGURE 7 - INTERFACE DEFINITION

FIGURE 8 - ADDING A LIST DEFINITION

FIGURE 9 - EXAMPLE OBJECT DEFINITION TREE

FIGURE 10 - COMPARING FORM UNITS AND PIXELS

FIGURE 11 - A VIRTUAL INTERFACE

FIGURE 12 - XI INTERFACE WITH CLOSE BOX, SCROLL BARS AND SIZING.......cccceceeveruennee

FIGURE 13 - LIST WITH A SCROLL BAR BUTTON

FIGURE 14 - A PLATFORM COLUMN

FIGURE 15 - MULTILINE COLUMN HEADINGS

FIGURE 16 - A SELECTED ROW

13

14

14

15

17

20

24

28

33

36

37

FIGURE 17 - A RANGE OF SELECTED CELLS

38

FIGURE 18 - AN EDIT FIELD BUTTON WITH DROP DOWN LIST

FIGURE 19 - A MULTILINE EDIT FIELD

FIGURE 20 - ICON BUTTONS

44

45

49

vi

FIGURE 21 - TAB BUTTONS

51

FIGURE 22 - FOCUS FLOW AND OBJECT HIERARCHY

75

FIGURE 23 - EDITING A DATABASE RECORD IN A FORM

FIGURE 24 - RECORD HANDLES FOR A DATABASE LIST

89

93

FIGURE 25 - HANDLES TO AN IN-MEMORY ARRAY

95

FIGURE 26 - HANDLES TO A LINK LIST STRUCTURE

96

FIGURE 27 - HANDLES TO DATABASE RECORDS

FIGURE 28 - FREEING TREE MEMORY

FIGURE 29 - THE MEMORY LIST

FIGURE 30 - THE LINKED LIST

FIGURE 31 - THE LINKED LIST CHANGE DIALOG

FIGURE 32 - THE EMPLOYEE LIST

FIGURE 33 - THE ADD EMPLOYEE DIALOG

FIGURE 34 - THE CHANGE EMPLOYEE DIALOG

FIGURE 35 - THE DELETE EMPLOYEE DIALOG.

FIGURE 36 - THE SYNCHRONIZED LISTS

96

123

133

134

134

135

135

136

136

137

Introduction

Each part of the X Programming Manual provides a different perspective of the XI tool kit. The purpose of
the X1 Programmer s Guide is twofold. It is meant 1) to give you a comprehensive look at the tool kit’s
functionality, and 2) to lay down a practical foundation in XI programming techniques.

If your time is limited and you want to read the minimum number of manual pages before writing a serious
application with XI, we recommend that you start with the XI Programmer s Guide. The XI Programmers
Guide is arranged according to the steps you will need to take if you were writing an XI application. As you
are reading the XI Programmer s Guide, you should look at the sample application shipped with the tool
kit. Much of this code may be usable as a starting point for your own application. The XI Programmer s
Reference will give you more precise information than provided in the X7 Programmer s Guide. You should
look there to find exact specifications of XI structures, events and functions. Pay particular attention to the
information about record handles in the chapter Using XI Objects.

If your time is severely limited, you may want to learn XI just by looking at the sample program. However,
you are likely to miss many of the details and options available with that method. In any case, you should
still look over the information about record handles in the chapter Using XI Objects since this is the most
commonly misunderstood aspect of XI.

This manual assumes that you are already familiar with basic GUI programming concepts such as events,
event handlers, windows and controls. In addition, if you are new to programming with XVT, we
recommend that you read parts of the XVT documentation before moving to XI. In particular, read the
XVT documentation that addresses compiling and linking applications on each XVT platform, and the
documentation that shows you how to program the main function and the task window's event handler. You
may also want to read the XVT documentation about fonts and font metrics, drawing text and basic XVT
event processing, as well as a quick review of the graphics primitives, just to get an idea of what is
available from XVT.

1.1 What is XI?

Xl is a library. It is a set of ‘C’ functions and data structures that allows you to create user interfaces. XI is
not a new language, resource compiler or editing tool. It is merely a function library and set of data
structure definitions. Although written in C, XI works easily in C++ programs.

You use XI to create portable applications that display and edit data in a form or spreadsheet-style list. XI
offers a variety of ready-made objects with predefined behaviors that can give an application a higher level
of functionality and more sophisticated look and feel than you can have with XVT alone. Because XI was
built using XVT, both the XI source code and your code written using the XI library will be portable across
all platforms supported by XVT. Of course, you can also take full advantage of any XVT feature.
Therefore, you use XI to expand the number tools you can use to create a portable application using XVT.

In this chapter you will find a description of the application programming environment you will encounter
when building an application with XI, XVT and native tool kits. In addition, we will explore the steps
involved in constructing an XI application using XI and XVT. In the next chapter, you will find an
overview of XI objects, including spreadsheets and forms. There, you will also encounter a discussion of
the events XI objects can generate, and an explanation of the event handler that you will need to write in
order to respond to those events. Together, these chapters will give you a general understanding of the XI
library, and you will be ready to program an XI application using the instructions found in later chapters.

1.2 Layers Upon Layers

When programming an XI application, there will be three or more tool kits underneath your code on each
machine you are supporting. For example, if you are writing an XI application for Microsoft Windows, you
will encounter the XI tool kit for Windows, XVT for Windows and the Windows SDK. These tool kits are
layered, with the “native” tool kit on the bottom of the stack, XVT for that platform on top of the native
tool kit and XI on top of XVT. When we say that a tool kit “sits on top”” of another tool kit, such as XI on
top of XVT, we mean that the tool kit on top uses the functions of the tool kit below it, but not vise-versa.
XI can call XVT functions, but XVT doesn’t use any of the symbols defined by XI. In addition, we often
say that a programmer can “drop down a level” to access the functionality of a tool kit beneath it. Since
your code is on top of all of the tool kits in a layered API, you can access any layer anywhere in your
program.

Look at the following picture for a summary of the tool kits you might encounter. Following the picture is a
description of the functionality provided by each of the layers.

Your Application
XI

XVT/Win, XVT/XM, XVT/Mac
Windows 3.0 SDK, Motif on X, Macintosh Toolbox Database

Figure I - Layers upon layers

1.2.1 XI

As you will see in later chapters, an XI application is composed of XI interfaces which contain XI objects.
The objects are the spreadsheets, forms, edit fields, buttons, lines, and rectangles found in an XI interface.
An XI interface is XI's object that contains information for a specific window. There is a one to one
correspondence between XVT Windows and XI interfaces. To define an interface, you will be using certain
XI functions. Other XI functions contain all of the functionality you need to write a XI application. You
will encounter these functions when you are instantiating and manipulating the objects you’ve created. For
more information on XI objects and interfaces, see the next chapter, An XI Interface. For more information
on functions to manipulate objects see Using XI Objects . For more information on defining and creating an
interface, see Defining and Creating an Interface.

1.2.2 XVT

The purpose of XVT is to provide portability. XVT’s job is to unify the separate platforms under one
programming interface. Because XI was written using the XVT functions and data structures, it achieves its
portability as a direct result of using XVT. In addition, you may want to use the functionality provided by
XVT. For example, you may want to have menus and modal dialog boxes or pie charts and graphs drawn
with XVT drawing primitives. These are provided at the XVT level. It is important to remember that XVT
forms a substrate upon which XI is built and your applications will be built using both layers. When
creating more sophisticated applications, you will need to know how to program using parts of XVT.

1.2.3 The Native System

In general, programming within the native tool kit means that your code will be non-portable. However,
there are times when programming with only XI and XVT is insufficient because you need more specific
control over a platform than the portability layers are able to provide. If this is the case, then you’ll need to
read the documentation in the section titled I/nstalling and Using XVT, which comes with the XVT tool kit.
There is a separate section for each XVT platform.

The Installing and Using XVT sections will explain how to get a hold of the events and call the native tool
kit functions that are necessary to perform low level programming in the native tool kit. Once again, it is
recommended that you avoid this if possible, because you will loose the portability benefits of XVT.

If you must program in the native tool kit, we recommend that you get the complete set of references for
that particular platform.

1.3 Constructing an XI Application

In the remaining half of this chapter, we will outline the steps you’ll need to take when constructing an XI
application. By “XI application” we mean an application which uses XI to create a spreadsheet, form, or
other objects in a XVT window. It is possible that this form or spreadsheet is only a small portion of your
application, but the term is helpful when discussing the environment you’ll be programming in for the
portion that uses XI. Keep in mind that XI never precludes your application from using XVT calls. For
example, your application may draw other graphics in the same window containing an XI object. When
manipulating XI objects, your application would use XI functions. However, when drawing graphics your
application would call XVT directly.

When constructing an application using XI, you will need to supply some XVT code in addition to the code
you write with XI. The following picture summarizes what kinds of things you will need to provide at the
XVT layer and what kinds of things are provided at the XI layer.

File Edit Yiew 3Select Colors Background Justification Font

- ks - Menus are provided by XVT
Mir Description In L \

1000 |'widget \\/ Windows are provided by XVT
1001 JGadget
1002 | Socket
1003 |Bauble
1004 |Sprocket
10048 |Widget 2
1006 |Gadget 2

1007 1Socket 2 * Lists are provided by XI
- -

Scrollbars are provided by XVT
(XT creates the scrollbars for lists.)

L

Figure 2 - What is provided by XVT and what is provided by XI

As you can see in the picture above, an X1 application is actually a hybrid application. Some parts of the
application are written using XVT and some parts are written using XI.

1.3.1 XI Programming

As you’ll see in the next chapter, an XVT window can have an XI interface which contains XI objects.
(When using XI, the XI interface is XI's object for the XVT window. An XI interface can be thought of as
the XVT window.) The objects in a window are defined using functions and are instantiated at runtime (as
opposed to being part of a resource file). In addition to defining and creating an interface, you will need to
write event handlers to process the events generated by the operation of the interface. Using XI functions,
you will manipulate XI objects in response to those events. You may also use XI’s application data for
objects and XI’s tree memory management.

1.3.2 XVT Programming

To create any application with XI, you will need to do some XVT programming. As with any XVT
programming effort, it is important to go back and forth between the hardware platforms you’ll be
supporting. Follow the rule, “port early and often.”

For the most basic application using XI, you will need to do several things in XVT. These are explained in
detail in Creating an Interface, but for now, here is a summary of what you’ll need to do:

l. Include xi.h instead of xvt.h in your C module.
2. Write a main function.
3. Write a task window event handler. In this function you will need to place a call to xi_init which

tells XI to initialize itself.

All of the XI examples use at least the three elements of XVT programming detailed above. Some
examples use more elaborate approaches. Several approaches are explained in Creating an Interface.

1.4 Summary

After reading this brief introduction to the XI programming environment, you are ready to start writing an
application with XI. You learned that XI is layered on the top of other tool kits, and that you can program to
any layer. Of course, you will need to install XI, XVT, the native tool kit and an appropriate ‘C’ compiler
for each platform you are supporting — not an easy task on some systems.

In the next chapter, An X7 Interface, we will look more closely at an XI interface and its event handler.

An XI Interface

This chapter defines what an XI interface is and describes the objects an XI interface can contain. In the
description of XI objects, you will see how XI objects are similar and different from objects in the object-
oriented sense. After encountering the discussion of XI interfaces and objects, you will learn that XI is
event-driven since it “sits on top” of XVT and responds to XVT events. In addition, XI generates its own
events to which you will need to respond in an event handler function.

An Xl interface is a window containing any number of user interface objects. Most XI objects are operable
by the user and will invoke some action in the application. (Some XI objects are display-only.) Together the
objects inside the interface behave in a coherent fashion to achieve the objectives of the program. You can
think of these objects as analogous to controls in the XVT parlance or widgets in the vocabulary of some
native tool kits. For an overview of the kinds of objects an XI interface can hold, all types of XI objects are
found in the following picture.

Combination Interface ;
Interface | e —— Field
. L l— . L+~ object
object vendor Numbet. 20201 | | \ Name_::|UnltedAppl|ance /|:/ onJee
Invgice Murmbet: 44232 T L m— Button
== I Add "
A e : ! | object
StE.ItIC fext /{ iption: 1 [Conduit and fitti for Job 910201 ! :
object escription: | | onduit and fittings for Jo || || Cancel |\
_ e I — I Butt
Rectangle Invoice Déate: : 0314591 : \ ! \anfarilner
object : |N‘3t3':I | : object
0. Mumber: : 201-129 I L
/] : I ~Line
Group Sales Tax%: | i object
object Total Due: | 7234.27 |
——— — — — — — — == == = I~
Mbr|ltern Description GIuantity Price| Units| Extension|® Fom
Lti)ét 1|EMT200 [EMT 2" Conduit 120,00 89.42] 100 object
object 2[EMT300 __ [EMT 3" Conduit 96.00 25453 100
cell AEMT400 [EWT 4" Condu 1400 56588) 100
seudo-~ | F—4+====—— ;
Ebject 4|EMTSOO EMT 5" Conduit EEI.I:IEI: Gav.ea) 100
| _ 3|EMTZ00ELL |EMT 2780 Elbaw_ _| _ _ _ 400 _ _F23.75) _ 100
|
Row I G|EMTI00ELL [EMT 3" 90 Elbow E.I:II:I: IMGT.E3 : 100
pseudo- ™ 7[EMT4ODELL [EMT4"B0Elhow | 6.00) 5876.88) 100
object H—r—0D—00———————————"————"—"—"—"——= Column
object
Total: 4173.54

Figure 3 - Example of an XI Interface

XI InterfaceAs you can see, an XI interface can hold any number of XI objects such as forms, lists,
containers and groups. These objects might in turn hold other XI interface objects such as edit fields,
columns and buttons. (Edit fields are called edit controls in MS-Windows.) In this sense, the XI object
structure is hierarchical with the interface at the top of the tree, composite objects such as forms, lists,
containers and groups on the next level, and edit fields, columns and buttons on the lowest level. In the
following diagram, you will see an example tree showing how XI interface objects are related to one
another. Imagine that this tree corresponds to an interface that has a form with one edit field, one line of
descriptive text, a list with one column and one row, a group (of either edit fields or columns), a rectangle, a
line, and a container with one button. In the real world this interface would not be a very practical, but it is
useful for illustrating the parent-child relationships between XI objects. When we describe XI objects in
more detail in the next section, keep this diagram in mind. Note that buttons can be direct children of an
interface if you do not wish to put them in a container.

Interface

| Form | | Static Text | | List | | Group | | Container | | Rectangle | | Line
| Field | | Column | | Button |
| Row | | Cell |

Figure 4 - Types of Objects in an XI Interface

2.1 Summary of XI Objects

When you look at the diagram "Types of Objects in an XI Interface", you can see the relationships XI
objects have to one another. Every XI object must be created within an interface object, and therefore each
XI object must have an interface as one of its ancestors. This makes sense from the user’s point of view
because whenever you create a control, you must have a window to put it in. You can also see that lists,
forms, groups, containers, buttons, rectangles, lines, and static text are children of the interface while edit
fields, buttons and columns are grandchildren. The XI objects in the object hierarchy that are children of
the interface object are summarized following this paragraph. Since list, form and container objects have
children of their own, we call them composite objects. Columns are children of lists, edit fields are children
of forms, and buttons are children of containers:

Lists: XI’s spreadsheet-style lists can be scrolled by the user and the user can edit each cell
in the spreadsheet if your application permits it. In an XI list, columns are the only
child objects of the list. Cells and rows are “pseudo-objects” because they are not
actually instantiated when the interface is created. Nevertheless, you can treat them
like real objects and “use” them to get and set text, get and set attributes, set focus,
and so on.

Forms: Forms contain any number of edit fields that can be edited. Edit fields are child
objects of forms. (Edit fields are like edit controls in MS-Windows.)

Containers: Containers serve to arrange buttons. You can either stack buttons on top of one
another, or arrange them end to end. Buttons can also be arranged in a grid. Buttons
are child objects of containers. In addition, if a container contains radio buttons, the
container serves to group the radio buttons together so that only one will be checked
at a time. Buttons can also be children of the interface.

Groups: You can have groups of edit fields or columns. In XI, groups are there to make it
easier to validate data entry for associated edit fields or columns. Groups have no
appearance in the window. To group controls visually, use XI rectangle controls.

Static Text: Static text is used to label objects on the interface.
Rectangles: Rectangles are used to visually group objects on the interface.
Lines: Lines are used to visually separate objects on the interface.

2.1.1 Objects

From the previous description of interfaces and the objects they can contain, you saw what objects look like
and have some ideas about what they do. We’ll talk more about the look and feel of XI objects in later
chapters, but in this section, we want to compare XI objects to those found in object-oriented programming

environments. This section is written mainly for those who are familiar with object-oriented programming

to help you understand how XI objects are similar to and different from the objects you are used to. If you

are not familiar with this style of programming, the following discussion may still be of some value to you
as there are some properties of XI that are object-oriented.

We will begin this section with a brief description of the essential properties of objects in the object-
oriented sense. These properties are encapsulation, inheritance, instances and identity. Following this, we
will explain how XI objects share some of these properties and not others.

2.1.1.1 Object-Oriented Programming Concepts

Encapsulation: Very briefly, object-oriented programmers say that an object is a software “package”
that contains its own private data and the appropriate code (or methods) for
managing the behavior of the object. Through a programming technique called
“encapsulation”, the object’s data is accessible only through the methods bound with
it.

Instances: An object is made by creating an “instance” of a class (its type), or “instantiating” it.
Memory is allocated for the corresponding data structures found in the class
definition, and all of the values in the data structures are initialized to their default
values. In addition, a pointer or handle to the class definition and a unique object
identifier may be stored in the instantiated object.

Inheritance: The class or type of an object may be derived from a previously defined class using
“inheritance”. This allows for a hierarchy of classes which build from simpler to
more complex definitions of data and methods. Each class inherits the data and
methods of the class it is derived from, but may add or enhance that class definition.

Identity: Every instantiated object has a unique handle or pointer associated with it that
distinguishes one instantiated object from another.

2.1.1.2 A Comparison of XI to Object-Oriented
Programming

XI objects share some of the above concepts but not others. XI objects do have their own private data and
methods that operate on that data, but the methods are not bound with the data. As you’ve seen before, XI
objects are members of an object hierarchy, but that hierarchy is not a class hierarchy, it is a hierarchy of
instantiated objects. XI children objects cannot inherit their parent’s attributes.

As in true object-oriented programming, XI objects are instantiated from a description of the object.
However, this description is not a class. Instead, an XI object is instantiated from an object definition
structure. The objects have a type field that determines which methods (functions) are valid and how they
will work for that object.

Like the objects in object-oriented programming, XI objects also have unique identity. This identity is of
the form of a pointer to an object, and this pointer can be used by all of the XI functions that can
manipulate the object. For example, X1 has a function called xi_set_text, which will set the text of an
object. Depending on the type of object it is passed, xi_set_text will know to set the title of the window if
the object is an interface or set the heading text of a column if it is a column. In this way, XI has a “regular”
and “orthogonal” programming interface since you can pass an pointer to a function and the function
knows what methods to use based on the type of object it encounters.

2.1.2 Events

eventsLike every GUI programming environment, XI uses events to communicate with the application. A
GUI tool kit will send an event to the application for one of two reasons: either to inform the application

that the user has manipulated a user-interface object, or to ask the application for more information. To
illustrate, let’s compare two kinds of events an XI application might receive concerning a list object. Let’s
suppose that an application just created a list. In order to draw the list, XI must send the application
XIE_CELL_REQUEST events requesting it to supply the text to be displayed in the cells of the list. This
is an example of an event asking for information. In contrast, let’s suppose that the cursor is in the cell of
the list and the user presses the down arrow key. To notify the application of this action, XI will send it an
XIE_OFF_CELL event to give the application a chance to check to see if the contents of the cell represent
valid data. This is an example of an event informing the application of the user’s action. Keep in mind that
upon receiving an event, the application doesn’t have to respond. It can ignore or refuse it.

2.1.2.1 Event Flow

As you saw in the introduction, an XI application is built on top of several layers of other tool kits. Recall
that underneath everything is the underlying window system and tool kit such as Microsoft Windows, or the
X window system with Motif. We call this layer the “native tool kit”. Built on top of the native tool kit is
XVT, on top of XVT is XI, and on top of everything is your application.

When an event is generated it usually originates down at the lowest level (we say usually because it is not
always the case). Thus, if the user clicks the mouse, the native window system will send an event to XVT
notifying it that the mouse was clicked. XVT will then translate that into a portable mouse click, and pass
the event on to the next layer which is XI. XI will receive the portable mouse click, process it, and perhaps
route it to an object that will interpret it to mean that the user has manipulated the object in some way. After
deciphering the event, XI may generate one or more higher-level events that it passes on to the application.
In the following illustration, you will see the flow of events for a mouse click on a cell in an XI list when
the user is moving to a new location in the spreadsheet.

Microsoft
Windows

The user pressed the

WM BUTTON1 DOWN
_BUTTONL_DO left mouse button.

XVT portable mouse

E MOUSE DOWN
- - event

XIE_OFF_CELL The user is moving
XIE_ON_CELL focus to a new cell.

Your
Application

Figure 5 - Events Generated in Response to a Mouse Click on a Cell

As you can see in the event flow diagram, the difference between the events received by XI and those of
most GUI tool kits is that XI events are higher-level. By higher-level we mean that the events can provide
more information about what the user is doing, or what the application needs to do next. For example, XI
might send an event asking the application to supply text for several data records or to inform it that the
cursor has moved to another cell in a column. In contrast, Microsoft Windows might send an event (in
Windows, they are called messages) requesting the maximum dimensions of a window or to indicate that

10

the mouse has moved. The concepts are the same. In both cases, an application is being notified of an
action by the user or is being asked to supply information. The difference lies in the amount of information
the application can receive or needs to give.

2.1.3 XI Event Handler

XI notifies the application of events by calling a special function supplied by the application called an event
handler function. Each XI interface has an event handler function that handles the events generated
whenever any object inside the interface is being manipulated by the user, or needs information from the
application. Whenever an event occurs, the event handler function corresponding to the affected interface is
called. An event structure is passed to the event handler. This structure tells the event handler that the event
has happened and informs it of what action needs to be taken by the application to respond to the event.

An application can have more than one event handler. In particular, it can have one event handler for each
instance of an interface. For example, you could instantiate an interface twice using the same objects,
except associate a different event handler with each instance. On the other hand, you may have one event
handler for all of the interfaces and use application data to differentiate them. As you might suspect, an XI
application will spend most of its time responding to events in event handlers, and therefore, the majority of
your time spent writing the XI portion of your application will be spent coding event handlers. For help
with writing event handlers, look in X7 Events and Using XI Objects found later in this guide.

It is important to note that there is one and only one event handler per interface. If you want event handlers
for each object, you will need to use the application data for the objects to hold that event handler pointer
and then write the code to “dispatch” the events from the event handler for the interface. event handler per
object

2.2 Summary

In this chapter, you saw what an XI interface looks like and have some idea about the kinds of objects it can
contain. You also saw the mechanism by which these objects generate events. In the next chapter, we will
examine in detail the mechanism of creating an XI interface.

11

Creating an Object

Definition Tree

In XI, before you can instantiate an interface, you must define an object definition tree. This tree of
structures tells XI what objects to create and how they relate to one another. The focus of this chapter is
constructing an interface hierarchy to conceptualize how the objects in an interface are related and then
using certain functions to define the interface. When you have finished defining an interface, you will have
an object definition tree. After taking an overview of the object definition tree, we will look at the options
available when creating each specific type of object in the tree.

It is useful at this point to understand the process and mechanism of creating XI objects. When creating an
Xl interface, first you will create a tree of structures that define the objects for the entire XI interface.
Remember that the XI interface is analogous to an XVT window that contains XVT controls. After creating
these structures, you will call xi_createxi_create to actually create the XI interface and its contained XI
objects. Instantiating the tree of objects by calling xi_create is the topic of the chapter, Creating an XI
Interface.

Note: The object definitions can be used to add more objects to an interface after it has been initially
created. However, it is most common to define all of the objects before creating the interface.

Creating the tree of structures that define an XI interface is moderately complicated, so we created the XI
convenience functionsconvenience functions. These convenience functions take arguments that:

e define the look and feel of an object
e setits control ID
* initialize pointers to parent or children definitions

e set dimensions

12

e define its place in the tabbing sequence
» allocate the space for the object definition and insert it into the hierarchy

Every XI object has a control ID. A control ID is a unique integer by you. Control IDs have the same
purpose as the control IDs used in the XVT tool kit. We will explain more about control IDs later.

Convenience functions do not set all fields in the structures that define an object. Only the most basic
information is passed as parameters to the convenience functions. However, convenience functions always
use memory that has been allocated and cleared. (When the memory is cleared, all bytes are set to zero.)
After calling the convenience functions, it is possible to set fields that were not set by the convenience
functions. In this fashion, we have created a completely extensible programming interface. If we wish to
add a new feature to XI, we can add a field to the object definition structure. When we do this, if the field is
cleared (sometimes we say that the field contains zero bytes), then we give the object the same behavior
that it always had. Therefore, we can add features to XI without impacting your existing code.

Another way to think about it is that the most common information is conveyed to XI via parameters to the
convenience function. To set advanced parameters, you set fields in the object definition structure returned
by the convenience function.

The following code shows an example of calling a convenience function, then setting a field in the object
definition structure after the call to the convenience function:

XI _OBJ_DEF* bt ndef;

bt ndef = xi _add_button_def (cntrdef, DELETE ALL CI D, NULL,
XI _ATR_ENABLED | XI _ATR VI Sl BLE,
"Delete All Recs", ADD ONE CID);
bt ndef ->v. bt n->fore_col or = COLOR_RED;

3.1 Designing an Interface Hierarchy

When using XI for the first time, it is helpful to draw a picture representing how the objects that you will be
defining and instantiating are related to one another. In XI, it is essential to know which objects are parents
and children of other objects so that when you define the object definition tree, you will know which
convenience functions to call and what to pass them. In the following picture you will see a representation
of the relationships of XI objects to one another.

Container

|Edit Field| |Edit Field| |Edit Field| ~ |Button | |Button |

Figure 6 - Interface Diagram
3.2 Using the Convenience Functions

As we mentioned, the XI convenience functions are there to help you define the structures needed to
describe XI objects and to build XI interfaces. In particular, these convenience functions will manage
allocating memory for the definition tree and will fill in the fields of the structures needed to create an
object definition hierarchy. The result of using the convenience functions is that you will have a pointer to
an object definition hierarchy which you will pass to xi_createxi_create to instantiate the objects defined.
The steps you’ll need to take to build an object definition tree using the convenience functions are outlined
below.

13

To define an object definition tree, you start at the top, defining objects as you descend down the tree.
Therefore, the first step is always defining the interface object by calling
xi_create itf defxi_create_itf def with the appropriate parameters. xi_create_itf_def will create two
structures that together define an interface. The structures it creates are an XI object definition
(XI_OBJ_DEFXI_OBJ_DEF) and an interface definition (XI_ITF_DEFXI ITF_DEF) as show below.
xi_create_itf def returns a pointer to the XI_OBJ_DEF for the interface.

[X1_OBJ_DEF |@|@1—XI ITF_DEF|

Figure 7 - Interface Definition
When you use convenience functions other than xi_create_itf def, you will be attaching objects to an
existing interface tree, or “adding” them. These functions are called to define the children or grandchildren
of an interface definition, and require you to pass in a reference to the parent of the definition that you are
adding. (Note: If you do not pass a parent, then you will need to pass the appropriate parent object to
xi_create. This will add the object to an existing interface.) The convenience functions will add the object
definition to the array of children objects of the parent. For example, if you are adding a list definition to an
interface definition you would call xi_add_list defxi_add_list_def, passing it the XI_OBJ_DEF you got
when xi_create_itf def returned. xi_add_list_def will create an XI_OBJ_DEF and
XI_LIST DEFXI_LIST_DEF as a child of the interface definition as shown below.

XI_OBJ_DEF |@ | @{—>XI_ITF_DEF

[X1_OBJ_DEF |@|@1—XI_LIST DEF

Figure 8 - Adding a List Definition
As you can see in the picture above, an XI_OBJ_DEF is created for each object definition. This is because
it is the generic structure we use to store information common to all objects and keep track of relationships
between them. Unique information is stored in a structure specific to an object. This is why you pass an
XI_OBJ_DEF to the convenience functions and not an XI_ITF_DEF or an XI_LIST_DEF.

In addition to lists, you can place groups, containers, buttons, forms, rectangles, lines, and static text
directly below an interface. Of the objects that can have an interface as a parent, containers, forms and lists
will contain other objects. As you saw before, to add a list to an interface, you use the function
xi_add_list_def. To add the other definitions, you use the functions xi_add_group defxi_add_group_def,
xi_add container defxi_add_container_def, xi_add form defxi_add_form_def,

xi_add rect defxi_add_rect_def, xi_add line defxi_add_line_def, and xi_add text defxi_add_text def.
Each of these functions returns an XI_OBJ_DEF. For containers, forms and lists, this XI_OBJ_DEF will
be passed to the convenience functions used to define their children.

Here is some sample code that creates an object definiton tree containing a list with two columns and a
container with two buttons. A diagram of the resulting object definitions follows this code.

XI _OBJ_DEF* itf_def;

Xl _| TF_DEF* itf_def _detail;
Xl _OBJ_DEF* l'i st_def;

XI _LI ST_DEF* list_def _detail;

Xl _OBJ_DEF* col umm_def ;

XI _COLUWN _DEF* col um_def detail;
Xl _OBJ_DEF* cont ai ner _def;

Xl _0BJ* itf;

Xl _RCT rct;

itf _def = xi _create_itf_def(ITF_CI D, (Xl _EVENT HANDLER)Iist_eh, NULL,
" Show Col ums", OL);

14

itf _def detail = itf_def->v.itf;
itf_def deta|I->autonat|c back color = TRUE;
i tf_def _detail ->nodal TRUE;
itf_def _detail->use mhltespace = TRUE;
itf_def _detail->whitespace_right = 0;
itf_def _detail->whitespace_bottom =
(int)xi_get_pref(XI_PREF_|TF_ W5 BOTTOM);

list def = xi_add list _def(itf _def, LIST.CD 0, 0, 8 *
X FU NULTIPLE
XI _ATR_ENABLED | XI _ATR VI SIBLE
| XI _ATR TABWRAP, COLOR BLACK, COLOR WHI TE,
COLOR BLACK, COLOR WMHI TE,
COLOR BLACK, ADD BTN Cl D);
list _def detail = Ilist_def->v.list;
list _def detail->scroll _bar = TRUE

col unmm_def = xi _add_col um_def (|ist_def, SELECT _COL_I D,
X ATR SELECTABLE 1,
6 * XI_FU MILTI PLE, 1 " Show');
#if THREE_DI MENSIONAL !'= 0
col unm_def detail = col um_def->v. col um;
col urm_def deta|I->head|ng platform = TRUE
col utm_def _det ai | - >col um_pl at f orm = TRUE;
#endi f

col unm_def = xi _add_col um_def (list_def, NAME COL_ID,
X ATR SELECTABLE 2 20 *
XI _FU MULTI PLE, 20, "Description");
col um_def _detail = col unm_def->v. col umn;
#i f THREE DI MENSIONAL !'= 0
col utm_def _det ai | - >headi ng_pl at f orm = TRUE;
#endi f
col unm_def detail ->center_headi ng = TRUE;

rct.top = 9 * XI_FU MILTI PLE;
rct.left = 4 * XI_FU MILTIPLE;
rct.bottom= 11 * Xl _FU MILTI PLE;
rct.right = 22 * XI_FU MILTIPLE;
cont ai ner _def = xi _add_cont ai ner _def (itf_def, CONTAINER CID, &rct,
X STACK HORI ZONTAL, LI ST_ aD);

Xi _add_but ton_def (contai ner_def, ADD BTN CI D, NULL,
Xl _ATR_ ENABLED | XI_ATR VI SI BLE, " Show"
CANCEL_BTN CI D);

xi _add_but t on_def (cont ai ner _def, CANCEL_BTN ClI D, NULL,
Xl _ATR_ ENABLED | XI_ATR_VI SI BLE, "Cancel "
LIST CdD);

XI_OBJ_DEF |@ | @1—{XI_ITF_DEF|

E.E »XI_OBJ_DEF |@®|@]—XI_CONTAINER DEF

[X1_oBJ_DEF |@]@}—{X1_LIST DEF (@]®]

]o]

|
Ix1_oBJ_DEF [X| @}—X1_COLUMN_DEF| | [x1_0BJ_DEF [X| @}—XI_BTN_DEF |
&1 o1 _DEF [X]@}—fx1_coLUMN DEF| [XI_0BJ_DEF [X]@}—{XI_BTN_DEF|

Figure 9 - Example Object Definition Tree

Characteristics of XI

Objects

In Chapter 2, we gave a conceptual overview of an XI interface and the objects contained in it. In addition,
you saw how XI events are generated and learned about the event handlers you’ll need to write in order to
respond to the events. In Chapter 3, you saw how XI expects you to create an XI interface definition tree.

In contrast, the focus of this chapter is the variety of options available for each type of XI object. Here, we
will describe many of the possible appearances and behaviors each XI object can have. (For a complete list
of the options for an object, see the XI Programmer's Reference.) After reading this chapter you will know
many of the options you have for specifying object characteristics.

In addition to the descriptions of the look and feel of each type of object, this chapter provides code
examples demonstrating the use of the features of XI. In some cases, portions of the programming
examples contain information that is not properly introduced until later chapters. However, after you have
familiarized yourself with XI programming, it is much more convenient to have the example of how to
code a particular feature next to the description of the feature. The first time you read this chapter, you
might wish to read it concentrating on the features available, and skip over the coding details. After you
have read the following chapters, then you can then refer back to this chapter to examine the code more
carefully.

As mentioned in previous chapters, the first thing you must do when programming with XI is create an
object definition tree for the interface you want to instantiate. Each of these objects has a variety of
parameters that are passed to the convenience functions. Also, there are a large number of other options that
can be set for an object definition after it has been created by the convenience function.

When you are creating an interface, you will need to ask yourself these questions:

1. What objects do I want?

16

2. Where will each object appear in the interface (window)?
3. What other characteristics will each object have?
After reading this chapter, you will have a good idea about the possible answers to these questions.

To help you answer the second question, we will describe the coordinate system that XTI uses.

4.1 Coordinate System

In XI, whenever you specify how big you want an object to be and where you want it placed on the screen,
you do so in terms of “form units”. Form units are abstract units of measure that are related to the natural
height and width of XI objects drawn on the native platform. In particular, the height of eight "form units"
is equal to the height of an edit field, based on the font for the interface, plus an appropriate amount of
white space above and below the edit field. The width of eight “form units” is the width of an average
character, based on the font for the interface.

The following picture shows a comparison of pixels and form units for a sample edit field. This is a
“zoomed in” view of an XI interface with a pixel grid overlaid on it.

20 pixels = 8 form

6 * 8 form units = 54 pixels 111

8 form units = 9 pixels o

Figure 10 - Comparing Form Units and Pixels
As you can see, there is not an even number of pixels per form units. However, there is always an even
number of pixels for each § form units.

The size of form units may vary greatly from system to system. For example, under windows, a normal font
may be 15 pixels for each 8 form units. On a screen that is 480 pixels tall, this allows a maximum of 256
form units. On a character system, with 25 lines, each line is 8 form units, so the maximum is 200 form
units.

The variation in font sizes can be a problem if you are using a pixel based coordinate system as opposed to
a more abstract one like XI uses. Thus, the main reason XI uses form units as the basis of its coordinate
system is greater portability of XI interfaces across systems, as you’ll see in the following discussion.

17

4.1.1 Form Units -vs- Pixels

Most developers creating GUI applications are accustomed to using a pixel-based coordinate system to
specify the size, shape and location of the objects they want to draw on the screen. For example, in XVT,
you use a universal pixel-based coordinate system to describe where you want an object drawn. From these
universal coordinates, XVT figures out which pixels to turn on and off on each native system.

While the precision of a pixel coordinate system is necessary for applications like drawing programs that
need to display ovals and Bézier curves, when programming applications that need to layout edit fields,
push buttons, radio buttons, check boxes, and multi-column lists, it is more convenient to use an abstract
coordinate system that is described in terms of the natural size of the objects you’ll be drawing. In addition,
when you use a pixel-based coordinate system such as XVT, you can run into several problems porting
your application to another platform. This is mainly due to platform differences in the number of pixels
they use to draw native objects (such as buttons and edit fields). For example, on the Mac, an edit field
might be 14 pixels high; on Motif, it might be 18; and on Windows, it might be 20. If you used pixels to
describe the placement of objects, it would be difficult to predict what your application will look like on
another system where the natural sizes of objects are different.

In XI, when you use form units for placing objects such as edit fields, you can imagine a grid where the
height of the rows is the height of an edit field and the width of the columns is the width of a character.
Then, when you specify that an edit field be placed on the second row (16 form units) down and the third
column (24 form units) over, the edit field will be placed in an appropriate location on any of the XVT
platforms.

For example, in XVT/CH, the edit field will be placed on the second line and third character from the left
of the window. In Microsoft windows, the edit field will be placed in such a way that when you create
another edit field on the third row and the third column over, the edit fields will be spaced an appropriate
vertical distance from each other, and the left border of the two edit fields will line up.

In addition, using form units to specify the size and location of objects on the screen is more convenient
than using a pixel-based system. When arranging edit fields on the screen, you can simply space them out
by eight form units vertically, and the user interface would have the correct appearance on any of the
systems supported by XI.

Perhaps you may wonder why you would want to use anything other than a multiple of eight form units.
This allows for finer positioning without losing the advantages of a form unit coordinate system. However,
if you plan on porting your application to XVT/CH, always use form units in multiples of eight.

4.2 Control IDs

As we mentioned, every XI object has a unique control ID. Control IDs are unique integers defined in
header or C files that you write. Here is an example of definitions of control IDs from “Istdb.c”:

/* Control IDs for the enployee list */
#define ITF.CID 1
#define LIST_CID 2
#def i ne CONTAI NER
#def i ne ADD_BTN_Cl
#defi ne CHG BTN_ClI
#defi ne DEL_BTN Cl
#define COL_BASE _CI D 100

Control IDs only need to be unique within each interface.

4.3 XI Attributes

One parameter of the convenience functions that controls many of an object’s behavior and appearance is
the attribute parameter. The attribute parameter consists of one or more constants, bitwise OR'ed together.
For example, the attribute parameter would be passed as XI_ATR_ENABLED | XI_ATR_VISIBLE to
make a control visible and enabled. If you want to change the attributes of an object after it has been

18

created, you can get them by calling xi_get attribxi_get attrib, and you can set them using
xi_set_attribxi_set_attrib. An object’s attributes are a very important factor in determining how the object
will appear on the screen, though there are many other options that are set in other ways.

XIT ITF4.4 Interface Objects

When you instantiate an XI interface, you can allow XI to create an XVT window that will be used to hold
the objects in the interface. As with all XVT windows, the look and feel of the window is determined by the
look and feel of the native platform. For example, on the X platforms, each top-level window will have its
own menu bar, but on Microsoft Windows, the same XVT code will create windows that are nested inside a
“task window” and the windows share a menu bar. Because most of the look and feel of a window is
determined by the native platform, you cannot change how the window itself will be drawn. However, there
are some options you can set for a window when defining an XI interface. Some of the characteristics of an
interface are described below.

4.4.1 Modal Interfaces

If you make the XI interface modal, then the interface must be dismissed before any other user interaction
can take place. XI supports two modal interface modals.

With the modal_wait interface, supported with XVT 4.5x only, the call to xi_create does not return until
the interface has been dismissed.

The programming model for modal interfaces in XI is identical to the programming model for non-modal
interfaces. The call to xi_createxi_create returns immediately, and the XI event handler is called as normal.
The only difference is in the look and feel of the application.

The following code, from “Istdb.c”, demonstrates setting the modal flag in the interface definition:
Xl _OBJ_DEF* itfdef;

itfdef = xi_create_itf_def(ITF_CID, (X _EVENT_HANDLER)form eh, NULL,
"Del ete Enpl oyee", OL);

itfdef->v.itf->automatic_back _col or = TRUE;

itfdef->v.itf->npdal = TRUE;

This demonstrates the type of extensible option that we mentioned at the beginning of Chapter 3, where we
first call a convenience function, then we set a field in the returned XI_OBJ_DEF. As we mentioned in
Chapter 3, the basic information and options for an object are specified in the convenience functions. When
setting optional, advanced characteristics of objects, XI uses the style above. In this case, if you left out the
line where you are setting itfdef->v.itf->modal to TRUE, the default behavior would apply and the
interface would not be modal.

4.4.2 Virtual Interfaces

Your application can specify that an XI interface is “virtual.” By this, we mean that the interface can be
larger than the XVT window containing the interface. The user can “pan” across the interface by operating
the horizontal and vertical scroll bars. In addition, as the user navigates from control to control, the
interface is panned to show the control that has the focus.

19

Vendor Maintenance

|C|:|nduit and fittings for Job 910201

| o
-

[Met 30 |
:
| -

Figure 11 - A Virtual Interface
When specifying that an interface is virtual, the application must place horizontal and vertical scroll bars on
the XVT window containing the interface. Failure to do this will result in internal errors when XI attempts
to set the position of the elevators of the scroll bars.

An application specifies that an interface is virtual by setting the field itf_def->v.itf->virtual_itf to TRUE
after calling xi_create_itf def.

The following is an example of code to create an interface definition where the window has horizontal and
vertical scroll bars, and the interface is virtual:

XI _OBJ_DEF* itfdef;

itfdef = xi_create_itf_def(ITF_CID, (X _EVENT_HANDLER)form eh, NULL,
"Vendor Mai ntenance", OL);

itfdef->v.itf->auto_back col or = TRUE;

itfdef->v.itf->ctl _size = TRUE

itfdef->v.itf->ctl _hscroll = TRUE
itfdef->v.itf->ctl _vscroll = TRUE
itfdef->v.itf->virtual itf = TRUE

You can, of course, create your own window, and place an XI interface in the window. If you do this, it is
not necessary to set ctl_hscroll and ctl_vscroll values to TRUE. These fields are ignored if your
application creates a window before calling xi_createxi_create. However, if you create your own window,
and if you specify that the interface is virtual, don’t forget to create horizontal and vertical scroll bars on
your window.

If you place XVT controls other than those supported by XI in a virtual XI interface, XI will not know
about these controls, and will not move them appropirately as the user pans over the virtual interface.
However, your application can respond to the XIE_VIR_PAN event, and move controls as necessary.

When you create a virtual interface, XI starts using a virtual coordinate system for its own internal drawing.
If you need to draw other figures and graphics in an XI window that contains a virtual interface, you can
use the XI drawing functions. These functions do the appropriate coordinate conversions automatically.
Their prototypes are in XI.H. If you need to use other XVT drawing functions, you can determine the
current delta between the physical coordinate system and the virtual coordinate system in the following
fashion:

¢ Define XI INTERNALXI INTERNAL before including XI.H. This will allow your application to get
at the internals of XI_OBJs.

e Use the following fields in an interface XI_OBJ: xi_obj->v.itf->delta_x, and
xi_obj->v.itf->delta_y. Subtract these values from your x and y coordinates before drawing.

20

4.4.3 Putting XI Interfaces in Existing Windows

To put the interface into the existing window, set the win field in the XI_ITF_DEF structure, after calling
xi_create_itf def.

The following code fragment, from “Istdb.c”, demonstrates how to use this method to set different XVT
flags on the window.

{
RCT r;

Xi _get _def _rect(itfdef, &);
xvt_rect_offset(&, (short)xi_get_pref(XI_PREF ITF_M N _LEFT),
(short)xi _get pref(XI_PREF ITF MN TOP));
itfdef->v.itf->win = xvt_win_create(WDCC, &r, "Enployee List",
MENU_BAR RI D, TASK W N,
WSF_SI ZE | WBF_CLCSE
| WBF_| CONIl ZABLE, EM ALL,
(EVENT_HANDLER) xi _event, OL);

}
Xi _create(NULL, itfdef);

When you create your own window, the values in the interface definition that are used to create the window
are ignored. These members are title, ctl_size, ctl_vscroll, ctl_hscroll, ctl_close, retp and menu_bar_rid.
Also, you cannot create your own window if the interface is modal.

4.4.4 Background Color

Your application can specify that a background color be drawn automatically for a window that contains an
Xl interface. You specify the color by setting the back_color value after calling xi_create_itf def.

An advantage of letting XI draw the background color is that XI can optimize the drawing of spreadsheets,
and not draw the background color underneath the spreadsheet. This results in less flicker when the user
scrolls the list horizontally and vertically.

The following code is an example of setting the background color for an interface.
Xl _OBJ_DEF* itfdef;

itfdef = xi_create_itf_def(ITF_CID, (X _EVENT_HANDLER)form eh, NULL,
"Vendor Mai ntenance", OL);
itfdef->v.itf->back _col or = COLOR_LTGRAY;

The appropriate background color can change when you go from platform to platform. For instance, the
best background color on MS-Windows is light gray. The best background color for XVT/CH 2.1 is white,
while the best background color for XVT/CH 3.0 is black.

You can set a BOOLEAN field, automatic _back colorautomatic_back_color, for the interface, such that
XI will pick the best background color for you based on the platform.

The following code, from “Istdb.c”, demonstrates setting automatic_back_color after calling
xi_create_itf def:

XI _OBJ_DEF* itfdef;

itfdef = xi _create_itf_def(ITF_CID, (X _EVENT_HANDLER)Ii st_eh, NULL,
"Menory List", OL);
itfdef->v.itf->ctl_size = TRUE
itfdef->v.itf->nenu_bar_rid = MENU_MEM LI ST_RI D;
t
t

itfdef->v.itf->automatic_back col or = TRUE;
fdef->v.itf->edit_nmenu = TRUE;

21

4.4.5 Menu Bars on Windows

You can specify the menu bar resource id when creating an XI interface, or provide a valid MENU _ITEM
tree structure. You can create the menu outside of resources, by filling the MENU ITEM structure. You
associate it with the interface, after calling xi_create_itf def, using the menu field.

To provide a menu from resources, after calling xi_create_itf def, set the menu_bar ridmenu_bar_rid
field in the object definition. The following code, from “Istmem.c”, demonstrates this.

XI _OBJ_DEF* itfdef;

itfdef = xi _create_itf_def(ITF_CI D, (X _EVENT_HANDLER)Ii st_eh, NULL,
"Menory List", OL);

itfdef->v.itf->ctl_size = TRUE

itfdef->v.itf->nenu_bar_rid = MENU_MEM LI ST_RI D;

itfdef->v.itf->automatic_back_col or = TRUE;

itfdef->v.itf->edit_nenu = TRUE

Another approach is to create the window yourself, with the menu bar exactly as you want it, then put the
Xl interface into the existing window.

4.4.6 Cutting and Pasting with XI

This section tells how to use the edit menu with an XI application.

For the edit menu to work (Cut, Copy, Paste, Clear/Delete), you need to set the XI_ ATR_EDITMENU
attribute for the appropriate XI objects.

You can only set XI_ATR_EDITMENU for objects of types XIT FIELD, and XIT COLUMN.

If you have an edit menu, and want XI to automatically enable and disable the menu items on the edit menu
as the user operates the application, you need to set a field when you create the interface definition. The
following code, from “Istmem.c”, demonstrates setting the edit menuedit_menu field of the interface
definition structure:

XI _OBJ_DEF* itfdef;

itfdef = xi _create_itf_def(ITF_CID, (X _EVENT_HANDLER)Ii st_eh, NULL,
"Menory List", OL);

itfdef->v.itf->ctl_size = TRUE

itfdef->v.itf->nenu_bar_rid = MENU_MEM LI ST_RI D;

itfdef->v.itf->automatic_back col or = TRUE;

itfdef->v.itf->edit_nenu = TRUE;

Be sure that the tags for the edit menu items are the standard ones that are defined in XVT. If you use a
resource menu, it’s best to use the default edit menu. If you are creating your own, be sure to set the tags
correctly. Refer to XVT documentation for more information about menus.

4.4.77 Scroll Bars

The window containing the interface can have a horizontal or vertical scroll bar (or both). If you choose to
have either, the window will be created with them, and as the user operates the scroll bars, XVT scroll bar
events are generated, and in turn, the XI events, XIE XVT EVENTXIE _XVT_EVENT and,

XIE XVT POST EVENTXIE_XVT_POST_EVENT are generated. See the XVT documenation for
information about scroll bars in a window and the events they generate.

If you create the XI interface as a virtual interface, you must create the window with a horizontal and
vertical scroll bar. If the XI interface is virtual, you probably will not wish to process the events generated
by the scroll bars on the window. Instead, let XI process the events.

22

The following code is an example of putting both horizontal and vertical scroll bars on a window that
contains a virtual XI interface.

XI _OBJ_DEF* itfdef;

itfdef = xi _create_itf_def(ITF_C D, (Xl _EVENT_HANDLER)form eh, NULL
"Vendor Maintenance", OL);
itfdef->v.itf->auto _back col or = TRUE;
itfdef->v.itf->ctl_size = TRUE
itfdef->v.itf->ctl _hscrol
it
it

= TRUE;
fdef->v.itf->ctl _vscroll = TRUE
fdef->v.itf->virtual _itf = TRUE

4.4.8 Close Box

If the window containing the interface has a close box, the user can close the window by clicking on the
close box. Otherwise, the user cannot directly close the window.

The following code, from “Istdb.c”, is an example of putting a close box on a window that contains an XI
interface.

X| _OBJ_DEF* itfdef;

itfdef = xi _create_itf_def(ITF_C D, (Xl _EVENT_HANDLER)form eh, NULL
"Vendor Maintenance", OL);
itfdef->v.itf->ctl _close = TRUE

4.4.9 Size Controls

Sizing controls allow the interface window to be resized and maximized.

The following code, from “Istdb.c”, is an example of putting a size control on a window that contains an XI
interface.

X| _OBJ_DEF* itfdef;

itfdef = xi _create_itf_def(ITF_C D, (Xl _EVENT_HANDLER)Iist_eh, NULL
"Menory List", OL);

itfdef->v.itf->ctl _size = TRUE

itfdef->v.itf->nenu_bar_rid = MENU_MEM LI ST_RI D;

itfdef->v.itf->automatic_back color = TRUE

itfdef->v.itf->edit_nenu = TRUE

4.4.10 Iconize Controls

Icon controls allow the interface window to be iconized. XI allows you to create the window, with the
iconizable control, or with the iconizable control and initially iconized. In addition, on Windows, NT and
OS2, you can specify the icon_rid used to represent the iconized window.

The following code is an example of creating a window with a iconize control.
Xl _OBJ_DEF* itfdef;

itfdef = xi_create_itf_def(ITF_CID (X _EVENT HANDLER)Iist _eh, NULL
"Menmory List", OL);

itfdef->v.itf->iconizable = TRUE

itfdef->v.itf->nenu_bar rid = MENU MEM LI ST RI D,

itfdef->v.itf->autonmatic_back color = TRUE

itfdef->v.itf->edit_nenu = TRUE

23

4.4.11 Border Style

XI allows you to specify the type of interface window to create, with border_style and border_style set.
To get the style specified with border_style you must also set border_style set to TRUE.

XinBorderSizable: Is a document window, which has a size control.

XinBorderSingle: Is a plain window that does not have a close box.

XinBorderDouble: Is a double border window that does not have a close box.

XinBorderNone: Is a window that does not have a border or close box.

XinBorderFixed: Is a document window.

The border style takes precedence over the controls listed above.

The following code is an example of creating a W_DOC window with a iconize control.

XI _OBJ_DEF* itfdef;

itfdef = xi _create_itf_def(ITF_C D, (XI _EVENT_HANDLER)Iist_eh, NULL
"Menory List", OL);

itfdef->v.itf->nenu_bar rid = MENU MEM LI ST RI D,

itfdef->v.itf->automatic_back color = TRUE

itfdef->v.itf->edit_nenu = TRUE

it

it

fdef->v.itf->iconizable = TRUE;
fdef->v.itf->border_style = XinBorderFi xed;

Maximize

Close Box Control

[Conduit and fittings for Joh 810201 | Sizable Window

L Border
-

|Net 30 | - Scroll Bars

201-129 / =
Lml s

Figure 12 - XI Interface with close box, scroll bars and sizing

XIT LIST4.5 List Objects

There are many things you might want to do with a spreadsheet list. You need to define columns and rows.
You may want to label the columns with a heading, disable some columns or rows, center or right justify
text in cells and so on. There are lots and lots of options for the appearance and behavior of a list. Some of
these options are described in the section about Columns. In the following sections, you will find an
overview of the options you can set for a list as a whole.

24

4.5.1 Disabled lists

In X1, lists can be disabled or invisible. In either case, the user cannot click or tab onto them, and therefore
cells in the list cannot gain the focus. The user can tell a list is disabled because it will not accept the input
focus. In addition, the application can set the colors of a list such that it looks different when disabled.

You can create a disabled list by not setting the XI ATR ENABLEDXI_ATR_ENABLED attribute when
calling xi_add_list_def.

4.5.2 Enabled lists

When a list is enabled and visible, users can move the focus into a cell in the list in one of three ways. They
can either click on the cell with the mouse, tab or backtab onto it, or use the metatab key to return to it. If
the focus had left the list, your event handler will receive an XIE_ ON_LISTXIE_ON_LIST event when
the list gains the focus, followed by XIE ON_ROWXIE _ON_ROW and
XIE_ON_CELLXIE_ON_CELL events.

You can create an enabled list by setting the XI_ATR_ENABLED attribute when calling xi_add_list_def.

4.5.3 No Column Headings

You may wish to suppress the column headings for a list. The following code, from “Istcol.c”, demonstrates
setting the no_heading flag on a list definition.

list def = xi_add list _def(itf _def, LIST D 0, 0, 8 *
XI _FU_MJLTI PLE,
XI _ATR_ENABLED | XI _ATR VI SI BLE |
XI _ATR_TABWRAP, COLOR BLACK, COLOR WHI TE,
COLOR _BLACK, COLOR WHI TE, COLOR BLACK,
ADD BTN CI D);
list_def->v.list->scroll_bar = TRUE;
list_def->v.list->no_headi ng = TRUE;

4.5.4 Horizontal Scrolling

Your application can make a horizontally scrolling list. When you have a horizontally scrolling list, XI
places a horizontal scroll bar at the bottom of the list.

Users (or your application) can scroll the list horizontally by three methods:
. The users can navigate from cell to cell. XI always makes the cell with the focus visible.

. The users can operate the horizontal scroll bar: They can click the left or right arrows. They can
click the left or right page areas. This will cause the list to scroll horizontally by several columns.
They can also drag and drop the horizontal scroll bar thumb.

. Your application can cause the list to scroll by calling xi_move_focus or xi_set_focus, moving or
setting the focus to a cell object. XI will always make the cell with the focus visible.

Your application makes a horizontal scrolling list by specifying a width for the list. This width becomes the
width of the list, and columns are scrolled within that width. Your application sets the width by setting
list_def->v.list->width after calling xi_add_column_def. The width of the list can be changed by calling
xi_set_list_size. The width may also change if you set resize_with_window to TRUE. In that case, the list
will be resized whenever the window resizes so that the bottom-right corner of the list matches the bottom-
right corner of the window. Do not use this option if there are any other controls below or to the right of the
list.

25

If your application does not set the width field, then the list will not be a horizontally scrolling list, and the
list width will be the sum of the width of all of the columns.

It may be desirable to have one or more columns “fixed” at the left side of the list. These may be “title”
columns. Your application can specify the number of fixed columns by setting

list_def->v.list->fixed _columns. If this field is set, the horizontal scroll bar will not be placed under these
columns, and only the columns to the right of fixed_columns will scroll horizontally.

The following code, from “Istmem.c”, is an example of creating a horizontally scrolling list with one fixed
column.

listdef = xi_add_list_def(itfdef, LIST.CID, 0, 0, 8 * Xl _FU MILTIPLE,
XI _ATR ENABLED | XI _ATR VI SIBLE |
XI ”ATR_TABWRAP, COLOR BLACK, COLOR WHI TE,
CCLOR BLACK, COLOR WHI TE, COLOR BLACK,
LIST CID):;

i stdef->v.list->scroll_bar = TRUE;
i stdef->v.|ist->sizable colums = TRUE
i stdef->v.list->nmovabl e_col ums = TRUE
i stdef->v.list->fixed colums = 1;

|
|
|
|
i stdef->v.list->wdth = 80 * XI_FU MILTI PLE;
|
|
|
|

istdef->v.list->select cells = TRUE

i stdef->v.list->resize with wi ndow = TRUE
i stdef->v.list->scroll_bar_button = TRUE
i stdef->v.list->drop_and _del ete = TRUE

4.5.5 Movable Columns

Your application can set an option such that the user can “pick up” a column heading and drop it between
two other column headings. When the user does this, the columns are reordered. The column is placed
between the columns where the column border is closest to the hot point of the mouse cursor. Columns may
even be moved from the “fixed” to the “scrolling” portions of horizontally scrolling lists with fixed
columns (and vice versa).

If available, the mouse cursor changes to a “hand” cursor when the mouse pointer is over the column
headings. To re-order columns, first the user moves the mouse pointer over a column heading. Then the
user “drags” the column heading. While dragging, an outline of the column heading indicates where the
column will be placed if the mouse button is released. Finally, the user “drops” the column heading. After
dropping the column heading the columns are re-ordered.

When movable columns are enabled, a double click on the column heading will select the column, if it has
the XI_ATR_COL_SELECTABLE attribute set, unless XI_PREF_SINGLE_CLICK_COL_SELECT
is set to TRUE.

To enable this feature, set list_def->v.list->movable_columns to TRUE after creating the list definition by
calling xi_add_list_def. If you wish to disable movable columns for particular columns, respond to the
XIE_COL_MOVE event. The following code, from “Istmem.c”, is an example of creating a horizontally
scrolling list with movable columns.

listdef = xi_add_|list_def(itfdef, LIST.CID, 0, 0, 8 * XI _FU MILTIPLE,
XI _ATR ENABLED | XI _ATR VI SIBLE |
XI TATR_TABWRAP, COLOR BLACK, COLOR \WHI TE,
COLOR _BLACK, COLOR WHI TE, COLOR_BLACK,
LISTCID):;

i stdef->v.list->scroll_bar = TRUE;
i stdef->v.list->sizable_colums = TRUE
i stdef->v.list->novabl e_col ums = TRUE

i
i
i

i stdef->v.list->fixed_colums = 1;
i
i
i

istdef->v.list->width = 80 * XI_FU MJLTI PLE;
i stdef->v.list->select cells = TRUE
i stdef->v.list->resize_with_wi ndow = TRUE

26

listdef->v.list->scroll _bar_button = TRUE
listdef->v.list->drop_and_del ete = TRUE;

Your application can also programmatically move a column by calling xi move columnxi_move_column.
See xi_move_column in the X7 Programmer's Reference for further details.

Your application can get the layout of a list, and save it to a disk file. In this fashion, your users can modify
the layout of a list, and save the configuration of the list. Then, the next time that they start their
application, the list will be in the same state as it was when they last quit the application. See

xi_get defxi_get_def for further details.

4.5.6 Resizing Columns

You can allow users to resize columns. This feature can be enabled on a list-by-list basis. In addition, to
selectively disable this feature, an application can refuse the XIE_COL_SIZE event on a column-by-
column basis.

Users resize columns by dragging the border between column headings. In other words, if users click on the
column headings, they can select or move columns. If users drag the border between the column headings,
they can resize the column.

To allow users to resize columns, set the sizable_columns field in the XI_LIST_ DEF structure after
calling xi_add_list_def. The following code, from “Istmem.c”, is an example of creating a horizontally
scrolling list with sizable column.

listdef = xi_add_list_def(itfdef, LIST.CID, 0, 0, 8 * XI _FU MILTIPLE,
XI _ATR ENABLED | XI ATR VI SIBLE |
XI ”ATR_TABWRAP, COLOR BLACK, COLOR WHI TE,
CCLOR BLACK, COLOR WHI TE, COLOR BLACK,
LIST CD);

i stdef->v.list->scroll_bar = TRUE;
i stdef->v.|ist->sizable colums = TRUE
i stdef->v.list->nmovabl e _col ums = TRUE
i stdef->v.list->fixed colums = 1;

|
|
|
|
i stdef->v.list->width = 80 * XI_FU MILTI PLE;
|
|
|
|

i stdef->v.list->select cells = TRUE

i stdef->v.list->resize with wi ndow = TRUE;
i stdef->v.list->scroll_bar_ button = TRUE

i stdef->v.list->drop_and delete = TRUE

4.5.7 Dynamically Deleting Columns

Your application can set an option such that when the user drags a column heading and drops it off of the
list, the column is deleted. Your application enables this feature by setting the field
list_def->v.list->drop_and_deletedrop_and_delete after calling xi_add_list_def. The list must also have
movable columns in order to be able to drag the column heading. Typically, the list will also have a scroll
bar button that will open a list that contains the columns that can be added to the list. The “Memory” list in
the example program demonstrates this. The following code, from “Istmem.c”, is an example of a list that
has movable columns and allows columns to be dynamically deleted.

listdef = xi _add list_def(itfdef, LIST. CD 0, 0, 8 * XI_FU MILTIPLE
Xl ATR ENABLED | XI ATR VI SI BLE |
XI _ATR_TABWRAP, COLOR BLACK, COLOR WHI TE,
COLOR BLACK, COLOR WHI TE, COLOR_BLACK,
LIST CID);
lis .list->scroll _bar = TRUE
lis .list->sizable_col ums TRUE;
i stdef->v.list->novabl e colunns TRUE;
lis .list->fixed colums = 1;
lis i

st->width = 80 * XI_FU MULTI PLE;

27

listdef->v.list->select_cells = TRUE;
listdef->v.list->resize wth_w ndow = TRUE;
listdef->v.list->scroll _bar_button = TRUE;
listdef->v.list->drop_and_del ete = TRUE;

4.5.8 Positioning and Inserting Columns in a List

You can specify the exact position to insert a column in a list by setting the position field of the list
definition before calling xi_create. For instance, if you want the column to be inserted at the left edge of
the list, specify a position of 0. If you want the column to be inserted to the right of the left-most column,
specify a position of 1. If you want the column to be placed to the right of all existing columns, specify a
position of SHRT_MAX. This is only an issue if you are adding a new column to an already existing list
object.

The sort_number field is made obsolete by this feature, but has been maintained to support existing
programs.

4.5.9 List Button

The list button, or scroll bar button, is often used to open any kind of configuration dialog for a list. In the
“Memory” list example, it is used to bring up a list of deleted columns that can then be added back into the
list. When the user presses this button, XI generates an XIE BUTTONXIE_BUTTON event with xiev-
>v.xi_obj set to the list object.

You create a button at the top of the vertical scroll bar by setting list _def->v.list->scroll_bar_button to

= Memory List -
Mbor ||In Price |January | May + Fehruary
1000 fo | 1299 100 14+ June
1001 8.99 a0 f \\/ April
1002 4.95 500 4 August
1003 [o 1.95 250 2] September
1004 [+ 5.95 a00 3] & |Movember
1005 [oF | 12.99 100 13 Decernber
1006 8.99 a0 f March %]
1007 495 00 Y

— el L] 2

)) / Showy Cancel
Configuration dialog opened when
scroll bar button is pressed.

Figure 13 - List With a Scroll Bar Button

TRUE after calling xi_add_list_def. The following code, from “Istmem.c”, is an example of creating a list
with a button.

listdef = xi_add_list_def(itfdef, LIST_CD 0, 0, 8 * XI _FU MILTI PLE,
XI _ATR ENABLED | Xl _ATR VI SI BLE |
XI _ATR_TABWRAP, COLOR BLACK, COLOR _VHI TE,
COLOR _BLACK, COLOR_WHI TE, COLOR_BLACK,
LIST CD);

listdef->v.list->scroll_bar = TRUE;

28

i stdef->v.list->sizabl e_colums

= TRUE;
st->n0vab|e_co|unns = TRUE;

li i

listdef->v.li
listdef->v.list->fixed colums = 1;
listdef->v.list->width = 80 * Xl _FU MJLTI PLE;
listdef->v.list->select _cells = TRUE;
listdef->v.list->resize with w ndow = TRUE
listdef->v.list->scroll _bar_button = TRUE
listdef->v.list->drop_and_del ete = TRUE;

4.5.10 Removing Horizontal and Vertical Rules of a List

For some applications, it may be desirable to remove the horizontal or vertical rules of a list. When your
application removes the horizontal and vertical rules, the operation of the list is exactly the same. You
remove the horizontal and vertical rules by setting list _def->v.list->no_horz_lines and
list_def->v.list->no_vert_lines to TRUE.

The following code is an example of removing the horizontal and vertical rules:

listdef = xi _add list_def(itfdef, LIST. CD 0, 0, 8 * XI_FU MILTIPLE
X ATR ENABLED | XI ATR VI SI BLE |
XI _ATR TABWRAP, COLOR BLACK, COLOR WHI TE,
COLOR BLACK, COLOR WHI TE, COLOR BLACK,
LIST CID);

listdef->v.list->scroll _bar = TRUE;

Iistdef->v.|ist->no_horz_|ines TRUE;

listdef->v.list->no_vert_lines = TRUE

4.5.11 Resizing the List when the Window is Resized

You may want to resize a list whenever the window that contains the list is resized. When the user
maximizes the window, you may want to make the list be as large as possible, so that the user can see as
much data as possible. When the user makes the window smaller, you can make the list fit inside of the
window. Every list has a minimum size, so you may want to limit the minimum size of the window based
on the resizing list. You make a list be resized with the window by setting
list_def->v.list->resize_with_window to TRUE.

Note: This technique should not be used with virtual interfaces, as resizing the window is already processed
by other portions of XI.

The following code, from “Istmem.c”, is an example of making a list resize with the window.

listdef = xi _add_list_def(itfdef, LIST_ CD 0, 0, 8 * XI_FU MILTIPLE
X ATR ENABLED | XI_ATR VI SI BLE |
XI _ATR_TABWRAP, COLOR BLACK, COLOR WHI TE,
COLOR_BLACK, COLOR WHI TE, COLOR BLACK,
LIST. CID);

i stdef->v.list->scroll_bar = TRUE;
i stdef->v.list->sizable colums = TRUE
i stdef->v.list->npovabl e_col ums = TRUE
i stdef->v.list->fixed colums = 1;

|
|
|
|
i stdef->v.list->width = 80 * XI_FU MILTI PLE;
|
|
|
|

i stdef->v.list->select cells = TRUE

i stdef->v.list->resize_w th_w ndow = TRUE;
i stdef->v.list->scroll_bar_button = TRUE;
i stdef->v.list->drop_and del ete = TRUE

29

4.5.12 Changing the Number of Fixed Columns

Occasionally, you may want to change the number of fixed columns on a horizontally scrolling list. This is
done by calling xi_set_fixed columnsxi_set fixed columns for the list object.

4.5.13 List Mouse Cursors

There are three mouse cursors that are sometimes used to manipulate an XI list. The “hand” cursor is used
for moving columns and will appear in the column heading when the list has that option enabled. The
“horizontal resize” cursor is used for resizing columns and will appear near the line between two column
headings when the list has that option enabled. The “vertical resize” cursor is used for resizing rows and
will appear near the line between two rows when a column has that option enabled (see below for more
information about column objects).

The resource IDs for these cursors are set as preferences. By default, the IDs are those defined in “xi.h”.
The preferences and their defaults are shown in the table below.

Preference Define for Resource ID
XI_PREF HAND CURSOR RID XI_CURSOR HAND

XI_PREF SIZE CURSOR RID XI_CURSOR RESIZE
XI_PREF VSIZE CURSOR RID XI_ CURSOR VRESIZE

Table I - Default List Cursor IDs 4.5.14 Tabwrap Navigation

You have two options for focus navigation in a list. If the attribute XI_ATR_TABWRAP is set, then the
focus will move to the beginning of the next row if the user presses the tab key while the focus is in the last
cell of the row. Without this attribute, the focus will stay on the same row, but move to the first cell. The
same rules apply, in reverse, for back-tabbing.

XI_ATR TABWRAP is an XI attribute, and is bitwise OR'ed together with other attributes when calling

xi_add_list_def. The following code, from “Istmem.c”, shows the use of this attribute.

listdef = xi_add_list_def(itfdef, LIST_CD 0, 0, 8 * XI_FU MILTI PLE,
XI _ATR_ENABLED | XI _ATR VI SI BLE |
XI _ATR_TABWRAP, COLOR_BLACK, COLOR_VHI TE,
COLOR_BLACK, COLOR WHI TE, COLOR BLACK,
LIST_ CD);

4.5.15 Arrow Key Navigation

If the attribute, XI_ATR_NAVIGATEXI_ATR_NAVIGATE is set, the arrow keys will move the focus to
the next and previous cell in much the same way as do the tab and backtab keys. Within the cell, the
insertion point is moved to the right and left by typing characters, and by pressing the backspace and delete
keys. If this attribute is not set then the right and left arrow keys move the insertion point inside the cell. In
this case, the control-right and control-left arrow keys move the focus between cells.

XI_ATR NAVIGATE is an XI attribute, and is bitwise OR'ed together with other attributes when calling
xi_add_list_def.

4.5.16 Refreshing a List

It is often necessary to update the information displayed in the list. This may mean updating the text in all
or some of the cells, or it may mean bigger changes that involve changing the rows that are displayed.

30

The simplest way to update all information in a list is to call xi_scrollxi_scroll with

XI SCROLL FIRSTXI_SCROLL_FIRST as the second argument. This will cause all record request
events and cell request events to occur to update the entire list. However, this will also reposition the list to
the first row. If you want to try to keep the list in the same position, you can call xi_scroll recxi_scroll_rec
with the appropriate information about the row that you want to appear at the top of the list. All other rows
will be requested by calling the event handler. Of course, you must have at least one row in order to call
xi_scroll_rec, so if the list has become empty, you should call xi_scroll.

The following code, from “Istlink.c” and “datlink.c”, demonstrates both of these calls.
static void refresh_list(XI_0OBJ* list)

i nt count;
| ong* handl es;
handl es = xi _get _list_info(list, &count);
if (count == 0)
xi _scroll (list, Xl _SCROLL_FIRST);
el se

link _scroll _rec(list, handles[0]);

void link _scroll _rec(XI_OBJ* list, long handle)

xi _scroll _rec(list, handle, (COLOR)0O, get_attribute(handle), 0);
}

Alternatively, you may only wish to update the text without generating any record request events. You can
call the function xi_cell requestxi_cell_request to force cell request events for all the cells in a list,
column, or row. You can also force a single cell requeest event for a particular cell.

Note that if XI_PREF_OPTIMIZE_CELL_REQUESTS is TRUE, then the cell request events will not
occur until the cell is visible.

The following code, from “Istlink.c”, demonstrates this function.
static void update_nunbers(Xl _OBJ* list)
{

XI _OBJ* colum = xi _get _obj(list, COL_BASE_CID + LI NK_NUM);

if (colum != NULL)
xi _cell _request(colum);

}
XIT COLUMN4.6 Columns

As mentioned above, lists have columns as their children. For example, a list might have five columns of
different widths. The column objects can be created when the list is instantiated. Column objects also can
be created (or deleted) after the list has been instantiated. The visual effect of adding and removing
columns from a list is pretty much what you’d expect. You see a column added or see it disappear.

In the following discussion, you will find an overview of options you can set for columns. Many of the
options for columns affect all the cells for that column. Because cells are quite similar to edit fields, you
will find that columns and edit fields have many of the same options. Many of the list options, discussed
above, will affect all or some of the columns.

4.6.1 Disabled Columns

Columns in a list can be disabled by not setting the XI_ATR_ENABLED attribute. Users will know that a
column is disabled because none of the cells in the column will accept the input focus, and it might look
different than other columns in the list if the application uses a different color to reflect its disabled state.

31

XI_ATR_ENABLED is an XI attribute, and is bitwise OR'ed together with other attributes when calling
xi_add column_defxi_add_column_def.

4.6.2 Enabled columns

When a column is enabled and visible, users can move the focus into cells in a column in one of three
ways. They can click on a cell with the mouse, tab or backtab onto it, or use the metatabmetatab key to
return to a cell they were editing before they left the list to do something else on the interface. Regardless
of how they get there, your event handler will receive an XIE_ ON_COLUMNXIE_ON_COLUMN event
followed by an XIE ON_CELLXIE_ON_CELL event when the cell in the column gains the focus.
Columns are enabled by setting the XI_ATR_ENABLED attribute, which is bitwise OR'ed together with
other attributes when calling xi_add_column_def.

The following code, from “Istmem.c”, demonstrates the use of attributes on a column.

#define STD COL_ATR (X _ATR ENABLED | XI ATR COL_SELECTABLE \
| XI _ATR AUTOSCROLL™| XTI _ATR_EDI TMENU)

col def = xi _add_columm_def (Iistdef, CO._BASE CI D + VALUE | TEM NBR,
STD_COL_ATR | Xl _ATR_SELECTABLE,

1, 6 * XI_FU MULTIPLE, 5, "Nor");

4.6.3 Autoselected Cells in a Column

If the column has the XI ATR AUTOSELECTXI_ATR_AUTOSELECT attribute set, then when a cell in
the column gains the focus by keyboard navigation, it will be highlighted. Otherwise, only an insertion
point will be displayed. If the preference XI_PREF_AUTOSEL_ON_MOUSE is TRUE, then
autoselection will also occur when the user clicks on a cell that does not have focus. Clicking on a cell that
has focus will position the insertion point. XI_ATR_AUTOSELECT is an XI attribute, and is OR'ed
together with other attributes when calling xi_add_column_def.

4.6.4 Read-Only Columns

If a column has the XI ATR READONLYXI_ATR_READONLY attribute set, then users cannot change
the contents of the cell even though it might have the focus. XI_ATR_READONLY is an XI attribute, and
is bitwise OR'ed together with other attributes when calling xi_add_column_def.

4.6.5 Autoscroll Cells in a Column

If a column has the attribute XI ATR AUTOSCROLLXI_ATR_AUTOSCROLL set, users can type more
characters than can be displayed in a cell up to the limit you set by calling xi_set_bufsize, which sets the
maximum length of a string that the user can type. Almost all columns will have this attribute set because
of the large variation between capital and lower case letters in a proportionally spaced font.
XI_ATR_AUTOSCROLL is an XI attribute, and is bitwise OR'ed together with other attributes when
calling xi_add_column_def.

4.6.6 Right-justified Columns

If a column has the attribute XI ATR RJUSTXI_ATR_RJUST set, the text in the cell of the column will
be displayed as right justified. In this case, the heading text will also be right justified. When typing in a
cell of a right-justified column, the text stays fixed to the right side of the cell, while characters are inserted
to the left. If the XI_ATR_RJUST attribute is not set, then the column will be left justified. In left justified
cells, the insertion point moves to the right as the user types characters.

32

XI_ATR_RJUST is an XI attribute, and is bitwise OR'ed together with other attributes when calling
xi_add_column_def. This attribute can also be set for individual cells by setting the attrib field in
response to an XIE_CELL_REQUEST event.

4.6.7 Password Columns

If the attribute, XI ATR PASSWORDXI_ATR_PASSWORD is set, you will have a password column
where the text displayed as a ‘#’ for each character in the cell. XI_ATR_PASSWORD is an XI attribute,
and is bitwise OR'ed together with other attributes when calling xi_add_column_def.

4.6.8 Platform and Well Columns

In some cases, you may want an entire column to have the platform or well appearance. To give your list
platform columns, set column_def->v.column->column_platform to TRUE after calling
xi_add_column_def. To give your list well columns, set column_def->v.column->column_well to TRUE
after calling xi_add_column_def.

= G “
[Description In Price Januany February | Mard 4
1000 |WWidget \x/ 12.89 100 110 +
1001 | Gadget 8.99 a0 a4
1002 |Socket 4,95 a00 495
1003 |Bauble Q/ 1.95 250 287
1004 |Sprocket \x/ f.95 300 305
1008 |¥Widget 2 Q/ 12.89 100 110
1006 |Gadget 2 8.99 50 a4
1007 i1Socket 2 4 495 a00 4595 +
+- +*

Figure 14 - A Platform Column

The following code, from “Istmem.c”, is an example of making a platform column.

col def = xi _add_colum_def(listdef, CO.L_BASE CID + VALUE_ | TEM NBR
STD COL_ATR | Xl _ATR _SELECTABLE,
1, 6 * XI_FU MIULTIPLE, 5, "Nbr");

#i f THREE_DI MENSI ONAL

col def - >v. col um- >headi ng_pl at f orm = TRUE;

col def - >v. col um->col um_pl atform = TRUE

#endi f

col def ->v. col unm->si ze_rows = TRUE

4.6.9 Centered Column Headings

For certain columns, you may prefer to have the text in the column heading be centered instead of left or
right justified. To center a heading for a column, set column_def->v.column->center_heading to TRUE
after calling xi_add_column_def.

The following code, from “Istmem.c”, is an example of centering a heading over a column.

33

col def = xi _add_columm_def (Iistdef, CO._BASE CI D + VALUE DESCRI PTI ON
STD_COL_ATR, 2, 20 * Xl _FU MILTI PLE
MAX DESCR, "Description");

#if THREE DI MENSIONAL !'= 0

col def - >v. col um- >headi ng_pl at f orm = TRUE

#endi f

col def - >v. col um- >cent er _headi ng = TRUE;

4.6.10 Fonts for Column Headings

Your application can set the font for a column heading. To do this, set the
column_def->v.column->font _id field. You will need to create the font using XVT functions. The font is
copied by XI during the xi_create function and can be destroyed after that function returns.

The following code, from “Istmem.c”, demonstrates setting the font for a column heading.
extern XVT_FNTID xi _sysfont;

col def = xi _add_colum_def(listdef, CO._BASE CI D + VALUE PRI CE
STD COL_ATR, 4, 12 * Xl _FU_MJULTI PLE,
7, "Price");

#if THREE DI MENSIONAL !'= 0

col def - >v. col um- >headi ng_pl at f orm = TRUE

#endi f

col def - >v. col um- >cent er _headi ng = TRUE;

col def->v. colum->font _id = col _font_id = xvt_font_create();

xvt _font_copy(col _font _id, xi_sysfont, XVI_FA ALL);

xvt _font_set _style(col _font _id, XVT_FS BO.D);

itf = xi_create(NULL, itfdef):
xvt _font_destroy(col _font_id);

If the column definition was returned from a call to xi_get_def, then the font field will also be set. This is
done for compatibility with XVT R3 programs. You will need to set this field to NULL if you want to
change the font_id field. Also, you should still create and destroy your own font if you want to change that
font_id. XI will still destroy its font when the column is deleted.

4.6.11 Icons in Column Headings

You may put an icon in the column heading in place of text, or along with it. To put an icon in a column
heading, set the icon_rid field in the column definition, after calling xi_add_column_def. You will also
need to set icon_mode. You may wish to offset the icon from the upper left corner of the column heading.
To do this, set the icon_x, and icon_y fields in the column definition, after calling xi_add_column_def.

If your icons are taller than the default heading height, you may wish to set min_heading_height for the
list. See the section on Multiline Column Headings for more details.

The following code, from “Istmem.c”, demonstrates setting the icon resource ID after adding the column
definition to a list definition.

col def = xi _add_columm_def(listdef, CO._BASE CID + VALUE | N _STOCK
STD_COL_ATR | XI _ATR _SELECTABLE
3, 4 * XI_FUMILTIPLE, 2, "In");
#if THREE DI MENSIONAL !'= 0
col def - >v. col um- >headi ng_pl at f orm = TRUE;
#endi f
col def ->v. col um->i con_rid = | CON_CHECK

34

4.6.12 Multiline Column Headings

There are two pertinent points about making multiple line column headings:
1. You must increase the minimum heading height to make enough room for the multiple lines.
2. Xl looks for a newline (“\n’) to mark the break between lines.

The following code, from “Istlink.c”, demonstrates forcing a minimum pixel height for a column heading.

listdef = xi_add_list_def(itfdef, LIST. QD 3 * XI_FU MILTIPLE, O,

8 * XI_FU MJULTI PLE, XI _ATR_ENABLED

| XI_ATR VI SI BLE | XI _ATR _TABWRAP,

COLOR BLACK, COLOR WHI TE, COLOR _BLACK,

COLOR WHI TE, COLOR_BLACK, CONTAINER CID);
lis .list->scroll _bar = TRUE;
lis .list->sizable_colums = TRUE;
listdef->v.list->novabl e col ums = TRUE;
lis dist->width = 50 * XI _FU MJLTI PLE;
lis i TRUE;
lis NN 32;

st->resize_w t h_w ndow
st->m n_headi ng_hei ght

The “Istlink.c” example uses a data structure to create its columns. The text for those columns appears in
this structure and shows the embedded newlines.

static struct _s col defs
{
LI NK_FIELD field;
short wi dth;
short bufsi ze;
BOOLEAN rj ust;
char *title;
} coldefs[] =
{

{ LI NK_NUM 8 * XI _FU MULTIPLE, 5, TRUE, "Nunber" },
{ LI NK_DATE, 11 * XI_FU MULTI PLE, DATE_LEN + 1, FALSE, "Date" },
{ LINK.DESCR, 30 * XI_FU MULTIPLE, 400, FALSE, "Description" },
{ LINKWHO 12 * XI _FU_MULTIPLE, WHO LEN + 1, FALSE, "Wo" },

*

{ LINK_EST _HRS, 10

"Esti mat ed\ nHour s" 1},
{ LINK ACT_HRS, 10 * XI _FU MULTIPLE, 5, TRUE, "Actual\nHours" },
{0 0}

XI _FUMULTI PLE, 5, _ TRUE,

35

Linked List
Add All Recs Add One Re: Delete All Recs

Delete Current Rec | Delete Selected Recs

Estimated Actual
Hours Hours

mHumber| Date Description Whio

01701595 This is description #1 which is |Person 1 2 n
long enaugh for word wrap.

01101095 Alternate description 31 Ferson 2
01701594 Miscellaneous description #1 Person 3

Figure 15 - Multiline Column Headings

4.6.13 Platform and Well Headings

Throughout the examples, we use a “platform” appearance for column headings. To give your list platform
headings, set column_def->v.column->heading_platform to TRUE after calling xi_add_column_def.
You can also make the columns indented by setting column_def->v.column->heading_well to TRUE after
calling xi_add_column_def.

The following code, from “Istmem.c”, is an example of making platform headings.

col def = xi _add_columm_def (|istdef, CO._BASE Cl D + VALUE DESCRI PTI ON,
STD COL_ATR, 2, 20 * XI _FU_MJLTI PLE,
MAX_DESCR, "Description");

#if THREE_ DI MENSIONAL !'= 0

col def - >v. col um- >headi ng_pl at f orm = TRUE;

#endi f

col def - >v. col um->cent er _headi ng = TRUE;

4.7 Cells and Rows

Most of the options described in this chapter are set on the object definitions. However, since rows are
supplied by the application through the record request events (XIE GET FIRSTXIE_GET_FIRST,

XIE GET NEXTXIE_GET_NEXT, XIE GET PREVXIE_GET_PREYV and

XIE GET LASTXIE_GET_LAST), the options for rows must be set there. Also, cells are supplied by the
application through the XIE CELL REQUESTXIE_CELL_REQUEST event, so the options for cells are
set there. Some of these options can be changed later by creating row or cell “pseudo-objects” and then
calling the appropriate XI function with that object. However, cells can usually be updated by calling
xi_cell_request and responding to the cell request event with the new options.

4.7.1 Selected Rows and Enabled Rows

A row will be selected if its attribute includes XI_ATR_SELECTED. Selected rows have an “inverted”
color appearance. A row will be enabled if its attribute includes XI_ATR_ENABLED. An enabled row
allow editing or focus in cells for the row. A disabled row does not allow editing or focus in the cells for
that row and may have a different color if disabled colors are specified. These attributes can be bitwise
OR’ed together and set in the attrib field of the record request event structure.

The following code, from “datmem.c”, demonstrates setting the “selected” attribute.

36

void memrec_request(REC I NFO* rec,

XI _EVENT* xiev)

{
if'(rec->row sel ected)

) Xiev->v.rec_request.attrib | = Xl _ATR _SELECTED;
= (]
Mk Description v Price January February | March Apri
1000 [widget Q/ 12.89 100 110 120
1001 |Gadget 8.99 50 a4 58
1002 EaIEHE
1003 |Bauble Q/ 1.95 250 267 264
1004 |Sprocket Q/ 5.95 300 304 10
10058 |Widget 2 Q/ 12.89 100 110 120
1006 |Gadget 2 8.99 a0 a4 a8
1007 1Socket 2 4,95 a00 495 490

- »
Figure 16 - A Selected Row

4.7.2 Colors Per Cell

Your application can set both the foreground and background colors for cells. This is done by setting the
color and back_color fields in the cell request event structure. If you want to update the colors for a cell or
cells, you should call xi_cell_request and respond to the resulting XIE_CELL_REQUEST events with
the new colors.

The following code, from “datmem.c”, demonstrates setting colors for cells.

voi d nem cel |l _request(REC | NFO* rec, VALUE CODE code,

{

Xiev->v.cell _request.attrib = rec->attrib[(int)code];
if (rec->selected] (int)code])
xiev->v.cell _request.attrib |= XI_ATR _SELECTED,;
if (rec->have font[(int)code])
xiev->v.cell _request.font_id = rec->font_ids[(int)code];
Xi ev->v.cell _request.color = rec->colors[(int)code];
Xi ev->v. cel |l request.back color = rec->back colors[(int)code];

XI _EVENT* xiev)

4.7.3 Fonts Per Cell

Your application can set a font for the text in a cell. This is done by setting the font_id field of the cell
request event structure. If you want to update the font for a cell or cells, you should call xi_cell_request
and respond to the resulting XIE_CELL_REQUEST events with the new font.

The following code, from “datmem.c”, demonstrates setting fonts for cells.

37

voi d nem cel | _request(REC | NFO* rec, VALUE CODE code, XI_EVENT* xiev)
{

Xiev->v.cell _request.attrib = rec->attrib[(int)code];
if (rec->selected[(int)code]
xiev->v.cell _request.attrib |= XI _ATR SELECTED,
if (rec->have font[(int)code])
xiev->v.cell _request.font_id = rec->font_ids[(int)code];
Xi ev->v.cell _request.color = rec->colors[(int)code];
Xi ev->v. cel |l _request.back color = rec->back _colors[(int)code];

}

IMPORTANT: Although XI copies the font after you return from the cell request event, you are responsible
for destroying any of the XVT fonts that you create. Since this can’t be done after returning from the event,
you will probably need to keep track of these fonts and then destroy them when the interface is deleted. The
following code, from “datmem.c”, is called from the XIE_CLEANUP event for the interface (that code is
in “Istmem.c”).

void mem free _fonts(REC INFO* rec)
i nt num

for (num= 0; num < MAX COLUWNS; numt+)
if (rec->have_font[num])
xvt _font_destroy(rec->font_ids[num]);

4.7.4 Cell Range Selection

You may wish to allow your users to select a range of cells. After they have selected a range of cells, you
could allow them to change the font of the cells, or colors of cells. The “Memory” list demonstrates the use
of selected cells for this purpose. This option is enabled by setting the select_cells field in the list definition
structure.

= . -
Mfar Description i Price January February | March Apri| 4
1000 [idget Q/ 12.95 100 110 120 *
1001 | Gadoet 58
1002 |Socket 4,95 a00 495 4490
1003 |Eauble] 240 264
1004 |Sprocket g 300 3ane 310
10045 |widget 2 12.95 100 1 120
1006 |Gadget 2 5.949 a0 54 58
1007 1Socket 2 495 a00 495 490 b
- -+
Figure 17 - A Range of Selected Cells
There are several things to know about allowing users to select cells:
. Users select a range of cells by placing the mouse cursor over an intersection of cells. On some

platforms, when the mouse is in position to select a range of cells, the cursor changes to a “plus”.

. Your application can get or set the XI_ATR_SELECTED attribute for cells using the
xi_get attrib and xi_set_attrib functions. To set or get an attribute this way, you need to fabricate
a cell object.

38

. When XI sends an XIE_CELL_REQUEST event, you can indicate that the cell is selected by
setting the attrib field in the cell request event structure.

. When the user selects a range of cells, you will get an event, XIE_SELECT, with
xiev->v.xi_obj set to the list object. If cells where previously selected, they will be deselected
when this event occurs.

. Your application can retrieve the selected range of cells by calling xi_get_cell_selection. See
xi_get_cell_selection in the X/ Programmer s Reference for further details.

Currently, XI does not allow automatic scrolling while selecting a range of cells. This is because of the
added difficulty of holding more record handles than are visible while those cells are selected. We plan to
add this feature in a future version.

The following code, from “Istmem.c”, shows how to enable cell range selection.

listdef = xi _add _list _def(itfdef, LIST.CID, 0, 0, 8 * XI _FU MILTIPLE
XI _ATR_ENABLED | XI _ATR VI SIBLE |
XI ”ATR_TABWRAP, COLOR BLACK, COLOR WHI TE,
COLOR BLACK, COLOR WHI TE, COLOR BLACK,
LIST CID):

stdef->v.list->scroll_bar = TRUE;

stdef->v.|ist->sizable colums = TRUE

stdef->v.list->novabl e col ums = TRUE;
st->fi xed_colums = 1;

i
i i
i i
i stdef->v.li _
istdef->v.list->width = 80 * XI _FU MJULTI PLE;
i
i
i
i

stdef->v.list->select _cells = TRUE

stdef->v.list->resize with wi ndow = TRUE;

stdef->v.list->scroll_bar_ button = TRUE
i stdef->v.list->drop_and_del ete = TRUE;

The following code, from “Istmem.c”, demonstrates responding to the XIE_SELECT event.

static void list_eh(XI_OBJ* itf, Xl _EVENT* xiev)

{
LIST INFO* list _info = (LIST_INFO*)xi _get app_data(itf);

switch (xiev->type)

{

case Xl E_SELECT:
switch (xiev->v.select.xi_obj->type)

case Xl T_ROW
{

br eak;

}

39

case XIT_LIST:

{
XI _CELL_SPEC* cells;

int count;
int num
XI _OBJ* list = xiev->v.select.xi_obj;

cells = xi_get_cell_selection(list, &count);
select _clear(list->itf, FALSE, FALSE);
for (num= 0; num< count; numt+, cells++)
mem sel ect _cell(row to_record(list, cells->row),
columm_to_code(list, cells->colum),
Xi ev->v. sel ect.sel ected);
br eak;

br eak;

The function select_clear appears earlier in “Istmem.c”. The mem_select_cell function appears in
“datmem.c” as follows:

void mem sel ect_cell (REC INFO* rec, VALUE CODE code, BOOLEAN flag)
{

rec->selected[(int)code] = flag;

}

The following code, from “datmem.c”, shows how the “selected” attribute is set in the cell request
structure.

voi d nem cel | _request(REC | NFO* rec, VALUE CODE code, XI_EVENT* xiev)
{

Xiev->v.cell _request.attrib = rec->attrib[(int)code];
if (rec->selected[(int)code]
Xxiev->v.cell _request.attrib |= XI _ATR SELECTED,
if (rec->have font[(int)code])
xiev->v.cell _request.font_id = rec->font_ids[(int)code];
Xi ev->v.cell _request.color = rec->colors[(int)code];
Xi ev->v. cel |l _request. back color = rec->back _colors[(int)code];

}

If you want to handle cell range selection, you should look closely at “Istmem.c” and “datmem.c” for the
techniques involved.

4.7.5 Putting Icons in Cells

You may want to put icons in cells in an XI list. Icons must be in the resource for the application. See the
XVT documentation for details about using icons. To make an icon appear in a cell, you set the icon_rid
field of the cell request structure. If you want to change the icon later, you should call xi_cell _request and
then respond to the resulting XIE_CELL_REQUEST event(s) with the new icon resource ID.

The following code demonstrates setting the icon for a cell.

40

voi d nem cel | _request(REC | NFO* rec, VALUE CODE code, XI_EVENT* xiev)

{
char buffer[20];

char* data_ptr = buffer;

switch (code)

case VALUE | N STOCK:

strcpy(buffer, rec->in_stock ?2 "T" : "F");

xiev->v.cell _request.icon_rid = rec->in_stock ? | CON_CHECK
;| CON_EMPTY;

br eak;

}

On some platforms, the default height of a cell may be to short for the icon which will result in the icon
being clipped at the bottom of the cell. You can force the height of all rows to be larger by setting
list_def->v.list->min_cell_height to the desired row height in pixels. (This value is in pixels, not form
units.)

4.7.6 Putting Bitmaps in Cells

You may want to put bitmaps in cells in an XI list. In the “Memory” list example, we use a check mark
bitmap to indicate if an item is in stock. Bitmaps must be created in the application and kept as long as they
are used. To make a bitmap appear in a cell, you set the bitmap field of the cell request structure. If you
want to change the bitmap later, you should call xi_cell_request and then respond to the resulting
XIE_CELL_REQUEST event(s) with the new bitmap pointer (created with xi_bitmap_create). Call
xi_bitmap_destroy in the XIE_CLEANUP event, or, when you will no longer use the bitmap.

The following code, from “datmem.c”, demonstrates setting the bitmap for a cell.

void memcell _request(REC INFO* rec, VALUE CODE code, Xl _EVENT* xiev)

{
char buffer[20];

char* data_ptr = buffer;

switch (code)

{
case VALUE | N _STOCK:
strcpy(buffer, rec->in_stock ?2 "T" : "F");
Xi ev->v.cell _request.bitmap = rec->in_stock ? check _bitmap :
enpty_bi t map;

br eak;
}

On some platforms, the default height of a cell may be to short for the bitmap. You can force the height of
all rows to be larger by setting list_def->v.list->min_cell_height to the desired row height in pixels. (This
value is in pixels, not form units.)

4.8 Forms

Form objects have edit fields as their children. The form serves only three purposes. First, all edit fields
must be in a form. Second, the metatab character will only tab correctly between forms, lists and
containers. Third, XI generates XIE_ON_FORM and XIE_OFF_FORM events when focus enters and
leaves an edit field in the form. In general, the form object plays a very small part in the operation of an XI
application.

41

4.9 Edit Fields

If you have used XVT edit controls, you will probably notice that XI edit fields are not XV T edit controls.
The XI edit fields are displayed using XVT drawing primitives. This gives them different characteristics
than the XVT edit controls. For example, you can have a password edit field where your user can type
characters and have a masking character displayed instead. This type of functionality doesn’t come with
XVT because XVT uses the native edit controls on each platform. The native edit controls are often limited
in the choices of behaviors you can set for them.

An XI edit field does not include a label. You should use the “static text” object for labels for edit fields.

Below is a summary of features that XI edit fields can have. You may notice that this list is quite similar to
the behaviors cells in a column can have in a list. This is because cells and edit fields share the same code
internally in the XIT tool kit.

4.9.1 Disabled Edit Fields

In X1, edit fields can be disabled or invisible. In either case, the user cannot click or tab onto them, and
therefore they cannot gain the focus. The user can tell an edit field is disabled because it will not accept the
input focus. In addition, the application can set the colors of an edit field such that it looks different when
disabled. You create a disabed edit field by not setting the XI_ATR_ENABLED attribute when creating
the edit field definition.

4.9.2 Enabled Edit Fields

When an edit field is enabled and visible, users can move the focus onto an edit field in one of three ways.
They can either click on it with the mouse, tab or backtab onto it, or use the metatab key to return to it from
a list, container, or other form on the same interface. Regardless of how they get there, your event handler
will receive an XIE_ ON_FIELDXIE_ON_FIELD event when the edit field gains the focus.

XI_ATR_ENABLED is an XI attribute, which is bitwise OR'ed together with other attributes when calling
xi_add field defxi_add_field def. The following code, from “Istdb.c”

4.9.3 Autoselected Edit Fields

If the edit field has the XI ATR AUTOSELECTXI_ATR_AUTOSELECT attribute set, then the text in
the edit field will be selected when it gains the focus by keyboard navigation. If the preference
XI_PREF_AUTOSEL_ON_MOUSE is TRUE, then autoselection will also occur when the user clicks on
a cell that does not have focus. Clicking on a cell that has focus will position the insertion point. Otherwise,
only an insertion point will be displayed.

XI_ATR_AUTOSELECT is an XI attribute, and is bitwise OR'ed together with other attributes when
calling xi_add field defxi_add_field def.

4.9.4 Read-Only Edit Fields

If an edit field has the XI ATR READONLYXI_ATR_READONLY attribute set, then users cannot
change the contents of the edit field even though it might have the focus. XI_ATR_READONLY is an XI
attribute, and is bitwise OR'ed together with other attributes when calling xi_add_field_def.

42

4.9.5 Autoscroll Edit Fields

If it has the attribute XI ATR AUTOSCROLLXI_ATR_AUTOSCROLL set, users can type more
characters than can be displayed in the edit field up to the limit you set by calling

xi_set bufsizexi_set_bufsize, which sets the maximum length of a string that the user can type. Almost all
edit fields will have this attribute set because of the large variation between capital and lower case letters in
a proportionally spaced font. XI_ATR_AUTOSCROLL is an XI attribute, and is bitwise OR'ed together
with other attributes when calling xi_add_field_def.

4.9.6 Right-justified Edit Fields

If an edit field has the attribute XI ATR RJUSTXI_ATR_RJUST set, the text in the edit field will be
displayed as right justified. In a right justified edit field, characters are inserted to the left of the insertion
point as the user types. If the XI_ATR_RJUST attribute is not set, the edit field will be left justified. In a
left justified edit field, the insertion point moves to the right as the user types characters.

XI_ATR_RJUST is an XI attribute, and is bitwise OR'ed together with other attributes when calling
xi_add_field defxi_add_field_def.

4.9.7 Password Edit Fields

If the attribute, XI ATR_ PASSWORDXI_ATR_PASSWORD is set, you will have a password edit field
where the text displayed as a ‘#’ for each character in the edit field. XI_ATR_PASSWORD is an XI
attribute, and is bitwise OR'ed together with other attributes when calling
xi_add_field_defxi_add_field_def.

4.9.8 Platform and Well Edit Fields

You can create edit fields in XI that have the appearance of a well or a platform. You do this by setting
field_def->v.field->well to TRUE or by setting field_def->v.field->platform to TRUE.

4.9.9 Edit Field Buttons

You can specify that XI automatically create a button to be associated with an edit field. This button can be
placed to the right or left of the edit field. Typically, this button will contain an icon that has a down arrow
in it, and the user will be presented with a choice of values when they presses the edit field button. An edit
field has a button if the button member of the edit field definition structure is set to TRUE. That button

will be on the right side of the edit field unless the button_on_left member of the structure is also TRUE.

43

Record # 1

Descr \ Other \ E

Date 01501594 Cancel

Who
Estimated Hou EEENIE
Denise
Edna
Fred
George

Actual Hours

Figure 18 - An Edit Field Button with Drop Down List

When the user presses the button, two things happen. First, XI attempts to move the focus to the edit field,
generating the appropriate XIE_OFF_* and XIE_ON_* events. If no event is refused, and the focus is
moved to the edit field, an XIE_BUTTON event is generated, with xi_ev->v.xi_obj set to the edit field
object.

Your application can specify the icon used for the edit field button by setting

field_def->v.field->icon_rid to a resource id for an icon resource that you have created in your application
resources. Refer to your XVT documentation for details on putting an icon in your resources. By default,
XI uses the resource ID for XI_PREF_COMBO_ICON for an edit field button.

The “Istlink.c” file contains code to create an interface with a field button and a “drop down list” selection.

4.9.10 Using XI_ ATR_FOCUSBORDER

You may wish to emphasize the location of the focus. In particular, when using the 3D look, it may be a bit
hard to see the insertion point, and the user may not know where characters they type are going to go. You
can set an attribute for edit fields, such that the black border around the edit fields is only drawn if the edit
field has the focus. This is enabled by setting the XI_ATR_FOCUSBORDER for an edit field. This
attribute is bitwise OR’ed with other attributes when calling xi_add_field defxi_add_field_def.

4.9.11 Multiline Edit Fields

This section describes making multiline edit fields. To create a multiline edit field, set the values in the
xi_rct structure in the edit field definition structure after calling xi_add_field_def. If the edit field is the
height of 8 form units, the edit field is multi-line. The height should never be set to less than 8 form units.

44

Fecord # 1
Deser ' Other s | E
h’his iz description #1 which is long Cancel

enaugh farward wrap.

Figure 19 - A Multiline Edit Field

Because of certain characteristics of the text edit system, some XIE_XVT_EVENT events will be sent to

the event handler before the XIE_INIT event is sent to the event handler.

The following code, from “Istdb.c”, demonstrates setting the xi_rct field:

for (num= 0; fielddefs[num].width !=0; num+)
{

Xl _OBJ_DEF* def;

long attrib;

attrib = XI_ATR AUTOSELECT | Xl _ATR_AUTOSCROLL;
if (fielddefs[num].section <= 1)
attrib | = XI_ATR VI SI BLE;
if (fielddefs[num].enabled)
attrib |= XI_ATR ENABLED | Xl _ATR BORDER,
def = xi_add_field _def(forndef, FIELD BASE CI D
+ fielddefs[num].type,
fielddefs[num].v * Xl _FU MILTI PLE,
fielddefs[num].h * XI_FU MJLTI PLE,
fielddefs[num].width * 3
/ 2 * XI_FU MJLTI PLE,
attrib, (fielddefs[num+ 1].type == 0)
? SAVE_BTN CID : FlIELD BASE_CI D
+ fielddefs[num+ 1].type,
fielddefs[num].width + 1, COLOR BLACK,
COLOR_WHI TE, COLOR_BLACK, COLOR VHI TE,
COLOR_BLACK);
if (fielddefs[num].height '= 0)
{
XI _RCT* prct = &def->v.field->xi_rct;

prct->top = def->v.field->pnt.v;

prct->left = def->v.field->pnt.h;

prct->bottom = prct->top + fielddefs[num]. height *
Xl _FU_MJLTI PLE;

prct->right = prct->left + 40 * XI _FU MJLTI PLE;

def->v.field->button = fielddefs[num]. button;

}

45

When you need to set the text of a multiline edit field, you can call xi_set_text with a multiline string. The
\r’ character delimits each paragraph in the string. When you get the text via a call to xi_get_text, the “\r’
character delimits each paragraph.

If the cr_ok value in the edit field definition structure is TRUE, the enter key is used to enter multiple
lines in a multiline edit field, it cannot be used to press the default button. When the multiline edit field has
the focus, the default button can only be pressed by using the mouse, or by tabbing off of the multiline edit
field, then pressing enter. Also, tabs are used for keyboard navigation and cannot be entered into the text of
an edit field.

4.9.12 Edit Field Fonts

Your application can have a different font for each edit field object, if you wish. To set the font for an edit
field, set the font_id member in the edit field definition structure after calling xi_add_field_def. You will
need to create the font using XVT functions. The font is copied by XI during the xi_create function and
can be destroyed after that function returns.

If the edit field definition was returned from a call to xi_get_def, then the font field will also be set. This is
done for compatibility with XVT R3 programs. You will need to set this field to NULL if you want to
change the font_id field. Also, you should still create and destroy your own font if you want to change that
font_id. XI will still destroy its font when the edit field is deleted.

4.10 Groups

Unlike many other XI objects, groups are abstract objects in that they have no appearance on the screen.
Groups are especially useful to developers of database applications because they make it much easier to
validate foreign keys that are made up of multiple fields.

A group can consist of either a group of edit fields or a group of columns. The entire purpose of the group
is to generate XIE_ ON_GROUP and XIE_OFF_GROUP events when focus leaves any of the objects in
the group. For example, if you have a group of two edit fields, you will receive focus events for each edit
field as focus moves between them. However, the XIE_OFF_GROUP event only occurs when you move
from either of the edit fields in the group to an object that is not in the group.

The group validation has three main uses:
1. The event can trigger a record lookup for a database table that has a multiple field key.

2. The event can trigger a foreign key validation that verifies the values in another database table. Again,
for the case of multiple fields in the foreign key.

3. You can validate related values. For example, in the “Employee” list, we check that the minimum
hours are less than or equal to the maximum hours.

Even though groups could be thought of as having children, they do not. Every edit field in a group is
actually a child of a form and every column in a group is actually a child of a list. For this reason, groups
use a list of control IDs to refer to the controls that are defined elsewhere in the interface. This also allows
you to put an edit field in more than one group, if you needed to do so.

4.11 Containers

Container objects have buttons as children. For this reason, they are often referred to as “button
containers”. The purpose of the container object is to arrange the buttons. This is very useful when lining
up buttons either horizontally, vertically or in a grid. In addition, a container is essential for radio buttons
and tab buttons because it will uncheck the other buttons in the group whenever one of them is checked.

The choices for orientation are defined by the XI_CONTAINER_ORIENTATION enum. This value is
passed to the call to xi_add_container_def.

46

The size of buttons in a container is determined by XI for horizontal and vertical orientations. The grid
orientations allow you to put buttons very close together, but you cannot have a default button in that case.
Use the packed member of the container definition structure to put gridded buttons close together. Also,
when you specify a grid orientation, you can set the height and/or width of the buttons with the btn_height
and btn_width members of the container definition structure.

The following code, from “Istdb.c”, shows the definition for a packed grid of icon buttons.

rct.top = 0;
rct.left = 0;
rct.bottom = 24;
rct.right = 144;
cntrdef = xi_add_container_def(itfdef, CONTAINER_ CI D, &rct,
Xl _CGRI D_HORI ZONTAL, LIST CID);
cntrdef - >v. cont ai ner - >packed = TRUE;
cntrdef->v.container->btn_width =6 * XI_FU MILTI PLE;

bt ndef = xi _add_button_def(cntrdef, ADD BTN CI D, NULL,
XI _ATR _ENABLED | XI _ATR VI SI BLE, "Add",
CHG BTN .CI D);

bt ndef - >v. bt n- >down_i con_rid = ADD BTN | CON;

bt ndef - >v. bt n->up_i con_rid = ADD BTN_| CON;

bt ndef = xi _add_button_def(cntrdef, CHG BTN CI D, NULL,
XI _ATR _ENABLED | XI _ATR VI SI BLE, "Chg",
DEL_BTN CI D);

bt ndef - >v. bt n->down_i con_rid = CHG BTN | CON;

bt ndef - >v. bt n->up_i con_rid = CHG _BTN_| CON;

bt ndef = xi _add_button_def(cntrdef, DEL BTN CI D, NULL,
XI _ATR ENABLED | XI _ATR VI SI BLE, "Del",
ADD BTN CI D);

bt ndef ->v. bt n->fore_col or = COLOR_RED;

bt ndef - >v. bt n- >down_i con_rid = DEL_BTN | CON;

bt ndef->v. btn->up_icon_rid = DEL_BTN_ | CON;

4.12 Buttons

When you instantiate an XI interface, the XI buttons you see on the screen will be either 3D buttons that are
drawn by XI, or are actually XVT button controls. XI interprets the E_ CONTROL messages sent from
XVT so that XVT buttons fit into the same framework as every other XI object. Setting the preference
XI_PREF _NATIVE_CTRLS to TRUE causes XI to use XVT buttons. Setting the preference to FALSE
causes XI to draw its own 3D style buttons. To specify how a button will appear on the screen you set
attributes listed below.

4.12.1 Types of XI Buttons

There are six types of XI buttons, as enumerated by XI BTN _TYPEXI_BTN_TYPE. They are:

. XIBT BUTTONXIBT_BUTTON. This is a regular button.
. XIBT CHECKBOXXIBT_CHECKBOX. This is a check box button.
. XIBT _RADIOBTNXIBT RADIOBTN. This is a radio button. When the application calls

xi_checkxi_check on a radio button that is inside of a group, all other radio buttons in the group
are unchecked.

. XIBT TABBTNXIBT _TABBTN. This is a special form of radio buttons. It operates in the same
fashion as radio buttons, but it has a different appearance. (This type of button becomes a radio
button if XI PREF_NATIVE_CTRLS is set to TRUE.)

47

. XIBT BUTTON CHECKBOXXIBT_BUTTON_CHECKBOX. This is a check box button with
a regular button appearance. When the button is checked, it will remain “depressed”.

. XIBT BUTTON _RADIOBTNXIBT _BUTTON_RADIOBTN. This is a radio button with a
regular button appearance. It operates in the same fashion as radio buttons, but the button remains
“depressed” when it is checked.

4.12.2 Using XVT Buttons

We created XI buttons for several reasons. There is a problem with XVT buttons because XV T uses native
controls for their buttons. When they have the focus, sometimes they intercept characters necessary for
navigation. In addition, it isn’t possible to put icons, or bitmaps in XVT push buttons.

However, you can make XI use native controls by setting the preference

XI_PREF NATIVE CTRLSXI_PREF_NATIVE_CTRLS to TRUE. (This is the default setting.) If you
do this, certain features are not available, such as the ability to put icons in push buttons, the ability to have
a default button in a window, and some navigation characteristics. However, using native controls may be
desirable on systems that don’t have a gray scale display, such as the Macintosh classic.

On XVT/CHXVT/CH, only native buttons may be used.

4.12.3 Disabled Buttons

In XI, a button can be disabled and has a characteristic look and feel when it is. When it is disabled, the
user cannot click or tab onto it, and therefore the button cannot gain the focus. Also, if the default button is
disabled, the enter key will not press it.

You create a disabled button by not setting the XI_ATR_ENABLED attribute when creating the button
definition.

4.12.4 Enabled Buttons

When a button is enabled, users can depress the button by clicking on it with the mouse, or by tabbing onto
it and pressing the space bar. XI_ATR_ENABLED is an XI attribute, and is bitwise OR'ed together with
other attributes when calling xi_add_button_defxi_add_button_def.

4.12.5 Icon and Bitmap Buttons

When using XI push buttons, you have the option of putting icons or bitmaps in the push buttons. Of
course, putting icons and bitmaps in buttons only works in the graphical systems, not in XVT/CH. For that
reason, you should specify the text for the button so that it can be used if icons or bitmaps are not available.

When creating an icon or bitmap button, you must specify three icons or bitmaps. They are:

. The icon or bitmap displayed when the button is up.
. The icon or bitmap displayed when the button is down.
. The icon or bitmap displayed when the button is disabled.

You may want to make a certain visual relationship among these three images. For example, the up image
has a 3D appearance such that it is not depressed. The down image has the same 3D appearance, but it
would be depressed. The disabled image may be the same as the up image, but you might replace all colors
with shades of gray to make the button appear disabled. Obviously, you have the option to simply use the
same image for all three states.

48

When putting an icon into an icon button, you can specify the distance in pixels from the upper left where
all icons are displayed. In this fashion, you can create a very small icon button, and place a small icon in
the upper left corner of the button. Or you can create a very large icon button, and compute the pixel
distance from the upper left such that the icon is displayed in the center of the large icon button.

Icon buttons can be created only if the value of the preference XI_PREF _NATIVE_CTRLS is set to
FALSE. This is the default value.

ala - &
+ 4
First Last Jokb Wage| Min | Max +
Julianna Aberla Stitcher 12.00(40 g0
P ey 0.0ojo 1]
Bob McClellan FProgrammdg 14.00(345 a0
Gus Smedstad [Programmg 16.00)30 40
Cioug Earhart Frogrammdg 20.00(&0 100

+

Figure 20 - Icon Buttons

The following code, from “Istdb.c”, demonstrates creating icon buttons.

rct.top = 0;
rct.left = 0;
rct.bottom = 24;
rct.right = 144;
cntrdef = xi _add _container_def(itfdef, CONTAINER CID, &rct,
XI _GRI D HORI ZONTAL, LIST CD);
cntrdef - >v. cont ai ner->packed = TRUE;
cntrdef->v.container->btn width = 6 * XI _FU MILTI PLE;

bt ndef = xi _add_button_def(cntrdef, ADD BTN Cl D, NULL,
Xl _ATR_ ENABLED | XI_ATR_VI SI BLE, "Add",
CHG BTN CID);

bt ndef - >v. bt n->down_i con_rid = ADD BTN_ ICO\I

bt ndef - >v. bt n->up_icon_rid = ADD BTN | CON;

bt ndef = xi _add_button_def(cntrdef, CHG BTN CI D, NULL,
Xl _ATR_ ENABLED | XI_ATR_VI SI BLE, "Chg",
DEL BTN CI D);

bt ndef - >v. bt n- >down_i con_rid = CHG BTN_ ICO\I

bt ndef - >v. bt n->up_icon_rid = CHG BTN | CON;

bt ndef = xi _add_button_def(cntrdef, DEL_BTN CI D, NULL,
XI _ATR_ENABLED | XI _ATR VI SI BLE, "Del ",
ADD BTN CID);

bt ndef - >v. bt n->fore_col or = COLOR_RED;

bt ndef - >v. bt n- >down_i con r|d = DEL_BTN_I CON;

bt ndef - >v. bt n->up_i con_rid = DEL_BTN_| CON;

49

4.12.6 Radio Buttons

You create radio buttons in the same fashion that you create push buttons. However, you set
btn_def->v.btn->type to XIBT RADIOBTNXIBT RADIOBTN after calling
xi_add button defxi_add_button_def.

When creating the radio buttons, you can specify the initial state by setting btn_def->v.btn->checked to
TRUE or FALSE. The radio button will be created with the specified initial state. Of course, you would
specify that only one radio button in a set of radio buttons is initially checked.

If you elect not to use XI controls by setting the preference

XI_PREF NATIVE CTRLSXI PREF NATIVE_CTRLS to FALSE, and instead use XVT controls, then
the initial state is ignored. You will need to call xi_checkxi_check during the XIE INITXIE INIT event or
after the call to xi_create returns. Native radio buttons can only be checked if they are in a container.

There are two ways that you can create radio buttons - you can create them inside of a container, or you can
create them as children of the interface. If you create the radio buttons as children of a container, when you
call xi_check on one of the radio buttons, the other radio buttons in the container are automatically
unchecked.

When making radio buttons, you can specify the foreground color. For example, you could have a certain
set of radio buttons that are red, and another set that are blue.

4.12.7 Check Boxes

You create check boxes in the same fashion that you create push buttons. However, you set
btn_def->v.btn->type to XIBT CHECKBOXXIBT_CHECKBOX after calling
xi_add button_defxi_add_button_def.

When creating the check boxes, you can specify the initial state by setting btn_def->v.btn->checked to
TRUE or FALSE. The check box will be created with the specified initial state.

If you elect not to use XI controls by setting the preference

XI_PREF_NATIVE _CTRLSXI_PREF_NATIVE_CTRLS to FALSE, and instead use XVT controls, then
the initial state is ignored. You will need call xi_checkxi_check upon the XIE INITXIE_INIT event or
after the call to xi_create returns.

When making check boxes, you can specify the foreground color. For example, you could have a red check
box and a blue check box.

4.12.8 Tab Buttons

You can make a sophisticated user interface by using tab buttons. Tab buttons look like the tabs on file
folders. When the user clicks on a tab button, it visually appears to come to the front. This is the “checked”
state of a tab button.

Semantically, tab buttons are identical to radio buttons. The only difference is their appearance. In other
words, if your application calls xi_check, passing a tab button XI_OBJ, that tab is brought to the front, and
the other tabs are “unset”, or put to the back.

Typically, your application would associate several XI objects with each tab. Then when a tab button is
pressed, your application would hide any visible XI objects associated with other tab buttons, and would
make visible any XI objects associated with the tab button that was just pressed. In this fashion, you can
“layer” the objects in an interface so that they take up less space. The “Link List” demonstrates this in its
popup dialog that appears if you double-click on a cell.

The way that your application creates a tab button is the same way that it creates radio buttons in a
container. However, you set btn_def->v.btn->type to XIBT_TABBTN after calling xi_add_button_def.

50

In addition, you should create an XI rectangle such that the top border of the XI rectangle is equal to the
bottom border of the container.

Record 3 1

Descr \ Other \ o I
Diate Cancel
Withio

Estimated Hours
]

Actual Hours

Figure 21 - Tab Buttons

The following code, from “Istlink.c”, is an example of creating a container that contains tab buttons, and a
rectangle that is immediately below the tab button container.

{

}

Xl _RCT
XI —OBJ

XI_O0BJ_

rct;
DEF* cntrdef;
DEF* bt ndef ;

rct.top = 3 * XI_FU MILTI PLE;
rct.bottom=rct.top + 8 * XI _FU MILTI PLE;
rct.left = XI_FU MILTI PLE;

rct.right = 43 * XI_FU MJULTI PLE;

xi_add_

rect_def(itfdef, RECT_ CID, &ct, X _ATR VISIBLE, COLOR BLACK,
COLOR VHI TE);

rct.bottom= rct.top;
rct.top = rct.bottom- Xl _FU MILTI PLE;

cntrdef

bt ndef

bt ndef -
bt ndef -

bt ndef

bt ndef -

= xi _add_cont ai ner _def (itfdef, SECTION CNTR CID, &rct,
XI _STACK_HORI ZONTAL, FORM CID);

= xi _add_button_def(cntrdef, SECTI ON ONE_CI D, NULL,
XI _ATR_ENABLED | XI _ATR VI SI BLE, "Descr",
SECTION. TWO CI D);

>v. bt n->type = Xl BT_TABBTN;

>v. bt n- >checked = TRUE;

= xi _add_button_def(cntrdef, SECTI ON_TWD CI D, NULL,
XI _ATR_ENABLED | XI _ATR VI SIBLE, "Q her",
FIELD BASE CID + fielddefs[0].type);

>v. bt n->type = Xl BT_TABBTN;

If the XI PREF_NATIVE_CTRLS is set to FALSE, XVT radio buttons are used instead of tab buttons.

51

4.12.9 Default Button

You may want to have a default button in your XI interface. This default button will have a border around it
that indicates that it is the default. When the enter key is pressed, an XIE BUTTONXIE_BUTTON event
will be generated for the default button. If any button has the focus, it will be the default button. If no
button has the focus, you can designate a button as the default. This is done by setting setting btn_def-
>v.btn->dflt to TRUE after calling xi_add_button_def.

Note that there is an option for the interface that causes enter to work like the tab key. If this is enabled, the
enter key will only press a button when a button has focus. The other exception is when a multiline edit
field has focus, then pressing enter ends a paragraph.

Only a push button, not radio buttons, check boxes, or tab buttons, may be the default button. In addition,
only one push button in the interface may have the dflt field set to TRUE, for obvious reasons.

Default buttons do not work if you are using native controls. You specify whether you are using native
controls or XI controls by setting the preference
XI_PREF _NATIVE CTRLSXI_PREF_NATIVE_CTRLS.

The following code, from “Istdb.c”, is an example of designating a default button.

bt ndef = xi _add_button_def (cntrdef, CANCEL BTN CI D, NULL,
XI _ATR ENABLED | XI _ATR VI SI BLE, "Cancel ",
DEL_BTN CI D);

bt ndef->v. btn->df It = TRUE;

4.12.10 Drawing in Buttons

You might wish to make a button, or set of buttons, and draw in the buttons. When you draw in the buttons,
you can use any of the XI or XVT drawing functions. In this fashion, you can create buttons that are similar
to icon buttons, but don’t actually use icons.

There is an advantage to using this technique: this technique is completely portable across all XVT
platforms. Icon buttons are portable in XI, but the icons themselves are not. However, if you use
xi_draw_linexi_draw_line, xvt_dwin_draw_oval, etc. to draw in a button, then the button, with your
image in it, will be completely portable.

Of course, you could also draw icons when drawing in the button. You could combine drawing icons with
other graphics, to create a very sophisticated button. A constraint is that you can only draw into push
buttons. Radio buttons, check boxes, and tab buttons do not support this feature.

The technique consists of:
. Setting the button_def->v.btn->drawable ficld in the button definition structure.

. Do drawing during an XIE_UPDATE event. This event comes through after XI is done drawing
everything that it is going to draw.

. Getting the rectangle from XI for the button that is going to contain the drawing and set the
clipping region to that rectangle.

. Calling draw functions.

4.13 Static Text

Static text is simply text used to label objects on the interface such as edit fields. Unlike other XI objects,
the user cannot “operate” them, thus the term “static”. They can be right or left justified or made invisible
as shown below.

52

4.13.1 Right-justified Static Text

If a string of static text is visible and has the attribute XI ATR _RJUSTXI_ATR_RJUST set, the text in the
string will be displayed as right justified. If the XI_ATR_RJUST attribute is not set, the edit field will be
left justified.

4.13.2 Enabled/Disabled Static Text

The XI_ATR_ENABLED attribute is supported for static text.
The effects of a static text object being disabled is that it is drawn in gray instead of black.

4.13.3 Fonts for Static Text

You may wish for certain static text fields to have a different font than the default for the interface. You
change the font used for a static text object by setting text _def->v.text->font_id to the desired font after
calling xi_add_text_def. You will need to create the font using XVT functions. The font is copied by XI
during the xi_create function and can be destroyed after that function returns.

4.14 Rectangles

You can define rectangles in XI to visually group objects in an interface. When the 3D look is not used, XI
draws rectangles with a specified foreground and background color. When the 3D look is used, rectangles
are drawn either as wells or platforms, using the colors specified in the preferences
XI_PREF_COLOR_LIGHT, XI_PREF_COLOR_CTRL, and XI PREF_COLOR_DARK. You
specify whether the 3D look is used or not by setting the preference XI_PREF 3D LOOK to TRUE or
not. The default setting is FALSE. The fore_color and back_color that you specify when calling
xi_add_rect_def are not used for 3D rectangles. See xi_set_pref for details on using preferences.

Rectangle positions are specified in form units. This allows your application to easily place rectangles
around XI objects (whose positions are also specified in form units.) It is very important to add your
rectangles to your XI interface before adding other types of objects. XI draws the objects in the order
added. If you add rectangles after you add other objects such as the form containing edit fields, then the
rectangle will be drawn after the edit fields, and obliterate them.

The most common mistake that developers make is to add an XI form, add a rectangle, then add the edit
fields to the form. In this case, because of the hierarchy of controls, the form, and thus the edit fields in it
get drawn before the rectangle.

You create a rectangle definition by calling xi_add_rect_def. The following code, from “Istlink.c”, is an
example of creating a platform rectangle definition:

rct.top = 3 * XI_FU MILTI PLE;

rct.bottom=rct.top + 8 * XI _FU MILTI PLE;

rct.left = XI _FU MILTI PLE;

rct.right = 43 * XI_FU MJILTI PLE;

Xi _add_rect _def(itfdef, RECT_CID, &rct, XI_ATR VISIBLE, COLOR BLACK,
COLOR WHI TE) ;

4.15 Lines

You may wish to visually divide an XI interface into multiple parts. One way to do this is by creating XI
lines. When the 3D look is not used, lines are drawn with a specified foreground color. When the 3D look is
used, lines are drawn either as wells or platforms, using the colors specified in the preferences

XI PREF_COLOR_LIGHTXI_PREF_COLOR _LIGHT,

XI_ PREF_COLOR_CTRLXI PREF_COLOR_CTRL, and

XI PREF COLOR DARKXI_PREF_COLOR_DARK. You specify whether the 3D look is used or not
by setting the preference XI PREF 3D LOOKXI_PREF 3D LOOK to TRUE or not. The default setting

53

is FALSE.The fore_color and back_color that you specify when calling xi_add line defxi_add_line_def
are not used for 3D lines.

Line positions are specified by two points, in form units. This allows your application to easily place lines
between XI objects (whose positions are also specified in form units.)

You create a line definition by calling xi_add_line_def.

4.16 Working with XVT/CH

XI has been ported to XVT/CH. However, there is an issue to mention. Some features of XI have to do with
manipulation of lists by the mouse. For instance, users may be able to dynamically resize columns by
grabbing the column border, and dragging it. Also, users may be able to select columns by clicking on the
column heading. All these features also have a programming interface. For example, there is a way to select
a column or set the width of the column from your application.

If you need features such as these in your application, you need to give a keyboard interface to the features.
Examples of giving a keyboard interface to these features are:

. You may make F4 select the column that contains the cell that has the focus.

. You may make a menu selection to change the width of a column.

4.17 Summary

Now that you know what characteristics XI objects can have, you are ready to learn how the convenience
functions are used to set these characteristics and build an object definition tree. With an object definition
tree, you can define a complete XI interface. Once you have the definition tree, you can instantiate it by
calling xi_createxi_create. Therefore, creating an XI interface is a two step process: 1) building an object
definition tree, and 2) instantiating the interface by passing its object definition tree to xi_create.

To give you a preview of where we are heading, in the next chapter, Defining XI Objects, you will learn
more details about the information contained in object definition structures. Once an interface has been
defined you can instantiate it by calling xi_create in the context of an XVT application, as mentioned
before. This topic is the focus of Creating an XI Interface. Once your interface has been defined and
created, your application will be notified of user actions and can call XI functions in response. Notification
of user actions is the topic of X/ Events, and manipulating objects is the topic of Using XI Objects. Beyond
the chapters mentioned are chapters describing application data, tree memory allocation and other advanced
topics.

54

Defining XI Objects

5.1 Object Definition Structures

In the beginning of Chapter 3, we introduced the notion that you create an XI object definition tree for the
purpose of specifying the available options for an object. This chapter gives you more specific information
about these definition structures.

The structures that define an XI object actually consist of two structures attached together. The first
structure is of type XI_OBJ_DEF. The purpose of this structure is to contain information found in all
objects such as a control ID, pointers to children objects and application data. Every object has a control ID
which is useful for identifying an object at compile time. For objects who have children, the structure will
store the number of children and pointers to an XI_OBJ_DEF for each child definition. Application data is
an arbitrary piece of data that your application can set for an object.

In addition to containing generic information, a field in the XI_OBJ_DEF structure points to a structure
that contains information unique to an object. For example, the definition of a button will have an

XI BUTTON_DEF, while a list will have an XI_LIST DEF. Together, the general and unique structures
contain all the information XI needs to create an object.

The XI_OBJ_DEF structure is defined as follows:

55

typedef struct _xi_obj _def

Xl _OBJ_TYPE type;

int cid;

struct _xi_obj_def *parent;
short nbr_children;

struct _xi_obj _def * *children;
| ong app_dat a;

| ong app_dat a2;

uni on

{
XI _BTN_DEF *btn;

XI _CONTAI NER_DEF *cont ai ner;
XI _FORM DEF *form

Xl _FI ELD DEF *fi el d;

XI _GROUP_DEF *gr oup;

XI _LI NE_DEF *1i ne;

Xl _RECT_DEF *rect;

XI _TEXT_DEF *text;

XI _COLUWN_DEF *col um;

Xl _I| TF_DEF *itf;

Xl _LI ST_DEF *1i st;

}ov;
} Xl _OBJ_DEF;

Refer to the XI Programmer's Reference for detailed information about the contained structures
(XI_ITF_DEF, XI_FORM_DEF, XI_FIELD_DEF, etc.)

Because the unique structures differ for each type of object, a different convenience function is used to
define each type of object. In the rest of this chapter, we will outline the relationship between an object’s
definition structures and the arguments to its convenience function. Keep in mind that when writing a real
application with XI, you would seldom define an individual object. Instead, you would normally define a
tree describing all of the objects in an interface. However, by looking at each object as it would be defined
individually, we can focus on the relationships between fields of the definition structures and arguments to
the convenience functions without “worrying about the relatives.”

5.2 Defining an Interface Object

As mentioned above, the XI_OBJ_DEF portion of any object definition has a control ID, application data,
number of children, a pointer to an array of pointers to those children and a pointer to a unique structure, an
XI_ITF_DEF in this case.

In the XI_ITF_DEF portion of the interface definition, you will specify an event handler of type
XI EVENT HANDLERXI_EVENT_HANDLER. This is where you connect an event handler to the XI
interface.

Also in the XI_ITF_DEF structure, you will find a rectangle which is the bounding rectangle for the
interface and the title of the XVT window, as well as booleans for the presence of a size box, vertical scroll
bar, horizontal scroll bar and close box.

When you use the convenience function, xi_create itf defxi_create_itf def, to create the definition
structures for an interface, you will need to pass in a control ID, the event handler, a pointer to a rectangle,
a pointer to the title string and application data stored in a long.

The bounding rectangle can be set in one of three ways. You can explicitly set the rectangle so that the
XVT window created by XI will be the size of the rectangle. Alternatively, you can tell XI to automatically
size and position the window by setting the dimensions of the rectangle to zero. By specifying the
dimensions of the upper left-hand corner of the rectangle, and then setting the bottom right coordinate to
the same value (an empty rectangle), you can determine the location of the window, but have XI
automatically size it for you.

56

When looking at the list of arguments to xi_create_itf_def, you might have also noticed that options for the
window features such as the size box, scroll bars and close box aren’t included in the list. By default, the
window will have a close box but not have scroll bars and not be resizable. If you want different options,
you will need to set these in the XI_ITF_DEF structure after calling xi_create_itf def. To do this, you get
a pointer to the XI_OBJ_DEF returned by xi_create_itf _def. Recall that the XI_OBJ_DEF contains a
pointer to the XI_ITF_DEF where you can set these booleans as shown in the following code from
“Istdb.c”.

itfdef = xi_create_itf_def(ITF_CID, (X _EVENT_HANDLER)form eh, NULL,
"Del ete Enpl oyee", OL);

itfdef->v.itf->automatic_back col or = TRUE;

itfdef->v.itf->npdal = TRUE;

You might have also noticed that xi_create_itf def did not take either the number of children or a pointer
to an array of them. As we saw in section 3.2, Using the Convenience Functions, the convenience functions
are responsible for adding children to the array of objects in the children's parent.

5.3 Defining Forms

Like other XI objects, the XI_OBJ_DEF portion of any object definition has a control ID, application data,
number of children, a pointer to an array of pointers to those children and a pointer to an unique structure,
an XI_FORM_DETF in this case.

In XI_FORM_DEF, you will find a tab control ID which points to the control ID of the next composite
object in the interface such as a list, container, or another form. The tab control ID is used to control how
the focus moves when the user presses the “meta-tab” key. When pressed, this key tells XI to move the
focus to the next composite object in the navigation sequence—allowing the user to move between objects
casily.

When you looked at the list of items a form definition contains, you might have noticed that the form has
no placement or sizing information. This is because it is only a collection of edit fields. The edit fields in a
form can be placed anywhere inside the window.

When using the convenience function, xi_add form defxi_add_form_def, to define a form you will pass
in a control ID, a tab control ID and a pointer to the interface definition. The form becomes the child of the
interface definition.

When looking at the list of arguments to xi_add_form_def, you might have noticed that you didn’t pass in
a long for application data. Although you can supply application data for all XI objects, you will need to
explicitly set the application data field in the XI_OBJ_DEF structure for any object other than the
interface.

The following code, from “Istdb.c”, shows the definition of a form.
forndef = xi _add _formdef(itfdef, FORMCID, FORMCID);

5.4 Defining Edit Fields

In the XI_OBJ_DEF for an edit field, you will find the control ID for the edit field, a place to keep
application data, and a pointer to the unique structure for an edit field, XI_FIELD DEF. In the
XI_OBJ_DEF, there are places to hold information about children, but since edit fields do not have
children, these fields will be set to NULL.

In the XI_FIELD_DEF structure, you can set the tab control ID, edit field position and width, number of
characters the user can type, the attribute, and enabled and disabled colors, background and disabled
background colors, and the color of the edit field when it has the focus. The XI_FIELD_DEF structure
contains many other important pieces of information. See XI_FIELD_DEF in the XI Programmer's
Reference for a complete list of the fields available in an XI edit field.

57

The control ID for an edit field is important in specifying where the edit field is in the tabbing sequence.
The tab control ID determines the next edit field or other object that can actually have focus. You should
not set this to tab to a form, container or list.

The convenience function you use to define an edit field is xi_add_field defxi_add_field_def. When
calling xi_add_field_def, you pass in much of the information mentioned above. Many features need to be
enabled by setting values explicitly after the edit field is defined.

To set the position of the edit field, you specify its upper left-hand corner in form units. You set the text size
and the edit field width separately because an edit field can contain more characters than can be displayed
if it has the XI ATR_ AUTOSCROLLXI_ATR_AUTOSCROLL attribute set.

The following code, from “Istlink.c”, shows creating edit field definitions and setting values in the
definition structure.

for (num= 0; fielddefs[num].width !'= 0; num-+)
{

Xl _0OBJ_DEF* def;

long attrib;

attrib = XI_ATR AUTOSELECT | Xl _ATR_AUTOSCROLL;
if (fielddefs[num].section <= 1)
attrib | = XI_ATR VI SI BLE;
if (fielddefs[num].enabled)
attrl b | = XI _ATR ENABLED | XI _ATR BORDER
def = xi_add_field def(forndef, FIELD BASE_ CI D
+ fiel ddefs[num].ty
i el ddefs[num].v * XI _FU_MULTI PLE,
ielddefs[num].h * XI_FU MILTI PLE,
ielddefs[num].width * 3
2 * XI _FU MJULTI PLE,
trib, (flelddefs[num+ 1].type == 0)
SAVE_BTN CID : FIELD BASE _CI D
fielddefs[num+ 1].type,
fielddefs[num].width + 1, COLOR BLACK,
COLOR_WHI TE, COLOR BLACK, COLOR WHI TE,
COLOR BLACK);
if (fielddefs[num].height T=0)
{

f

f

f

/
at
?
+

XI _RCT* prct = &def->v.field->xi_rct;

prct->top = def->v.field->pnt.v;

prct->left = def->v.field->pnt.h;

prct->bottom = prct->top + fielddefs[num]. height *
Xl _FU_MJLTI PLE;

prct->right = prct->left + 40 * XI _FU MJLTI PLE;

def->v.field->button = fielddefs[num]. button;

}
5.5 Defining Lists

As with other XI objects, the general structure for a list definition has a control ID, a place to store
application data, the number of columns in the list, and a pointer to an array of pointers to those columns.

As with other XI objects, the tab control ID indicates the next object in the tabbing sequence. In this case, it
is the next composite object (list, form or container) to receive the focus when the user presses the meta-tab
key. The tab control ID is found in the structure XI_LIST_DEF.

Also in XI_LIST_DEF, you will find information about the location of the list, its height, its attributes and
colors. The location and height are in form units. The colors are the enabled color, background color,

disabled color, disabled background color and active color. The active color determines the color to which a
cell changes when it gains the focus. The XI_LIST_DEF structure contains many other important pieces of

58

information. See XI_LIST_DEF in the XI Programmer's Reference for a complete list of the fields
available in an XI list.

When looking at the items in the list definition structures, it is not necessary to set a width for the list. This
is because XI will calculate the width of the list automatically by adding together the widths of the columns
with an appropriate amount of spacing between them. Because the width of a column is stored in the
column’s unique definition structure, (XI_ COLUMN_DEF) and the general definition structure for the list
(XI_OBJ_DEF) points to an array of pointers to the definitions of its columns, this information is available
to XI so that it can determine the width of the list. However, if you do set a width for the list, then XI will
scroll columns horizontally within that width.

You might have also noticed that you didn’t set the number of rows for a list. This is because XI will
calculate the number of rows that will fit inside the list height at run-time when the list is instantiated. You
might also have noticed that you can specify a one-row list explicitly, and XI will automatically size it for
you. This is because a list that is one row on one platform may be three rows on another. If having the list
be one row is important to the look and feel of your application, you can force it by overriding XI’s
automatic row fitting behavior.

The convenience function used to define a list is xi_add list_defxi_add_list_def. Its arguments correspond
to the fields in the definition structures. You can set many other options for a list after the convenience
function has created the appropriate definition structures. The following code, from “Istdb.c”, demonstrates
creating a list definition and setting options for it.

listdef = xi _add_list_def(itfdef, LIST.CID, 0, 0, 8 * XI _FU MILTIPLE,
XI _ATR ENABLED | XI _ATR VI SIBLE |
X| TATR_TABWRAP, COLOR BLACK, COLOR WHI TE,
COLOR BLACK, COLOR WHI TE, COLOR BLACK,
LIST CID);

listdef->v.list->scroll_bar = TRUE;
listdef->v.list->sizable _colums = TRUE;
listdef->v.list->novabl e col utmms = TRUE;
listdef->v.list->fixed colums = 1;
listdef->v.list->width = 80 * XI_FU MJLTI PLE;
listdef->v.list->select _cells = TRUE;
listdef->v.list->resize with_w ndow = TRUE;
listdef->v.list->scroll_bar_button = TRUE;
listdef->v.list->drop_and_del ete = TRUE;

5.6 Defining Columns

Like other XI objects, the general information for a column definition is stored in its XI_OBJ_DEF
structure. This information is the column’s control ID, application data, and information about children.
Since columns do not have children, these fields are set to NULL by the convenience function that defines
a column, xi_add column_defxi_add_column_def.

In the unique definition structure, XI COLUMN_DEF, you will find a position, column width, buffer or
text size, heading text and column attributes. The position field tells XI the order of the columns in the list.
It is important because you can add (or delete) columns after the list has been instantiated. This number will
determine where the new column will go.

The column width is the size of the column in form units. Notice that it doesn’t correspond to the number
of characters the user can type in a cell. This is because string length is determined by the buffer size. If the
attribute, XI ATR_AUTOSCROLLXI_ATR_AUTOSCROLL is set for the column, the user can type
more characters than the cell will display at one time.

The heading text is the label at the top of the column.

The arguments for the convenience function, xi_add_column_def that match the fields of the structures
mentioned above are the control ID, attribute, sort number, width, text size and column heading text. Once
again, application data and other options are not included and need to be set explicitly after the function has
returned.

59

The following code, from “Istmem.c”, demonstrates creating a column definition and setting options for it.

col def = xi _add_colum_def(listdef, CO._BASE CI D + VALUE_| TEM NBR
STD COL_ATR | Xl _ATR SELECTABLE,

1, 6 * XI_FU MIULTIPLE, 5, "Nbr");
#i f THREE_DI MENSI ONAL
col def - >v. col um- >headi ng_pl at f orm = TRUE
col def - >v. col um->col um_pl atform = TRUE
#endi f
col def ->v. col unm->si ze_rows = TRUE

5.7 Defining Containers

Like other XI objects, the XI_OBJ_DEF portion of any object definition has a control ID, application data,
number of children, a pointer to an array of pointers to those children (button definitions) and a pointer to
an unique structure, an XI_CONTAINER_DEF in this case.

The bounding rectangle is set in form units. The container orientation specifies whether the buttons are
stacked horizontally, vertically, or in a grid. The tab control ID determined the next composite object (form,
list or container) in the tabbing sequence for the meta-tab key. All of these are available as arguments to the
convenience function, xi_add_container_defxi_add_container_def. As with other objects, application data
for the container will need to be set explicitly after xi_add_container_def returns.

The members of the XI_CONTAINER_DEF structure include a packed flag and height and width for the
size of buttons in a “grid” orientation. The following code, from “Istdb.c”, shows how to create a container
definition and set options for it.

rct.top = 0;
rct.left = 0;
rct.bottom = 24;
rct.right = 144;
cntrdef = xi_add_container_def(itfdef, CONTAINER CI D, &rct,
Xl _GRI D_HORI ZONTAL, LIST CD);
cntrdef - >v. cont ai ner->packed = TRUE
cntrdef->v.container->btn_width = 6 * XI_FU MILTI PLE

5.8 Defining Buttons

In the general structure defining a button, you will find the button's control ID, application data, and
information about its children. Since a button does not have children, these fields are set to NULL by the
convenience function, xi_add button defxi_add_button_def.

In the structure unique to button definitions, XI_BTN_DEF, you will find its bounding rectangle, attribute,
label text and tab control ID.

The bounding rectangle is in form units and specifies how big you want the button to be up to the size of
the container holding it. The tab control ID specifies the next button in the tabbing sequence. Unlike the tab
control IDs for composite objects, this determines what button the focus will move to when the user presses
the tab key. Some of the information used to define a button is available as arguments to the convenience
function xi_add_button_def. As with other objects, other features will need to be enabled by setting fields
explicitly when xi_add_button_def returns

The following code, from “Istdb.c”, shows how to create a button definition and set options for it.

bt ndef = xi _add_button_def(cntrdef, DEL BTN CI D, NULL,
XI _ATR ENABLED | XI _ATR VI SI BLE, "Del",
ADD BTN CI D);

bt ndef ->v. bt n->fore_col or = COLOR_RED,

bt ndef - >v. bt n- >down_i con_rid = DEL_BTN_| CON

bt ndef ->v. btn->up_icon_rid = DEL BTN | CON

60

5.9 Defining Groups

As you’ve seen before, in the XI_OBJ_DEF structure to define an XI object, you will find the control ID
of the object, a place to put application data, number of children and a pointer to an array of pointers to the
definitions of those children. With groups, you don’t actually have children because the group merely refers
to the children of another object (list or form). This is because you wouldn’t want the same object
instantiated twice. Therefore, the references made to the members of the group are found in the structure
unique to groups, XI_GROUP_DEF.

The references made to the members of a group are to the control IDs of the edit fields or columns in the
group. Keep in mind that you cannot have a group with both edit fields and columns. Also in the
XI_GROUP_DEF structure is the number of members. There are no attributes for a group.

All characteristics of a group are set via the convenience function, xi_add_group defxi_add_group_def
except for application data as with other interface children.

The following code, from “Istdb.c”, shows how to create a group definition.

int cids[2];

cids[0] = COL_BASE CID + DB_EMP_M NHRS;

cids[1l] = COL_BASE CID + DB_EMP_MAXHRS;

xi _add_group_def(itfdef, GROUP_CID, 2, cids);

}
5.10 Defining Static Text

As with other objects that do not have children, the children fields in the XI_OBJ_DEF structure to define
all objects are not used when defining static text objects.

In the unique structure, XI_TEXT_DEF, the bounding rectangle for the text object can be set as well as its
label. In addition, you can set its attribute. Setting these fields is done with the the convenience function,
xi_add text defxi_add_text def. Like other objects that are children of an interface, application data for
the text object must be set explicitly.

The following code, from “Istdb.c”, shows how to create text definitions.

for (num= 0; textdefs[num].text !'= NULL;, numt+)

{
Xl _RCT rct;

rct.top = textdefs[num].v * XI_FU MJLTI PLE;

rct.left = textdefs[num].h * Xl _FU MILTI PLE;

rct.bottom=rct.top + XI_FU MILTI PLE;

rct.right = rct.left + strlien(textdefs[num].text)

* 3/ 2 * Xl_FU MILTI PLE;

Xi _add_text _def(itfdef, TEXT _BASE CID + num &rct,
XI _ATR VI SI BLE | XI _ATR ENABLED,
textdefs[num].text);

}
5.11 Defining Rectangles

As with other objects that do not have children, the children fields in the XI_OBJ_DEF structure to define
all objects are not used when defining rectangle objects.

In the unique structure, XI_RECT_DEF, the bounding rectangle for the rectangle can be set, as well as
colors, and whether the rectangle is a well or platform rectangle. In addition, you can set its attribute.
Setting most of these fields is done with the the convenience function, xi_add rect defxi_add_rect_def.
The 3D appearance of rectangles (i.e. well or platform) is enabled by setting the well field after the return
of xi_add_rect_def.

61

The following code, from “Istlink.c”, shows how to create a rectangle definition.

rct.top = 3 * XI_FU MJILTI PLE;

rct.bottom=rct.top + 8 * XI _FU MILTI PLE;

rct.left = XI_FU MILTI PLE;

rct.right = 43 * XI_FU MJLTI PLE;

xi _add_rect_def(itfdef, RECT_CID, &rct, XI_ATR VISIBLE, COLOR BLACK,
COLOR WHI TE);

5.12 Defining Lines

As with other objects that do not have children, the children fields in the XI_OBJ_DEF structure to define
all objects are not used when defining line objects.

In the unique structure, XI_LINE_DEF, the starting and ending points of the line can be set, as well as
colors, and whether the line is a well or platform line. In addition, you can set its attribute. Setting these
fields is done with the the convenience function, xi_add line defxi_add_line def.

5.13 Summary

In the next chapter, you will learn how to instantiate a definition tree by calling xi_createxi_create. Once
the hierarchy is instantiated, you may not need the definition tree any longer. You can free it by calling the
xi_tree_freexi_tree free or xi_def free function with the pointer to the definition tree. However, if your
application allows closing and reopening of interfaces or allows two instances of the same interface to be
active at the same time, you may want to keep the definition tree around so that you don’t have to redefine
it each time you need to instantiate the interface.

62

Creating an XI Interface

creating an interfaceBefore you can instantiate an XI interface, you will need to create an interface
definition tree as explained in the chapter Creating an Object Definition Tree.

After you construct an object definition tree, you will need to call xi_createxi_create to instantiate it. In
addition to creating the interface, you will need to size it and hook it up to XVT. These topics are the focus
of this chapter.

6.1 Sizing the Interface

As mentioned before, in order to create an interface, your application must construct a definition for the
interface, and then instantiate it by calling xi_createxi_create. However, there can be an intermediate step
between defining the tree and instantiating it whereby your application is given the chance to adjust the size
and position of the window that will be created to hold the interface. Since each native system has a
different size of screen, height of the system font, border widths and other display characteristics, your
interface will be a different size on each system. Because you cannot know how big an interface is going to
be at compile time, it is important to have XI tell you how big the interface will be on the system before
you instantiate it.

After creating your interface definition tree, your application can call the function

xi_get def rectxi_get def rect to get the bounding rectangle that the interface will occupy. This rectangle
is in pixels, not form units, and its upper-left corner is always zero. Given this rectangle, it is possible for
your application to compute an appropriate rectangle for the window to hold the interface.

There are three approaches you can take to size the interface. The first approach is to let XI figure out how
big the window should be to hold the interface. This is done by specifying a NULL rectangle in the rctp
field of XI_ITF_DEFXI_ITF_DEF structure in the object definition tree. When using the convenience
functions, pass NULL for the retp argument. This tells XI to compute the window size and position. It does
this by figuring the bounding rectangle around all controls in the interface and then adding a margin along
the bottom and right, according to the preferences XI_PREF_ITF WS _BOTTOM and

XI_PREF _ITF_WS_RIGHT or the local overrides in the interface definition, whitespace_bottom and
whitespace_right.

63

The second approach is to let XI decide how large the window should be, but you decide where the upper
left corner of the window should be placed. To do this, in the retp field of the XI_ITF_DEF structure, you
will specify an empty rectangle by setting the top and left fields, and then setting the right field equal to the
left and the bottom equal to the top. This tells XI where to position the window on the screen, but it will
need to compute the size itself.

The third approach is to determine the size and placement of the window yourself. To do this, you will
probably call xi_get_def rect to get the dimensions of the rectangle in form units. You then compute your
own rectangle based on that, and put the rectangle you compute into the retp field of the XI_ITF_DEF
structure. The third approach is the most flexible because among other things, it allows you to reserve some
extra space in the window for your application’s own use.

The following code, from “main.c”, shows how to set the interface definition rectangle so that the interface
will be centered.

void center_interface(XI_OBJ_DEF* itfdef)

{
RCT r;
int wdth, height;
RCT* itf_rct = itfdef->v.itf->rctp;
Xi _get _def rect(itfdef, &);
width =r.right - r.left;
height = r.bottom- r.top;
xvt_vobj_get_client_rect(TASK WN, &);
itf_rct->top = (r.bottom- height) / 2;
if (itf_rct->top < xi_get_pref(XI_PREF ITF MN.TOP))
itf_rct->top = (int)xi_get_pref(XI_PREF_ITF_MNTOP);
itf rct->left = (r.right - wwdth) / 2;
if (itf_rct->left < xi_get pref(XI_PREF ITF MN LEFT))
itf_rct->left = (int)xi_get_pref(XI_PREF_ITF_M N _LEFT);
itf_rct->bottom=itf_rct->top;
itf rct->right = itf_rct->left;
if (itfdef->v.itf->nodal
xvt _vobj _translate_points(TASK WN, SCREEN WN, (PNT*)itf_rct,
2);
}

6.2 Instantiating the Interface

After you have determined the size of the interface, or plan to let XI determine it for you, you are ready to
call xi_createxi_create with the XI_OBJ_DEF for the interface definition. In addition to the pointer to the
interface definition tree, xi_create takes another argument which is the parent. When instantiating an entire
interface, you set the parent parameter to NULL to indicate that you are going to create a complete
interface hierarchy. xi_create will return an XI_OBJ pointer to the interface.

Once the hierarchy is instantiated, you may not need the definition tree any longer. You can free it by
calling the xi_tree_freexi_tree_free or xi_def free function with the pointer to the definition tree.
However, if your application allows closing and reopening of interfaces or allows two instances of the same
interface to be active at the same time, then you may want to keep the definition tree around so that you
don’t have to redefine it each time you need to instantiate the interface.

At this point, you know how to define an interface and instantiate it. Having the interface work correctly in
the context of an XVT application involves XVT programming as explained in the next section.

6.3 Hooking It Up to XVT

In addition to the code you need to write with XI, there are two XVT functions you must write in order to
create an XI application. These are mainmain and the task window's event handler. These functions are
necessary when writing any XVT application, including one using XI. In this section, you will learn how to

64

program these functions in the context of an XI application. If, after reading this section, you need more
information about main and the task window's event handler, see the XVT documentation.

6.3.1 Programming the Task Window's Event Handler

There are two things you must do within the task window to have XI work properly. You might want to call
xi_create in response to a user action such as a menu item being selected. In addition to responding to
native XVT events, the second thing you must do in the task window's event handler is to put in a call to
xi_initxi_init on the E_CREATE event, so that XI can initialize itself. (There is no cleanup operation on
XL)

The first half of “main.c” demonstrates how to do this. The function main makes the proper call to
initialize XVT. It sets the task window handler function to task eh. This function calls init_application
which handles the initialization of XI. The task_eh function also calls do_menu which calls the various
functions that create XI interfaces.

6.3.2 Connecting XI Interfaces to XVT

There are three different methods by which you hook up an XI interface to XVT. The following three
sections examine these different methods. The last section explains a variation on the third method, to place
an XI interface into the task window.

The fundamental issue with hooking up XI to XVT is to make sure that the appropriate XVT events are
getting to XI. There is nothing hidden about how XI works. XI simply processes XVT events, but it is
important that the XVT events get to XI. It is helpful for you to know exactly how events are getting to XI.

If you have problems getting a window to have the behavior that you want, do the following experiments:

. Make sure that you can create the window in XVT, with the characteristics that you want. Initially,
don’t put the XI interface into the window - leave XI out of the picture. After you can create the
XVT window exactly like you want it, then it is straightforward to place the XI interface into the
existing window.

. Verify that events are getting to XI. If you have your own XVT event handler for the window,
place a break point immediately before the call to xi_event.

. One other common problem is when xi_init does not get called by the application before the XI
system font is set or preferences are set. Verify that xi_init was called. XI will call xi_init for you,
if you call xi_create before calling xi_init, but it is better not to rely on this because the XI
preferences and system font may not be set the way you want.

6.3.3 Approach 1: Let XI Create the Window For You

By default, when you call xi_create, and let XI create the window for the XI interface, then XI uses
xi_event as the XVT event handler for the window. This means that when XVT generates an event, it calls
xi_event to process it. XI then does three main things with the XVT event:

1. Xl calls your XI event handler with an XIE_XVT_EVENT. This gives you the opportunity to process
XVT events and, perhaps, refuse them so that XI does not process the event.

2. Ifitis not refused, XI then processes the XVT event and may generate one or more XI events. For
example, an E_ MOUSE_DOWN event may cause several XI off and on focus events.

3. Finally, XI generates an XIE_XVT_POST_EVENT for the XVT event. This gives you an opportunity
to do any processing that might be necessary after XI has completed processing the XVT event.

Most of the interfaces in the example use this method. The following code, from “Istdb.c”, demonstrates
this method of creating an interface.

65

itfdef = xi _create_itf_def(ITF_CID, (X _EVENT_HANDLER)Ii st_eh, NULL,
"Linked List", OL);

itfdef->v.itf->ctl_size = TRUE

itfdef->v.itf->nenu_bar _rid = MENU BAR RI D,

itfdef->v.itf->automatic_back col or = TRUE;

itfdef->v.itf->edit_nmenu = TRUE;

/* Oher definitions created here. */

Xi _create(NULL, itfdef);
xi _dequeue();
Xi _tree free(itfdef);

6.3.4 Approach 2: Create the XVT Window with
xi_event as Event Handler

This approach uses the XVT function to create the window and then sets the win field of the interface
definition. This tells XI to use the existing window instead of creating its own. The xi_event function is
still used as the direct XVT event handler, but must be explicitly specified in the XVT function that creates
the window.

The following code, from “Istdb.c”, shows how to do this in order to make the window iconizable.

{
RCT r;

Xi _get _def rect(itfdef, &);
xvt_rect_offset(&r, (short)X| _get_pref(XI_PREF_ITF_M N _LEFT),
(short)xi _get _pref(XI_PREF ITF MN.TOP));
itfdef->v.itf->win = xvt_win_create(WDOC, &, "Enployee List"
MENU_BAR RI D, TASK_W N,
WSF_SI ZE | WBF_CLOSE
| WSF_| CONI ZABLE, EM ALL,
(EVENT _ HANDLER)Xl event, OL);

}

Xi _create(NULL, itfdef);
xi _dequeue();

Xi _tree free(itfdef);

While the prototype for xi_event is nearly identical to the prototype of
EVENT HANDLEREVENT_ HANDLER, it is not the same. Therefore, cast xi_event as an
EVENT_HANDLER when calling xvt_win_create.

6.3.5 Approach 3: Create the XVT Window with Your
Own Event Handler

The third approach is to write an event handler for your XVT window. In this event handler, you must call
xi_event, passing all events to XI for processing. This approach is very rare since all XVT events can be
processed in the XI event handler. It’s your choice as to when to call xi_event, but any XVT event that does
not get passed to XI in this way may cause the XI interface to function incorrectly.

6.3.6 Putting an XI Interface in the Task Window

In XVT/Win, XVT/NT or XVT/PM, you may wish to put an XI interface into the task window. In order to
do this, four things must be done:

66

1. The task window must be made drawable. This is done by calling xvt_vobj_set_attr with the
appropriate attribute. This attribute can be found in the platform-specific books from XVT. The
attribute will probably be ATTR_WIN_PM_DRAWABLE_TWIN. This function must be called
before initializing XVT.

2. You must place a call to xi_event in the task window event handler. This is usually added at the
end of the XVT event handler function.

3. After you have initialized XI in the E_CREATE event for the task window, you can then create an
Xl interface and set the win field of the interface definition to TASK WIN.

Some notes about drawable task windows:

¢ Ifyou do not create the XI interface during the E_ CREATE event, you are responsible for handling
the background drawing of the task window.

¢ The MDI (multiple document interface) cannot be used with a drawable task window.

In general, we suggest that you avoid drawing into the task window because it is not portable to all
platforms.

6.4 Summary

After you have done the necessary things to create an interface, and program main and the task window's
event handler, the next thing you must do is write an XI event handler function. The purpose of the event
handler function is to handle the XI events that are generated as the user operates the interface. XI events
and the event handler functions you’ll need to write are described in the following chapter.

67

XI Events

In this chapter, you will encounter an overview of XI events and a description of the code you’ll need to
write to handle them. When programming with XI, you will need to create an XI event handler function to
receive the events generated for each interface. Recall that XI will generate events to notify your
application that the user has done something, or to ask it for information. Following the discussion on event
handlers, we will describe in more detail the types of events XI generates, and how the events are sent to
your event handler. In addition, you will find a discussion of the XI focus model and the events associated
with focus notification.

7.1 XI Event Handlers

event handlerAn XI event handler is the focal point for all of the activity that takes place in an XI
application during the lifetime of an interface. XI generates the appropriate events by passing an
XI_EVENT structure to your XI event handler function. The event structure contains a field indicating the
type of event. In addition, the event structure contains any pertinent data related to the event. After
receiving the event, the event handler is responsible for figuring out whether or not the event is important,
and then acting on it appropriately. For example, the event handler may be asked to provide XI with data
for a list; it may want to take some action to respond; or it may want to refuse the event as the case may be.
As you can see, the event handler you will be writing will need to be prepared to receive any event XI
might send throughout the lifetime of the interface.

To illustrate, as soon as an interface is instantiated, your event handler will be informed so that it can set up
its data structures and allocate memory, open files, or whatever else it needs to do to at that time. If the
interface has a form or list, your application will also need to initialize it soon after the interface is
instantiated.

Once the interface is fully initialized, your event handler will begin receiving events notifying it that the
user is manipulating controls, and informing it that the user is finished with what he is doing and wants to
do something else on the interface. When appropriate, your event handler can refuse these events to prevent
these actions from taking place. When the user is done using the interface, the event handler will receive an
event so that it can free up memory, destroy XVT fonts and so on.

To set up an event handler, you must designate a function to receive XI events, and register this function
with XI when defining the interface. In addition, by passing XVT events to XI via xi_eventxi_event, you

68

are telling XI to intercept XVT events, turn them into XI events, and send the XI events to your event
handler.

An application can use the same XI event handler for all of its interfaces or it can have a different one for
each interface. It doesn’t really matter as long as the application supplies some event handler for each XI
interface that your application creates.

7.2 Responding to XI Events

XI events are sent to your application via an event handler, as explained in the introduction to this chapter.
An event handler has two parameters. The first parameter is a pointer to the interface object. The second
parameter is an XI EVENTXI_EVENT structure. The XI_EVENT structure will contain information
about the event such as the type of event and data your application might need in order to respond to the
event.

When writing your event handler function, you will need to create a mechanism for separating events by
event type. To separate the events by type, you will need to switch on the type field of the event structure
passed to your event handler so that for each type of event your event handler receives, your program does
something different. The types of events are things like XIE_INIT, XIE_OFF_FIELD, XIE ON_FORM,
XIE_CHG_CELL.

Within the code that responds to each event type, you may need to further subdivide the event handling
code so that different code is executed for each object you care about. Once again, this is typically done
with a switch statement. Within an event structure, many events have an XI_OBJ associated with them
where you can find out the control ID of the object for which the event was generated. You switch on the
control IDs of the objects you might have in your interface so that you can have a separate case in your
event handler function for each object. For example, on an XIE_BUTTON event, you could have a switch
statement where there is one case for every button in the interface.

As you’ll see in the following code example, we are illustrating only the mechanics of responding to XI
events. What the events mean and why they are sent are topics addressed later in this chapter. What your
application should do in response to receiving an event is discussed in detail in the next chapter, Using X7
Objects. The following code example illustrates using switch statements to control program flow in an XI
event handler.

void formprocess button(XI_OBJ* itf, Xl _OBJ* button)
FORM INFO* forminfo = (FORMINFO*)xi _get app_data(itf);
switch (button->cid)

case SAVE_BTN Cl D:
if (!'xi_rmove_focus(itf))
br eak;
if (form.info->changed)
update_record(xi_get_obj(itf, FORMCID), form.i nfo-
>handl e);
refresh_row(form.info->parent_Ilist, form.info->handle);
form.i nf o- >changed = FALSE;
Xi _delete(itf);
br eak;
case CANCEL_BTN Cl D
if (form.info->changed && xvt_ask("No", "Yes", NULL,
"You have made changes. Are you sure you want to cancel ?")

= RESP_2)
br eak;
xi _delete(itf);
br eak;

69

case SECTI ON_ONE_Cl Dt
case SECTI ON_TWO ClI D

{
SECTION_I NFO* info = (SECTION_INFO*) xi _get _app_data(button);
if (forminfo->cur_section !=info)

change_section(form.info->cur_section, FALSE);
change_section(info, TRUE);
form.info->cur_section = info;

}
Xi _check(button, TRUE);
br eak;

}
case FI ELD BASE CI D + LI NK_WHO
create_who list(button, formeh);
br eak;
}
}

static void formeh(XI_0OBJ* itf, XI_EVENT* xiev)
FORM I NFO* form.info = (FORM.I NFO*)xi _get _app_data(itf);
switch (xiev->type)

case XIE_INT:

{
i nt numn
XI_0BJ* form
XI_0BJ** field;

form= xi_get obj(itf, FORMCD);
field = form>children;
for (num= 0; num< form >nbr_children; numt+, field++)
link set text(form.info->handle, (*field)->cid
- FIELD BASE CID, *field);
br eak;

}
case Xl E_CLOSE:
if ((!'xi_nmove_focus(itf) || form.info->changed)
&& xvt _ask("No", "Yes", NULL,
"You have made changes. Are you sure you want to cancel ?")
= RESP_2)
xi ev->refused = TRUE;
br eak;
case Xl E_BUTTON.
formprocess button(itf, xiev->v.xi_obj);
br eak;
case Xl E_CHG Fl ELD:
form.info->field changed = TRUE;
br eak;

70

case XIE_OFF_FI ELD:
if (form.info->field_changed)

XI_0OBJ* field = xiev->v.xi_obj;

if (!'link validate(field->cid - FIELD BASE CI D,
xi _get _text(field, NULL, 0)
xi ev->refused = TRUE;
el se

form.i nfo->changed = TRUE
forminfo->field changed = FALSE
}

br eak;

}
}

7.3 Refusing XI Events

refusing eventsUnlike other windowing systems, XI often notifies you of an event before it happens so that
you can prevent the action from taking place. For example, XI has a class of events called focus events
which are sent to inform your application that the user is trying to move keyboard focus from one control to
another. Typically, a focus event is a signal to your application indicating that it should validate the contents
of an edit field, form, cell, or row before letting the user continue. If the data entered is invalid, you can set
the refused flag in the XI event structure to TRUE and return to XI. This will keep XI from moving the
focus until the user has typed valid data.

Not all XI events can be refused. In particular, you cannot refuse events sent to indicate that something has
already happened. An example of a non-refusable event is XIE_ CLEANUPXIE_CLEANUP which
informs your application that an interface has been deleted so that it can free up the memory used for
application data associated with the interface. This event cannot be refused because it is an indication that
the interface has already been deleted. However, the XIE _CLOSE event, which occurs just before the
interface is deleted, can be refused. Most events that cannot be refused have a corresponding event that can
be refused. These relationships are detailed in the X7 Programmer s Reference.

The following tables list events that can be refused and those that can’t. Each event is described briefly in
the tables and then described in more detail later in the chapter.

Refusable Events

XIE_XVT_EVENT XI sends every XVT event to your XI event handler before XI
processes that event. You refuse the event if you want XI to ignore that
particular XVT event.

XIE_COL_DELETE XI sends this interface event to inform your application that the user

attempted to delete a column by dragging it off of the list. You refuse
the event if you do not want the column to be deleted.

XIE_COL_MOVE XI sends this interface event to inform your application that the user
moved a column. You refuse the event if you want the column to
remain in the same position.

XIE _COL_SIZE XI sends this interface event to inform your application that the user
sized a column. You refuse the event if you want the column to remain
the same width.

XIE_CLOSE XI sends this interface event to inform your application that the user
attempted to close the window containing the interface. You refuse the
event if you want the user to finish doing something else before
deleting the interface.

71

XIE_DROP_ROW

XIE_GET_FIRST

XIE_GET_LAST

XIE_GET_NEXT

XIE_GET_PREV

XIE_OFF_CELL

XIE_OFF_COLUMN
XIE_OFF_FIELD
XIE_OFF_FORM
XIE_OFF_GROUP
XIE_OFF_LIST
XIE_OFF_ROW

XIE_CHAR_CELL

XIE_CHAR_FIELD

XIE_ON_CELL

XIE_ON_COLUMN
XIE_ON_FIELD
XIE_ON_FORM
XIE_ON_GROUP
XIE_ON_LIST
XIE_ON_ROW

XIE_ROW_SIZE

XIE_SELECT

72

XI sends your application this row event to notify it that the user
attempted to move a row by dragging and dropping it. You refuse the
event if you do not want the row moved.

This record event is sent by XI to ask that your application get the first
record displayed in a list. This event is most often seen when
initializing a list. You refuse the event if there is no record.

This record event is sent by XI to ask that your application get the last
record displayed in a list. This event is most often seen when you move
the thumb to the bottom of the vertical scroll bar. You refuse the event
if there is no record.

This record event is sent by XI to ask your application to get the next
record displayed in a list. This event is most often seen when
initializing a list and during a downward scrolling operation. You refuse
the event if there is no record.

XI asks your application to get the previous record displayed in a list.
This event is most often seen during an upward scrolling operation.
You refuse the event if there is no record.

XI sends XIE_OFF_* focus events to inform your application that the
user is attempting to move the focus off of an XI object. Reasons for
refusing focus events are described later in this chapter and in Using X1
Objects.

See XIE_OFF_CELL.

This event is sent by XI to notify your application that the user has
typed in a cell. You refuse this event if you don't want the character to
be inserted into the cell.

This event is sent by XI to notify your application that the user has
typed in an edit field. You refuse this event if you don't want the
character to be inserted into the edit field.

XI sends XIE_ON_* events to inform your application that the user is
attempting to move the focus to an object on the interface. You refuse
the event if you want the user to finish doing something else on the
interface before moving to the object.

See XIE_ON_CELL.

XI sends this event when the user dynamically changes the height of a
row. You refuse the event if you want the row height to remain as it
was.

XI sends this event to inform your application that the user selected or
deselected either a row, a column, or a range of cells on the list. You

refuse the event if you want the row or column not to be selected or
deselected. When selecting (or deselecting) a range of cells, the
XIE_SELECT event is not refusable.

non-refusable eventsNon-Refusable Events

XIE_XVT_POST_EVENT

XIE_BUTTON

XIE_CELL_REQUEST

XIE_CHG_CELL

XIE_CHG_FIELD

XIE_CLEANUP

XIE_COMMAND

XIE_DBL_CELL

XIE_DBL_FIELD

XIE_GET_PERCENT

XIE_INIT

XIE_REC_ALLOCATE

XIE_REC_FREE

XIE_UPDATE

XIE_VIR_PAN

XI sends every XVT event to your XI event handler after XI processes
the event.

This button event is sent by XI to notify your application that the user
has pressed a button.

XI sends this list event to ask your application to supply it with text and
other information to display in a cell. XIE_CELL_REQUEST events
follow XIE_GET_* record events.

XI sends this list event to notify your application that the user has
changed the contents of a cell.

XI sends this form event to notify your application that the user has
changed the contents of an edit field.

XI sends this interface event asking your application to free any data
stored in the application data of the interface and to destroy any XVT
fonts that are used in the interface.

XI sends this event to notify your application that the user has selected
a menu item.

XI sends this list event to notify your application that the user has
double-clicked on a cell.

XI sends this form event to notify your application that the user has
double-clicked on an edit field.

XI sends this event asking your application to indicate the percentage
through the data for a record in the list. XI uses the value returned to set
the thumb position on the scroll bar.

This interface event is sent to notify your application that the interface
has been instantiated and that you should initialize its application data
structures.

XI sends this event when your application should allocate space for a
record on the list.

XI sends this event when your application should free space allocated
during an XIE_REC_ALLOCATE event.

XI sends this event after XI is done drawing the interface. You can
draw on top of the XI interface during this event.

XI sends this event when an XI virtual interfacevirtual interface has
been panned.

7.4 XI Focus Model

focus modelAs you saw briefly in the last section, XI generates events to notify your application that the
user wants to move the focus. The object with the focus is the object currently receiving keyboard input.
However, when we talk about focus flow in this manual, we often say that an object “has the focus”, is
“losing the focus™ or “gains the focus”. Objects that can “have the focus” are edit fields in a form, cells in a
list or buttons in a container or on an interface. When an edit field or cell has the focus, the characters the

73

user types will be displayed in the edit field or cell. When a button has the focus, the user presses the space
bar to “press” the button. The interface can have the focus in the sense that no control within that interface
has the focus.

There is a special case when you have a “single selection” list. In this case, the focus is on the list object
and arrows move the selection within that list. Whenever that selection moves, an XIE_SELECT event is
generated. The space bar and enter keys will generate XIE_DBL_CELL events.

When the user is finished typing in an edit field or cell, and wants to move to another part of the interface,
the object is said to be “losing the focus”. If you refuse to let this happen, the object will still “have the
focus”. If you allow the object to “lose the focus” and another object to “gain the focus” then the focus will
move.

While an object is losing the focus and another object is gaining it, XI will send you XIE_OFF_* and
XIE_ON_* events. As you might expect, XIE_OFF_* events are sent to notify you that an object is losing
the focus while XIE_ON_* events are sent to notify you that an object is gaining it. For example, if a user
is tabbing to the next edit field in a form, your event handler might receive an XIE_OFF_FIELD followed
by an XIE_ON_FIELD. If you refuse either of them, the focus doesn’t move.

The ability to refuse focus movement is the fundamental reason why XI makes it easier to write database
applications. This is because database applications want to verify that the data typed in an edit field meets
some criteria before allowing the focus to move to another edit field, and this is exactly what XI simplifies.

Please note that selection of rows, columns, and ranges of cells has nothing whatsoever to do with focus. As
we mentioned above, focus refers to keyboard focus.

7.4.1 Basic Focus Rules

There are some basic rules to remember about focus control in XI.

Rule 1: Only one object can have the focus at any given time.
Two edit fields or cells cannot receive input from the keyboard at the same time.

Rule 2: The object hierarchy determines which events are sent:
Events are sent corresponding to the objects the focus must encounter to get from
one place in the interface to another. As the focus moves from one part of an object
hierarchy to another part, events are sent to indicate which objects are losing the
focus, and which objects are gaining the focus. For example, if the user moves the
focus between two edit fields on the same form, your event handler would get an
XIE_OFF_FIELD event followed by an XIE_ON_FIELD event. However, if the
focus moves from an edit field to a cell in a list, then you will get XIE_OFF_FIELD
and XIE_OFF_FORM events followed by XIE_ON_LIST, XIE_ON_COLUMN,
XIE_ON_ROW, and XIE_ON_CELL events as shown below.

74

Rule 3:

Rule 4:

Rule 5:

path

E .
Fieldl | | Field2 |—Columnl| |Column2

focus change

Event Sequence Object
XIE_OFF_FIELD Field2
XIE_OFF_FORM Form
XIE_ON_LIST List

XIE_ ON_COLUMN Columnl1

XIE ON ROW Row psuedo-object
XIE ON_CELL Cell psuedo-object

Figure 22 - Focus Flow and Object Hierarchy

An application can refuse any focus change at any time.

As the user moves the focus from one place in the interface to another, any of the
events generated can be refused, and the focus won’t move. Contrast this with the
way XVT and most native window systems operate. In these systems, you are told
that the focus has left and has gone somewhere else. Therefore, your application
can’t really do anything about it until it has happened. For example, on Microsoft
Windows, if the focus is on an edit field and the user clicks on another edit field, you
cannot respond until the focus has moved. Then you have to set the focus back to
that edit field.

XI interfaces are independent of one another.

If the user has two windows up, and has an XI interface in each one, clicking on an
inactive window does not generate focus events. We designed XI this way because
users will want to browse data in unrelated databases without having to enter valid
data before activating other windows. Requiring them to enter valid data before
activating another window would be like a word processor requesting that you save
your file before you can enter data in your spreadsheet program. This would be
contrary to the look and feel GUI system users expect.

Pressing a button doesn't change the focus

Because of this, focus events will not be generated upon the button press.
Sometimes, this is desired behavior. For instance, you may have a help button on
your interface, and when the user presses the help button, your application needs to
find out where the focus was when the button was pressed. It can do so by calling
xi_get_focus. Sometimes, this is not desired behavior. For example, on an OK, or
Save Record button, you would like the application to get the XIE_OFF_* events,
so that it can validate data. In this case, you can force the focus events to take place
by moving the focus to the interface by calling the xi_move_focus function.

7.5 Event Categories

We have classified XI events into 6 categories: interface events, list events, form events, button events,
focus events and special events. There is some overlap between the categories, for example, you will
receive focus events while operating a list or form, but our classification is based on the reason why the
event is sent, not what object sent it. This is important because it makes a difference in the kinds of
information you can get from the event structure as described later.

75

7.5.1 Interface Events

interface eventsnterface events are sent to inform you about the life cycle of the interface. These events are
XIE_INIT, XIE_CLOSE and XIE_CLEANUP.

After you create an interface, the first event you will receive is an XIE_INIT. This event tells your event
handler that the interface has been created and it is time to initialize any data structures and do whatever
else it needs to do to set things up. Since this event is sent to inform you that the interface was created by
XI, you cannot refuse it.

XIE_CLOSE tells the application that the user wants to shut down the interface by clicking the close box.
An application can refuse an XIE_CLOSE event. This prevents the interface from closing. This event will
not occur in the case of calling xi_delete on the interface.

XIE_CLEANUP is exactly the opposite of XI_INIT. XIE_CLEANUP tells you to free your data
structures. Techniques for initializing data and freeing it is discussed in detail in the chapter, Managing
Application Data. See the following table for a summary of interface events.

Interface Events

XIE_INIT This interface event is sent to notify your application that the interface
has been instantiated and that you should initialize its application data
structures.

XIE_CLOSE XI sends this interface event to inform your application that the user

attempted to close the window containing the interface. You refuse the
event if you want the user to finish doing something else before
deleting the interface.

XIE_CLEANUP XI sends this interface event asking your application to free any data
stored in the application data of the interface and to destroy any XVT
fonts that are used in the interface.

7.5.2 List Events

list events X1 will send your event handler four kinds of list events: record request events, events sent
concerning the contents of a cell, events sent indicating that the user is trying to perform some operation on
a cell, and miscellaneous list events. Record events are used by XI to help your application manage the
record data that corresponds to the text displayed in a list. How to use these events to manage records is
explained in detail in the Using XI Objects chapter. For now, just concentrate on why the events are sent so
that you can compare them to other list events.

As you’ll see in the next chapter, XI will send record request events to your application whenever it needs
to get records from the database and copy them into memory. (By database, we mean where you store your
data. It doesn’t have to be a file on the disk). The record request events your event handler can receive are
XIE GET NEXTXIE_GET_NEXT, XIE_GET_PREVXIE_GET_PREY,
XIE_GET_FIRSTXIE_GET_FIRST, XIE GET LASTXIE_GET_LAST,

XIE_CELL REQUESTXIE_CELL_REQUEST, XIE_REC_ALLOCATEXIE_REC_ALLOCATE, and
XIE REC FREEXIE REC_FREE. As you will see later in Using XI Objects, XI associates record
handles with rows in the list so that it can help you manage the memory copies of the records whose text is
displayed in the list. When XI wants to display a record it will send your event handler an XIE_GET_*
event to tell you which record to get from your database. The XIE_GET_*events can be refused if there is
no record to be read. If you need to allocate information and associate the information with record handles
on the list, you can allocate and free the information upon the XIE_REC_ALLOCATE and
XIE_REC_FREE events.

Once a database record has been found and copied into memory, your event handler will return to XI. Then,
as XI needs to display actual visible cells, XI will start sending your event handler

76

XIE CELL REQUESTXIE_CELL_REQUEST events requesting that it format the record data into text
so that XI can display it in the corresponding row. XIE_CELL_REQUEST says, “now that you’ve given
me a handle to this data record, let me ask you for the text of each cell to be displayed”.

In addition to record request events, there are three other list events XI will send:

XIE DBL CELLXIE_DBL_CELL, XIE_CHAR_CELLXIE_CHAR_CELL, and

XIE CHG_CELLXIE_CHG_CELL. Each of these events are sent to notify your application that the user
is manipulating a cell. XIE_DBL_CELL indicates that the user double clicked on a cell and
XIE_CHG_CELL indicates that the user has changed the cell text. XIE_CHAR_CELL indicates that the
user is typing characters into the cell. Since XIE_DBL_CELL and XIE_CHG_CELL both tell you that
something has already happened to the cell, it is meaningless to refuse them.

Other events sent concerning a list are focus events. These are sent to inform you that the user is attempting
to move the focus to another place on the interface. List focus events are

XIE OFF _CELLXIE_OFF_CELL, XIE_ON_CELLXIE_ON_CELL,
XIE_OFF_ROWXIE_OFF_ROW, XIE_ ON_ROWXIE_ON_ROW,
XIE_OFF_COLUMNXIE_OFF_COLUMN, XIE_ON_COLUMNXIE_ON_COLUMN,
XIE_OFF_GROUPXIE_OFF_GROUP, XIE_ON_GROUPXIE_ON_GROUP,
XIE_OFF_LISTXIE_OFF_LIST, XIE_ON_LISTXIE_ON_LIST. All of these are standard focus events
explaining where the focus is moving. Focus events are grouped in their own category and are described
later. See the following table for a summary of list events.

XIE_ ROW_SIZEThe XIE_ROW_SIZE event is sent when the user dynamically sizes a row. The
XIE_COL_SIZE event is sent when the user dynamically sizes a column. The XIE_COL_MOVE event
is sent when the user dynamically moves a column. The XIE_COL_DELETE event is sent when the user
dynamically deletes a column.

XIE SELECTXIE_SELECT is an event that XI sends when the user selects a row, a column, or a range of
cells on the list.

List Events

XIE_CELL_REQUEST XI sends this cell event to your application asking it to supply XI with
text to display in a cell.

XIE_CHAR _CELL XI sends your application this cell event to notify it that the user is
typing into a cell. You can refuse this event to prevent the character
from being inserted into the cell.

XIE_CHG_CELL XI sends your application this cell event to notify it that the user has
changed the contents of a cell.

XIE_DROP_ROW XI sends your application this row event to notify it that the user
attempted to move a row by dragging and dropping it. You refuse the
event if you do not want the row moved.

XIE DBL_CELL XI sends your application this cell event to notify it that the user has
double-clicked on a cell.

XIE_GET_FIRST This record event is sent by XI to ask that your application get the first
record displayed in a list. This event is most often seen when
initializing a list. You refuse the event if there is no record.

XIE_GET_LAST This record event is sent by XI to ask that your application get the last
record displayed in a list. This event is most often seen when you move
the thumb to the bottom of the vertical scroll bar. You refuse the event
if there is no record.

XIE_GET_NEXT This record event is sent by XI to ask your application to get the next

record displayed in a list. This event is most often seen when

77

XIE_GET_PERCENT

XIE_GET_PREV

XIE_OFF_CELL

XIE_OFF_COLUMN
XIE_OFF_GROUP
XIE_OFF_LIST
XIE_OFF_ROW

XIE_ON_CELL

XIE_ON_COLUMN
XIE_ON_GROUP
XIE_ON_LIST
XIE_ON_ROW

XIE_REC_ALLOCATE

XIE_REC_FREE

XIE_ROW_SIZE

XIE SELECT

XIE_COL_DELETE

XIE_COL_MOVE

XIE_COL_SIZE

78

initializing a list and during a downward scrolling operation. You refuse
the event if there is no record.

XI sends this event asking your application to indicate the percentage
through the data for a record in the list. XI uses the value returned to set
the thumb position on the scroll bar.

XI asks your application to get the previous record displayed in a list.
This event is most often seen during an upward scrolling operation.
You refuse the event if there is no record.

XI sends your application XIE_OFF_* events when notifying it that
the user is attempting to move the focus off of an object in the list.
These events are summarized in the Focus Events section.

See XIE_OFF_CELL.

XIE_ON_* events are sent to notify your application that the user is
attempting to move the focus to an object on the interface. These events
are summarized in the Focus Events section.

See XIE_ON_CELL.

XI sends this event when your application should allocate space for a
record on the list.

XI sends this event when your application should free space allocated
during an XIE_REC_ALLOCATE event.

XI sends this event when the user dynamically changes the height of a
row. You refuse the event if you want the row height to remain as it
was.

XI sends this event to inform your application that the user selected or
deselected either a row, a column, or a range of cells on the list. You
refuse the event if you want the row or column not to be selected or
deselected. When selecting (or deselecting) a range of cells, the
XIE_SELECT event is not refusable.

XI sends this interface event to inform your application that the user
attempted to delete a column by dragging it off of the list. You refuse
the event if you do not want the column to be deleted.

XI sends this interface event to inform your application that the user
moved a column. You refuse the event if you want the column to
remain in the same position.

XI sends this interface event to inform your application that the user
sized a column. You refuse the event if you want the column to remain
the same width.

7.5.3 Form Events

form eventsThere are fewer events sent for a form than sent for a list. Although XI does have a mechanism
for associating application data with a form, it is not the same as the one used for a list. Therefore, the
events sent for a form are ones indicating that an edit field is being manipulated by the user and those that
tell you that the user is trying to move the focus. The non-refusable edit field manipulation events are:
XIE_DBL_FIELD indicating a double click on an edit field and XIE_CHG_FIELD indicating that the
edit field’s contents have been edited. Since the purpose of these events is to tell you that something has
already happened, it is meaningless to refuse them. The refusable edit field manipulation event is
XIE_CHAR_FIELD. Refusing this event tells XI to reject the character typed.

The focus events that are sent for a form are XIE_OFF_FIELD, XIE_ON_FIELD, XIE _OFF_FORM,
XIE_ON_FORM, XIE_OFF_GROUP, XIE_ON_GROUP. XI focus events are grouped in their own
category and are described later.

Form Events

XIE_CHAR _FIELD XI sends this edit field event to your application when notifying it that
the user has typed into the edit field. You can refuse or modify this
event to perform character filtering.

XIE CHG_FIELD XI sends this edit field event to your application when notifying it that
the user has changed the contents of an edit field.

XIE_DBL_FIELD XI sends this edit field event to your application when notifying it that
the user has double-clicked on an edit field.

XIE_OFF_FIELD XI sends your application XIE_OFF_* events to notify it that the user
is attempting to move the focus off of an object. These events are
summarized in the Focus Events section.

XIE_OFF_FORM See XIE_OFF_FIELD.
XIE_OFF_GROUP

XIE_ON_FIELD XI sends your application XIE_ON_* events to notify your application
that the user is attempting to move the focus to an object on the
interface. You refuse the event if you want the user to finish doing
something else on the interface before moving to the object.

XIE_ON_FORM See XIE_ON_FIELD.
XIE_ON_GROUP

7.5.4 Button Events

When the user presses a button on the interface, an XIE BUTTONXIE_BUTTON event is sent. It is not
logical to refuse this event because it is informing you that something has happened. Users can press a
button in one of two ways. They can tab onto them and press space bar, or they can click on them with the
mouse. There are no focus events for buttons.

7.5.5 Focus Events

As previously explained, focus events are sent to inform you that the user is trying to move the focus in a
list or form. The focus events your application can receive for a form are XIE_OFF_FIELD,
XIE_ON_FIELD, XIE_OFF_GROUP, XIE_ON_GROUP, XIE_OFF_FORM, XIE_ON_FORM. The
focus events sent for a list are XIE_OFF_CELL, XIE_ON_CELL, XIE_OFF_ROW, XIE_ON_ROW,
XIE_OFF_COLUMN, XIE_ON_COLUMN, XIE_OFF_GROUP, XIE_ON_GROUP,
XIE_OFF_LIST, XIE_ON_LIST. All of these events can be refused, as in the case of invalid text entry.

79

Please read the section in this chapter on the X/ Focus Model for a conceptual explanation of why the
events are generated. In addition, much of the Using XI Objects chapter is dedicated to explaining the
functions you need to call to control focus movement and how to structure your event handlers to respond
to focus events. There you will find many code examples of responding to focus events.

Focus Events

XIE_OFF_CELL This list event is sent to notify your application that the user is
attempting to move the focus off of a cell. You refuse the event if the
user has not typed valid data.

XIE_OFF_COLUMN This list event it sent to notify your application that the user is
attempting to move the focus off of a column. You refuse the event if
you want to restrict the user to editing only the cells in a single column.

XIE_OFF_FIELD This form event is sent to notify your application that the user is
attempting to move the focus off of an edit field. You refuse the event if
the user has not typed valid data.

XIE_OFF_FORM This form event is sent to notify your application that the user is
attempting to leave the form and move the focus to another place on the
interface. You refuse the event if the record entered by the user is not
valid.

XIE_OFF_GROUP This form or list event is sent to notify your application that the user is
attempting to move outside a group of edit fields or columns. You
refuse the event if the data entered in the group is not valid as a whole.

XIE_OFF_LIST This list event is sent to notify your application that the user is
attempting to leave the list and move the focus to another place on the
interface. You refuse the event if validation of all records in a list fails.

XIE_OFF_ROW This list event is sent to notify your application that the user is
attempting to move the focus off of the row. You refuse the event if the
record entered is not valid.

XIE_ON_CELL XIE_ON_* events are sent to inform your application that the user is
attempting to move the focus to an object on the interface. You refuse
the event if you want to prevent editing the object.

XIE_ON_COLUMN See XIE_ON_CELL.
XIE_ON_FIELD

XIE_ON_FORM

XIE_ON_GROUP

XIE_ON_LIST

XIE_ON_ROW

7.5.6 Special Events

XI sends five special events: XIE XVT EVENTXIE_XVT_EVENT,
XIE XVT POST EVENTXIE_XVT_POST_EVENT, XIE COMMANDXIE_COMMAND,
XIE_UPDATEXIE_UPDATE, and XIE VIR PANXIE_VIR_PAN.

An XIE_XVT_EVENT event is sent for every XVT event that occurs and gives the application the
opportunity to respond to XVT events if it wants to. For example, you might want to process events for
XVT controls that share the window with an XI interface. This event is also refusable. If refused, XI will
not process the event. For example, if you enable edit menu items in order to do your own cut, copy, and
paste processing, then you should refuse the E. COMMAND events for those menu items.

80

An XIE_XVT_POST_EVENT is sent for every XVT event, after XI has processed the event. This is used
in special cases where you may have to wait for XI to finish processing before taking some action. For
example, XI may have the mouse trapped, so you will want to wait until after the E_ MOUSE_UP event is
processed by XI and then open an XVT modal dialog.

An XIE_COMMAND event indicates that the user chose a menu item. When your application receives an
XIE_COMMAND event, it will need to look at the menu tag to see what operation the user is attempting.

An XIE_UPDATE event is sent upon an E_UPDATE event, but after XI has finished drawing the
interface. You can draw on top of any XI objects at this point.

XI sends the XIE_VIR_PAN event whenever the user pans an XI virtual interface. If you need to move
some XI objects in the virtual interface to keep the objects in sync with the XI interface, you will need to
write code to respond to this event.

7.6 The XI_EVENT Structure

The data found in the XI_EVENT structure is dependent on the type of event sent to your event handler.
Since most of the XI events are sent to notify your application that the user is manipulating an object or

trying to move the focus, your event handler is usually interested in the part of the XI_EVENT structure
that gives it information about the object for which the event was sent. Object information is found in the

xi_obj field.

With the record retrieval events sent for a list object, your application will use different fields in the
XI_EVENT structure. In particular, it will use the rec_request structure inside the event to find out which
record it needs to retrieve from the database.

For the events that are sent asking you to format data into text to be displayed in a cell, you would use the
cell_request structure in the XI_EVENT structure.

For events sent indicating that a XVT event was generated, you would use the xvte member of the
XI_EVENT structure to find out if the event is important to you or not.

In the following table you will see a list of XI events, a small description of why each event is sent, and
which pieces of the XI_EVENT structure each event uses.

Event Description Part of XI_ EVENT
used

XIE_BUTTON Button press. xi_obj

XIE_CELL_REQUEST Request for text for a cell in a list. cell _request

XIE_CHAR _CELL User is typing into a cell. chr

XIE_CHAR_FIELD User is typing into an edit field. chr

XIE_ CHG_CELL Contents of cell has changed. xi_obj

XIE_CHG_FIELD Contents of an edit field has changed. xi_obj

XIE_CLEANUP Free application data structures. xi_obj

XIE_CLOSE User pressed the close box to delete the Xi_obj

interface

XIE _COL_DELETE User has deleted a column. column

XIE_COL_MOVE User has moved a column. column

XIE COL_SIZE User has resized a column. column

XIE_COMMAND User has selected a menu item. cmd

XIE DBL_CELL User has double-clicked on a cell. Xi_obj

XIE DBL_FIELD User has double-clicked on an edit field. Xi_obj

81

Event

XIE_GET_FIRST
XIE_GET_LAST
XIE_GET _NEXT
XIE_GET_PERCENT

XIE_GET_PREV
XIE_INIT
XIE_OFF_CELL
XIE_OFF_COLUMN
XIE_OFF_FIELD
XIE_OFF_FORM
XIE_OFF_GROUP
XIE_OFF_LIST
XIE_OFF_ROW
XIE_ON_CELL
XIE_ON_COLUMN
XIE_ON_FIELD
XIE_ON_FORM
XIE_ON_GROUP
XIE_ON_LIST
XIE_ON_ROW
XIE_REC_ALLOCATE
XIE_REC_FREE
XIE_ROW_SIZE
XIE_SELECT
XIE_UPDATE
XIE_VIR_PAN
XIE_XVT_EVENT
XIE_XVT _POST EVENT

82

Description

Get first record displayed in a list.
Get last record displayed in a list.
Get next record displayed in a list.

Get percentage through data displayed in a
list

Get previous record displayed in a list.
Initialize the interface.

Focus change event.

Focus change event.

Focus change event.

Focus change event.

Focus change event.

Focus change event.

Focus change event.

Focus change event.

Focus change event.

Focus change event.

Focus change event.

Focus change event.

Focus change event.

Focus change event.

Allocate a record handle.

Free a record handle.

User has resized a row.

User has selected an object.

A region has been invalidated.

A virtual interface has been panned.
XVT event before XI has processed it.
XVT event after XI has processed it.

Part of XI_ EVENT
used

rec_request
rec_request
rec_request

get_percent

rec_request
xi_obj
xi_obj
xi_obj
xi_obj
Xi_obj
Xi_obj
xi_obj
xi_obj
Xi_obj
Xi_obj
Xi_obj
xi_obj
xi_obj
xi_obj
xi_obj
rec_allocate
rec_free
row_size
select
xvte
vir_pan
xvte

Xxvte

Using XI Objects

Using XI Objects is perhaps the most practical chapter in the manual. In this chapter you will find code
examples for using all of the objects found within an XI interface such as edit fields, forms, lists, cells,
rows, columns, groups, buttons and static text. Within each section, you will find code examples of
responding to events generated when the object is used. In addition, you will find out how to interface with
a database, when to validate data, and how to change the object’s look and feel.

getting an object pointer8.1 Getting an Object Pointer

Throughout this chapter you will be using XI functions that take an object pointer. Because of this, you will
need to be able to get a pointer to an object if you don’t have one. There are several ways to do this as
outlined below.

getting an object from an event8.1.1 Getting an Object
from an Event Structure

Most of the time you will get the object you need from an event sent by XI notifying you that something
has happened to the object. For example, when the user tries to move the focus off of an edit field, your
event handler will receive an XIE OFF FIELDXIE_OFF_FIELD event. Inside the XI_EVENT structure
sent with the event, you will receive an object pointer to the affected edit field, which you can then use to
manipulate the edit field in some fashion such as calling xi_get textxi_get text to get the edit field’s text.

The following code, from “Istlink.c”, demonstrates getting an object pointer from the event structure.

83

case XIE_CHAR CELL:

{
Xl _0BJ* cell = xiev->v.chr.xi_obj;
LINK FIELD field = colum_to field(cell->parent,
cell->v.cell.colum);
if (field == LI NK_DATE)
xi ev->refused = lvalidate_date_char(xiev->v.chr.ch);
br eak;
}

8.1.2 Using a Control ID

Recall that each object in the form has a unique control ID. The ability to assign a control ID to an object
has several advantages. First of all, you can know the control ID of an object at compile time, but you
cannot know the address of an object until it has been instantiated. Second, using an object’s control ID is
more convenient for such things as locating an object in a tree of objects (such as an interface hierarchy) or
setting up a switch statement to act on the control ID. Both of these methods of identifying objects are
interchangeable—you can always get an object’s control ID if you have its pointer, and you can get the
pointer to the object if you have its control ID. This gives you a great deal of flexibility in the programming
techniques you can use to manipulate objects.

If you know the control ID for an object and have the pointer to the interface object for the window the
object is in, then all you have to do is call xi_get objxi_get_obj passing it the interface object pointer and
control ID. Remember that xi_createxi_create will hand you a pointer to the interface object when you
instantiate the interface and the interface pointer is passed to your event handler function.

The following code, from “Istmem.c”, demonstrates the use of xi_get_obj to get an object pointer.

case M SELECT_NONE:
if (xi_nove_focus(itf))

select clear(itf, TRUE, TRUE);
xi _cell _request(xi_get _obj(itf, LIST.CID));

br eak;

children of objects8.1.3 Getting an Object’s Children

When you have a pointer to the parent of the object you want to get, you can call

xi_get member listxi_get member _list to get the object you need. xi_get member_list returns an array
of object pointers to the children of the object you passed to it. For example, if you have an interface, and
would like to know what children the interface has, you would pass the object pointer of the interface to
xi_get_member_list, and it will tell you which lists, forms, containers, buttons, rectangles, lines, and static
text are in the interface. You can also use xi_get_member_list to start at the top of an interface and walk
the entire interface tree down to the edit fields, columns and buttons at the bottom.

The following code, from “Istmem.c”, demonstrates the use of the object’s children.

84

static void select_set _color(XI_OBJ* itf, COLOR color)

{
LIST INFO* list _info = (LIST_INFO*)xi _get app_data(itf);

REC I NFO* rec = list_info->records;

int num col_num count;

XI_OBJ* list = xi_get _obj(itf, LIST CD);
XI_OBJ** col um;

for (num= 0; num< list_info->nbr_records; numt+, rec++)

mem sel ect _color(rec, color);
columm = xi _get _nenber list(list, &count);
for (col _num= 0; col_num < count; col_numt+, colum++)
if ((xi_get_attrib(*colum) & XI_ATR SELECTED) != 0)
mem set _color(rec, (*colum)->cid - CO._BASE CID, color);

xi _cell _request(list);

parent of objects8.1.4 Getting the Parent of an Object

Any object that is a child of another has access to the parent through the parent member of the XI_OBJ
structure. This means that a column or cell can easily get the object pointer for the list that it belongs to
using this pointer.

The following code, from “Istdb.c”, demonstrates the use of the parent pointer.

case Xl E_OFF_GROUP:
{

LIST INFO* list _info = (LIST_INFO*)xi _get app_data(itf);
Xl _0BJ* cell = xi_get_focus(itf);

if (list_info->row changed && !enp_validate_hours(
row to record(cell->parent, cell->v.cell.row)))

xvt_error("M nimum hours cannot be greater than maxi num");
xi ev->refused = TRUE;

br eak;

8.1.5 Getting the Object With Focus

At any time that some object has the focus, you can get a pointer to that object by calling xi_get_focus. The
code example in the previous section demonstrates the use of this function.

8.1.6 Making a Pseudo-Object

The last approach is manufacturing pseudo-objects for cells and rows. Since these objects don’t appear in
the interface hierarchy directly and are never instantiated, you will sometimes need to manufacture them
for the purpose of passing an object pointer to the functions that take object pointers. In this case, you
would use the XI MAKE CELLXI_MAKE_CELL and XI MAKE ROWXI_MAKE_ROW macros to
manufacture pseudo objects to describe these cells and rows.

The following code, from “Istlink.c”, demonstrates the manufacturing of a pseudo-row.

85

case DELETE CUR CI D
XI _OBJ* obj = xi_get focus(itf);
if (obj->type == XIT_CELL)
t Xl _OBJ row,

link delete(rowto record(obj->parent, obj->v.cell.row));
XI _MAKE_ROWN &row, obj->parent, obj->v.cell.row);

Xi _delete_rowm & ow);

updat e_nunbers(obj->parent);

br eak;

8.2 Using Edit Fields

edit fieldsWhen using XI edit fields, it is up to you to format your data into text, and put the text into the
edit fields. Once your data is formatted correctly, you call xi_set textxi_set_text to set the text of the edit
field. Please note that XI uses a different mechanism to handle data in a list as is discussed in the Using
Lists section.

8.2.1 Being Notified of Typing in an Edit Field

Your application will be given a chance to refuse or alter any typing into the edit field during an

XIE CHAR FIELDXIE CHAR_FIELD event. This event is sent whenever characters are typed into an
edit field. Your application can refuse the event to disallow certain characters, or modify the event to force
certain behavior such as all uppercase or lowercase. If an XIE_CHAR_FIELD event is refused, then no
change will be made, and no following XIE CHG FIELDXIE_CHG_FIELD event will be sent.

If the edit field is changed by typing or clipboard activity, XI will send your event handler function an
XIE_CHG_FIELD event. The purpose of this event is to allow your application to make note of the
change so that it knows to verify the edit field contents when an XIE_OFF_FIELDXIE_OFF_FIELD
event is later received.

8.2.2 Filtering characters

filtering charactersThe XIE_CHAR_FIELD event is most often used to restrict the kinds of characters the
user can type into an edit field, such as only digits for a zip code, letters for a name, digits separated by “(°,
‘)’ and °-’ for a phone number, etc.

To limit the kinds of characters the user can type, you need to respond to the XIE_CHAR_FIELD event
by altering or refusing the character sent to your event handler. To display only the allowable characters in
the edit field, set the xiev->refused flag to TRUE whenever an illegal character is passed in the xiev-
>v.chr.ch field. When validating characters, you should ignore any characters that are not ascii or not
printable. These characters are editing characters, like left and right arrow and backspace.

The following code, from “Istlink.c”, demonstrates validation of characters for a date.
static BOCLEAN val i date_date_char(int ch)

if (ch>255 || lisprint(ch))
return TRUE;
if (ch=="/"] ch=="-"]] isdigit(ch))

return TRUE;
return FALSE;

}

86

static void formeh(XI_OBJ* itf, Xl _EVENT* xiev)
FORM INFO* forminfo = (FORMINFO*)xi _get app_data(itf);

switch (xiev->type)

case Xl E_CHAR FI ELD:
if (xiev->v.chr.xi_obj->cid == FIELD BASE_CI D + LI NK_DATE)
xi ev->refused = !validate_date_char(xiev->v.chr.ch);
br eak;

}

When processing an XIE_ CHAR_FIELD event, it is also possible to change characters as they are typed
by changing the xiev->v.chr.ch field. In this fashion, for example, you could make an edit field where all
characters are converted to upper case.

8.2.3 Validating Edit Field Text

validating fieldsWhen the user is finished editing an edit field and attempts to move off of the edit field,
you’ll want to examine the contents of the edit field to verify that the user entered something reasonable
before letting the focus move. For example, the user may be entering data for a key field such as a part
number or social security number. In this case, you will want to check the database to make sure that the
user entered a valid database key before letting him continue. You could also check for valid dates,
currency amounts and other kinds of data.

The basic idea here is that you let users freely edit the contents of an edit field until they try to move the
focus to another object in the interface by pressing the TAB key or clicking the mouse on another edit field
or cell. When the user tries to change the focus to a different object in the window, your event handler will
be notified of this by an XIE OFF FIELDXIE_OFF_FIELD event. When you receive this event you have
the opportunity to refuse the event if the contents of the edit field are invalid.

It is important to note that you do not receive an XIE_OFF_FIELD event when the user switches to
another window. This is because the user may want to switch to another window to browse some other data.
XI makes sure that such switching does not force a focus event to occur.

8.2.3.1 Checking for Valid Data

Whenever your event handler receives an XIE_OFF_FIELD, your application can check that valid data
was entered before letting the user move the focus by calling xi_get textxi_get text on the edit field, and
then handing the text returned by xi_get_text to a validation routine.

If your validation routine rejects the data entered by the user, then you’ll want to refuse the
XIE_OFF_FIELD event by setting the refused member of the XI_EVENT structure to TRUE. This will
tell XI not to move the focus after all. To let the user know that something went wrong, you may also want
to beep by calling the XVT function xvt_beep, and then select the text by calling xi_set selxi_set_sel. This
will result in highlighting the text so that when the user starts typing, the previous text will be replaced with
the new text.

The following code, from “Istdb.c”, demonstrates validation of the field. The actual validation is performed
in emp_set_value from “datdb.c”.

87

case XIE_OFF_FI ELD:
if (form.info->field_changed)

XI_0OBJ* field = xiev->v.xi_obj;

if ('enp_set value(form.info->handle, field->cid -
FI ELD BASE CI D,
Xi_get_text(field, NULL, 0)))
xi ev->refused = TRUE;
el se

form.info->changed = TRUE;
form.info->field_changed = FALSE
set field_ text(field, form.info->handle);

br eak;

8.2.4 Changing Edit Field Attributes

attributes, fields field attributesYou can dynamically change the look and feel of an edit field by calling
xi_set attribxi_set_attrib with a pointer to the edit field object and a bitwise OR’ed combination of values
corresponding to the new attributes you want the edit field to have. Keep in mind that you cannot change
the attributes of an edit field while the edit field has the focus. Therefore, before you can call xi_set_attrib
on an edit field that has the focus, you will need to move the focus to the interface by calling either

xi_set focusxi_set focus or xi_move focusxi_move_focus with the interface object. Note that moving the
focus to the interface merely removes the keyboard focus from any objects in the interface. This means that
XI generates all of the appropriate XIE_OFF_* events, but does not generate any XIE_ON_* events.

As explained in Characteristics of XI Objects, the attributes you can set for an edit field are :
XI_ATR_ENABLED, XI_ATR_VISIBLE, XI_ATR_EDITMENU, XI ATR_AUTOSCROLL,
XI_ATR_AUTOSELECT, XI_ATR_RJUST, XI_ATR_READONLY, XI_ATR_PASSWORD,
XI_ATR_FOCUSBORDER. If you want to know what attributes an edit field has, you call

xi_get attribxi_get_attrib.

8.2.5 Changing a Single Attribute

In most cases, you will want to change only one attribute of the edit field such as disabling the edit field or
making it invisible. You would call xi_get_attrib to get the attributes for the edit field, change the bit and
then call xi_set_attrib to give the edit field its new look. The following code segment demonstrates setting
the enabled attribute:

The following code, from “Istlink.c”, shows how to set or clear the visible attribute based on the boolean
value passed to the function.

static void change_section(SECTI ON | NFO* section, BOOLEAN flag)

i nt numn
XI_OBJ** obj;

for (num= 0, obj = section->0bjs; num < section->count;
numt+, obj ++)
if (flag)
Xi _set_attrib(*obj, xi_get_attrib(*obj) | XI_ATR VI SIBLE);
el se
Xi _set_attrib(*obj, xi_get_attrib(*obj) & ~XI _ATR VI SIBLE);

88

8.3 Using Forms

forms, usingSince forms are composed of edit fields, you will need to know how to manipulate edit field
objects before you can manipulate form objects. Methods you’ll need to use to manipulate edit fields were
the topic in the last section. There you learned how to call xi_set_text to set the text of an edit field, filter
characters the user types, check that the user has entered valid data and change an edit field’s attributes. In
this section, you will learn how to associate record data with a form and check that the user has entered a
valid record. In addition, you will learn how to set the navigation sequence of the form.

8.3.1 Validating the Contents of a Form

forms, validating contentsAs described in the Using Edit Fields section, you can validate the contents of
each edit field in a form as the user tries to move the focus off of each of them. However, it may be your
chosen look and feel to delay validation until the whole form has been entered. For example, in a database
application running on a network, you might choose to wait until the user performs an action such as
clicking on an “Add Record” button before checking with the server that the data entered in the form is
valid.

Regardless of the reason for delaying validation, the way that you would begin the process of validating the
entire contents of a form is to get the form object by calling xi_get objxi_get_obj passing it the interface
pointer and control ID of the form (or during an XIE_OFF_FORM event, you can pass xiev->v.xi_obj).
Once you have the object pointer, you would then call xi_get member_listxi_get member_list to retrieve
the list of edit fields contained in that form. After you have the list of children edit fields, you can loop
through the list and retrieve the text for each object.

8.3.2 Interfacing to Databases When Using a Form

Most of the time, an XI form will display only one record at a time and you will want to keep a copy of the
database record currently being displayed in memory. Also, you will want to write the changes made by the
user out to the database after you have checked that those changes are valid. Because of this, there are two
issues you must address when interfacing to a database. You must figure out when to update the memory
copy of your record and when to store the updated record in the database. In the following discussion, we
describe the opportunities XI gives you to read a record from the database, verify that text the user has
entered is valid, and write the record to the database. Keep in mind that our suggestions for interfacing to
the database are only hints, and may not be appropriate for your application.

The following diagram may help in illustrating the techniques described in the following sections.

@—’Form Information Record in Memory

App Data |long handle; “Smith” (String)
BOOLEAN changed; 40 (Integer)
F
~ BOOLEAN field changed;

Field Field
“Smith” “40”

Record on s r s s aas ol s s

Disk S’ ’m’,’1’,’t’,’h’,”\0”,40

Figure 23 - Editing a Database Record in a Form

89

8.3.2.1 Reading a Database Record

In most cases, your form will display text for a single database record. Unlike lists, where there are many
record handles to be managed by your application and XI, forms are quite simple. You need to keep only
one record in memory for the entire form.

Although you can set application data for the form object, it is usually easier to set the application data for
the interface. This would only be a problem in more complex interfaces. For example, if an interface had
both a form and a list in it.

The following code, from “Istdb.c”, shows how the application data is initialized for the “change” form.
The handle is used to refer to the database record in memory.

static void open_chg form(XI_OBJ* list_itf, long handle)

{
FORM | NFO* form.info;

XI_OBJ* itf;

itf = create_enp_forn(FALSE);

forminfo = (FORMINFO*)xi _tree_malloc(sizeof (FORMINFO), itf);
forminfo->list itf =1list itf;

form.i nfo->handl e = handl e;

form.info->allocated = FALSE;

Xi _set _app_data(itf, PTR LONG forminfo));

xi _dequeue();

}

During the XIE_INIT event, we need to set the text for the edit fields to match that of the database record
we are editing. The following code, also from “Istdb.c”, demonstrates this.

case XIE INT:
{

i nt num
XI_OoBJ* form
XI_0BJ** field;

form= xi_get_obj(itf, FORMC D);

field = form>children;

for (num= 0; num< form>nbr_children; numt+, field++)
set field text(*field, form.info->handle);

br eak;

8.3.2.2 Marking a Record as Edited

As the user makes changes to text, you will need to track those changes so that you can make sure that the
changes are valid and write the record to the database. We recommend you do this by allocating two extra
BOOLEAN flags associated with form. These flags will be used to track the status of the record as the user
makes changes. The first flag keeps track of whether or not the edit field that has focus has changed. The
second flag keeps track of whether or not any data has been changed for the record.

The purpose of the first flag, field_changed, is to prevent extra validations and to allow the second flag,
changed, to be set accurately. In other words, we have to know if the edit field was changed to know if the
record was changed. The changed flag serves two purposes. It is used to determine whether or not the
record actually needs to be updated when the user hits the “Save” button and it allows us to prompt the user
if they try to cancel the window.

The following code, from “Istdb.c”, demonstrates the use of these flags.

90

static void formeh(XI_OBJ* itf, Xl _EVENT* xiev)
FORM INFO* forminfo = (FORMINFO*)xi _get app_data(itf);

switch (xiev->type)

case Xl E_CLOSE:
if ((!'xi_nove focus(itf) || form.info->changed)
&& xvt_ask("No", "Yes", NULL,
"You have made changes. Are you sure you want to cancel ?")
= RESP_2)
xi ev->refused = TRUE;
br eak;
case Xl E_BUTTON:
switch (xiev->v.xi_obj->cid)

case CHG BTN CI D:
if (!'xi_move_focus(itf))
br eak;
if (form.info->changed)
enp_updat e(form.i nfo->handl e
refresh_row xi_get_obj(form.in
form.info->handle)
form.i nf o->changed = FALSE;
xi _delete(itf);
br eak;
case CANCEL_BTN CI D:
if (form.info->changed && xvt_ask("No", "Yes", NULL,
"You have nmade changes. Are you sure you want to

)1
fo->list_itf, LIST.CID),

cancel ?")

= RESP_2)
br eak;
xi _delete(itf);
br eak;

br eak;

case Xl E_CHG FI ELD:
form.info->field changed = TRUE;
br eak;

case Xl E_OFF_FI ELD:
if (forminfo->field changed)

XI_0BJ* field = xiev->v.xi_obj;

if (!'enp_set_value(form.info->handle,
field->cid - FIELD BASE Cl D,
xi _get text(field, NULL, 0)))

xi ev->refused = TRUE;
xi _set _sel(field, 0, INT_MAX);
el se

P

form.info->changed = TRUE;
form.info->field_changed = FALSE;
set field_ text(field, form.info->handle);

}

br eak;

91

8.3.2.3 Validating Edit Field Text

It isn’t until your application receives an XIE OFF FIELDXIE_OFF_FIELD event that it should validate
text entered by the user, and update the record stored in memory if the data is valid. If the text is not valid,
your application should refuse the XIE_OFF_FIELD event. Upon receiving the event you could either
reset the text in the edit field to what it was before the user made changes or select the text in the edit field
showing him that he must try again.

See the code above for an example of this.

8.3.2.4 Marking a Record as Modified

The second flag indicates that the record stored in memory has been modified and no longer matches the
record in the database. You should set this flag to true only after you have verified the text upon receiving
an XIE_OFF_FIELD for a record marked as edited, and have updated the copy of the record kept in
memory. Since the text displayed on the screen now reflects the data stored in memory, you will also need
to reset the edited flag to false indicating its new state.

See the code above for an example of this.

8.3.2.5 Writing Database Records

An application can write modified records to the database in two different ways when using a form. Let’s
call these approaches “automatic” and “manual”.

Writing records automatically: The automatic method implies that records will be written to the database
immediately before a different record will be displayed on the form. This will have a look-and-feel of
allowing users to freely edit database records and have changes made to them stored automatically without
requiring them to press a “Save Record” button.

To use this approach, your application will need to write a modified record before another record is read
and displayed in the form. Since XI does not automatically read new records into the form for your
application, you will need to have a menu item or button called something like ”Next Record” or “Previous
Record”. When the user presses this button, then your event handler will receive an

XIE BUTTONXIE_BUTTON event, and should write the record to the database if it has been marked as
modified. Then it can read the new record and display its text in the form.

Writing records manually: You can use the manual method if your application has a button or menu item
that is there for the sole purpose of writing a modified record to the database. This button might be labelled
“Save”. When the user presses this button, your application will receive an XIE_BUTTON event. Upon
receiving this event, your application should move the focus to the interface, and then write the record to
the database if the modified flag for that record has been set.

With either method, after writing the record, your application should reset the modified flag to FALSE to
indicate that the memory copy of the record contains the same data as the one in the database.

See the code above for an example of writing records manually.

8.3.3 Setting the Keyboard Navigation Sequence

As the user tabs from edit field to edit field on the form, the focus will move in a characteristic navigation
pattern. Once you have created the form, it is possible to change the keyboard navigation sequence. The tab
control ID can be found in edit fields by referencing xi_obj->v.field->tab_cidxi_obj->v.field->tab_cid. It is
necessary to define XI INTERNALXI _INTERNAL before including XI.H if you intend to change the
tabbing sequence. Be careful to not set up an invalid tabbing sequence.

When you built an object definition tree you probably used the convenience functions provided by XI.
When you added edit field definitions to a form definition, you called the function,

92

xi_add field defxi_add_field_def passing it the tab control ID for each edit field that you created. When
the user presses TAB, the tab_cid argument tells XI to move the focus to the edit field whose cid is equal to
tab_cid.

8.4 Using Lists

lists, usinglLike XI forms, XI lists do not contain the data that your application is using. They only display
and allow input of text. Therefore, your application must store the data, format it into text whenever a list
asks for it, and convert the text entered by the user into data again. Thus, when using a list there is a
division of responsibilities between your application and XI. XI is responsible for displaying text. You are
responsible for providing it with text to display.

8.4.1 Record Handles

The way your application and XI exchange information is through data records associated with each row
the list can display. Because the list needs to refer to data kept by the application without knowing what the
data is, your application hands it a record handle for each record displayed in the list.

The term “record handle” refers to a programming technique where a module refers to data in another
module without knowing what the data is. In our case, the record handles are meaningful to your
application—they identify records. To XI, they are incomprehensible and XI cannot interpret them in any
way. All it can do is hand them back to your application. The record handle you hand XI is of type long.
Once again, the list has no idea what it means. To the list, it is just an identifier that the list is going to give
back to your application.

To see this situation from XI’s perspective, think of a record handle as if it were a theatre ticket. Imagine
that a tourist goes to a foreign country and buys a theater ticket. Since he doesn’t speak the language, he
cannot understand the text printed on the ticket. However, he doesn’t worry about it because there is a
person at the door who can read the ticket and let him see the show. In a similar way, XI will use record
handles to ask your application to retrieve and format records.

The following diagram illustrates the relationships between your application, record handles, and XI.

In-Memory Record
Disk Records Handles Cell Text Displayed

@
@
@ Table

) o Hi| H2 |H3

))
@
@
@

Figure 24 - Record Handles for a Database List

XI knows nothing about the in-memory records. It just stores handles to those records. It gets those handles
from your application via the record request events. The record request events are XIE_GET_FIRST,
XIE_GET_LAST, XIE_GET_NEXT, and XIE_GET_PREYV.

The record handle is also passed to your application in the XIE_CELL_REQUEST event. The cell text
that you return is stored in the XI cell text array, as shown in the diagram above.

93

The cell text array is internal to XI. You never need to worry about it. You should realize, though, that XI
can update the window from the cell text array without generating cell request events (for example, when a
popup goes away, and the window needs to be redrawn.)

8.4.2 How XI Manages the Record Handle Array

There are two basic ways that developers wish to use lists:

1. Sometimes developers have list that has relatively few records and requires no editing. For example,
they may have a small database table that is used in a drop down list. The values are never changed
because it’s only used to select one of the records. In this case it is desirable for the XI list to request
all records before putting up the XI list. XI will do record request events for all records in the list.
However, the user would only be able to see the visible portion of the list. To enable this behavior, set
list_def->v.list->get_all_records to TRUE after calling xi_add_list_def. Note that you are limited to
255 records in this kind of list.

2. More commonly, there are lot of records and they may added to or deleted from the list by the user.
Having all the records in memory would take up too much memory. It also would probably take to long
to read all of the records before displaying the visible portion of the list. In this case, XI will request
records as they become visible and then request the cell data in order to display each row of the list. As
the list scrolls, records that are no longer visible are discarded, while new records are requested and
then displayed. This is the default behavior of XI lists.

8.4.3 Managing Records

Once the application has given XI a set of record handles for the records to be used in the list, then XI will
manage those records by associating them with rows in the list. If your application needs to allocate space
for the records, it is often convenient to have the record handles be pointers to the allocated memory, cast
into type long. Therefore, you may want to respond to the

XIE REC ALLOCATEXIE_REC_ALLOCATE event to allocate space for your record handle. If you do
so, you must respond to XIE_REC_FREE events to free that allocated space. Do not use tree memory for
these allocations.

In the next few pages, you will find a description of the events XI uses to manage records, and the code
you’ll need to write in order to respond to those events. You will discover what you’ll need to do when
initializing the list, retrieving records, filling them with data, processing user input and writing records to
the database. Keep in mind that throughout this discussion we will be using the term “database” to mean
“the place your application stores data”. We use this term in the general sense—please don’t think that your
data must be stored in a file on the disk. It could be stored in any format on any medium. The only
requirement is that your application knows the format of the records, can associate a handle with each
record, and can give XI text to display when XI requests it.

8.4.3.1 Associating Record Handles with Data

Because a record handle can be any type of information stored in a long, there are many ways you can
associate record handles with memory copies of records. There are three main methods of using record
handles:

1. The record handles are subscripts to an in-memory array of data. This is the method used for
“Istmem.c” and “datmem.c”.

2. The record handles are pointers to an in-memory structure (e.g. a linked list). This is the method used
for “Istlink.c” and “datlink.c”.

3. The record handles are allocated structures that refer to records in a file or database table. In this case,
the allocated structure must contain the necessary information to access that record for updates, next
and previous operations. This is the method used for “Istdb.c”” and “datdbc.”.

94

All three of these techniques are demonstrated in the example program.

The following diagram illustrates using array subscripts as your record handles.

Array of Structures
(In Memory)

1000, "Widget”

1001, “Gadget”

1002, “Socket”

1003, “Bauble”

1004, “Sprocket”

Record Handles
(from XIE_GET_* events)

1005, “Widget 2”

1006, “Gadget 2”

1007, “Socket 2”

1008, “Bauble 2

1009, “Sprocket 2”

1010, “Widget 3”

1011, “Gadget 3”

ool BN Ro W RO 2N

Cell text for
visible rows
(In XT)

“1004” | “Sprocket”
“1005” | “Widget 2”
“1006” | “Gadget 2”
“1007” | “Socket 2”
“1008” | “Bauble 2”

Figure 25 - Handles to an In-Memory Array

If you have your entire database stored in memory, you would want to refer to your records by record
number. Since you don’t need to retrieve records from the disk and copy them into memory in response to
user activities, you will not need to allocate space for records in response to an

XIE_REC_ALLOCATEXIE_REC_ALLOCATE event.

If your are using a linked list structure, you can use the pointers to the “nodes” as the record handles. This
allows you to easily to respond to all the XI events for the list. The following diagram illustrates this

method.

95

Doubly Linked List Record Handles Cell text for
(In Memory) (from XIE_GET_* events) visible rows

(In XI)
’l Root
!
—’| ’l.l“Person 1, ... |
!
|’ | ® |“Person 27, ...)v\
|’ | ® |“Person 37, .. |1\
|@|@|Person4”, .

|,|.|“Person 57, ... /

I
—|'.|.|“Person 6, ... |
1

Figure 26 - Handles to a Link List Structure

‘_

“01/01/95” | “Person 2”
“01/01/95” | “Person 3”
“01/01/95” | “Person 4”
“01/01/95” | “Person 5”

olofe¢

‘_

Since the entire linked list resides in memory, you still don’t need to allocate memory for the handles.
However, the handles are actually pointers rather than integer subscripts.

When the list records come from a large database, you will probably want to avoid reading all of the
records into memory. In this case, you can respond to the XIE_REC_ALLOCATE event which will
allocate a structure to hold information about a particular row in the list. Whenever rows scroll off the list,
XI will generate an XIE_REC_FREE event to free up that space. In this way, a minimal amount of
memory is used to keep track of the current position in the list.

Database Records Allocated Records Record Handles Cell text for
(On Disk) (In Memory) (from visible rows
XIE_ REC_ALLOCATE (In XI)

- events)
“Plampin”, 23, 40, ...

“McKenzie”, 10, 25, ... 3 [“clark” | 30 | 35

“Entwistle”, 40, 60, ...

“Clark”, 30, 35, ... /v{ 4 | “Lopez” | 40 | 45 f—_| _Clark” jg fé

\. “LOpeZ”
“Lopez”. 40, 45, ..
P -y

“Rozas”, 40, 40, ... 1—>| 5 | “Rozas” | 40 | 40 |‘/ “Rozas” | “40” | “40”

“Connor” “40” “40”
“Connor”, 40, 40, ...
“Martinez”, 40, 40, ... \A{ 6 [“Connor’| 40 | 40

“Sprague”, 10, 25, ...

Database Record
Number

Figure 27 - Handles to Database Records

Your application will receive an XIE_REC_ALLOCATE event before every
XIE GET FIRSTXIE_GET_FIRST, XIE GET NEXTXIE_GET_NEXT,
XIE_GET PREVXIE _GET _PREYV, or XIE GET LASTXIE_GET_LAST event. During processing of

96

this event, you have the option of allocating space for the record. In addition, as records are scrolled off of
the list, your application will receive XIE_REC_FREE events. If you are allocating space for records
during processing of the XIE_REC_ALLOCATE event, you must free this space during the

XIE REC FREEXIE_REC_FREE event.

8.4.3.2 Retrieving Records

Your application will need to respond to the record events XI generates. Keep in mind that unlike other
windowing systems, XI will send list events in a specific order, and the order in which you receive these
events is important. You can expect list events to come in the following order: XIE GET *XIE_GET_*
events asking you to get data from the database, XIE_ CELL REQUESTXIE_CELL_REQUEST events
asking you to put text into cells, XIE_ ON_*XIE_ON_* events sent to notify you that the focus has entered
acell, XIE_CHAR_CELL events sent to notify you that the user has typed into a cell, and

XIE_OFF *XIE_OFF_* events sent to notify you that the focus has left a cell. Therefore, you’ll never be
asked to put text into cells before you have the data record, or notified that the contents of the cell has been
changed before you’ve put text into the cell.

The one thing that is not guaranteed is that you will get the XIE_CELL_REQUEST events immediately
after the XIE_GET_* event for that row. Other XIE_GET_* events may be sent, for other rows before
you get the XIE_CELL_REQUEST events. However, you will never get an XIE_CELL_REQUEST for
a row before the XIE_GET_* event for that row.

You respond to the XIE_GET_* events by filling out the data_rec field of the rec_request structure.

For example, if your record handles are indices into an array of records stored in memory, you would
probably return OL in the data_rec field upon receiving the XIE_GET_FIRST event. In contrast, if your
record handles are pointers to a linked list structure, you cast the record handle into a pointer, and copy the
first database record you want in the list into that structure. In the third case, the data_rec field will already
be filled in from the results of the XIE_ REC_ALLOCATE event.

When your event handler receives an XIE_GET_NEXT event, XI is asking your application to fetch the
data for the next record to be displayed in the list. The XI_EVENT structure in this event contains two
fields that you care about: spec_rec and data_rec. The spec_rec field contains a record handle specifying a
record from which you should get the next record. In the data_rec field of the structure, XI gives you a
record handle. If your record handles represent indices in an array of records, you would set data_rec to
‘spec_rec + 1°. In contrast, if your record handles are pointers to records retrieved from disk, you cast the
record handle into a pointer, and copy the next database record into that structure. Responding to
XIE_GET_FIRST and XIE_GET_NEXT events is summarized in the following table.

spec_rec data_rec
XI Event (From XI) (Set by Your Application)
XIE GET FIRST N/A Record 1
XIE GET NEXT Record 1 Record 2
XIE GET NEXT Record 2 Record 3
XIE GET NEXT Record 3 Record 4

The reason why XI asks you to locate a record by giving you the record handle for a specific record and
then asking you to retrieve the next record is that XI may not keep track of any records other than the
records currently displayed on the list. Because record handles are abstract objects, and XI doesn’t know
how to manipulate them, XI must ask your application to find the next or previous record relative to a given
record. This is exactly what the XIE_GET_NEXT event is requesting that your application do. It gives the
event handler a record handle for a specified record and asks the application to get the record following it.

It is important to remember that XIE_GET_FIRST is not necessarily requesting the first record in the
database. It can be the first record of any portion of the database that you care to display. For example, you
may have a database of several hundred invoices for each of many vendors. Because you might want the
list to contain the invoices for only one vendor, you would want to return a record handle to a copy of the

97

first invoice for the vendor when your application receives an XIE_GET_FIRST event, not necessarily the
first invoice in the file. Likewise, you would want to refuse an XIE_GET_NEXT if you are already
displaying the last record for that vendor.

Another point about the XIE_GET_FIRST event is that it may actually be asking for the a record part of
the way through the list. If the list object has a vertical scroll bar and the user moves the thumb, the
XIE_GET_FIRST event structure will contain a percent value that is not zero. In that case, you must
return a record at that percentage. Otherwise, the thumb positioning will not work.

The application can refuse any of the XIE_GET_* events if no records should be read from the database.

This could happen if you are at the end of the file, the database is empty, or you have read all of the records
in the portion of the database to be displayed. If you do not want to display another record for these or other
reasons, set the refused member of the event to TRUE indicating that another record will not be displayed.

Look at the event handler functions in the various example code modules for examples of these techniques.

8.4.4 Displaying Text

Whenever your event handler receives an XIE_CELL_REQUEST event, XI is asking you to give it text to
display in a cell. You get XIE_CELL_REQUEST events after you’ve responded to XIE_GET_* events
For example, when initializing a list of two columns and two rows, you could get the following event
stream:

XIE_GET_FIRST
XIE_CELL_REQUEST
XIE_CELL_REQUEST
XIE_GET_NEXT
XIE_CELL_REQUEST
XIE_CELL_REQUEST

Upon receiving an XIE_CELL_REQUEST event, your application will need to look in the cell_request
structure of the XI_EVENT. In the cell_request structure, it will find out which column and record the
request corresponds to and how long the string can be.

After locating the record and formatting the data into text, your application should then store that text in the
s field of the cell_request structure. Be careful not to store more characters than the buffer can hold as
indicated by the len field of the cell_request structure. len is the total buffer size, including the "\0'. Recall
that len is sized when a list is defined, and can be changed after the list is instantiated by calling
xi_set_bufsize.

XI will not generate XIE_CELL_REQUEST events for cells that are not visible if the preference
XI_PREF_OPTIMIZE_CELL_REQUESTS is TRUE.

Refer to the section Using Cells for information (icons, color, fonts) on other options of the
XIE_CELL_REQUEST event.

8.4.5 Processing User Input

As the user changes cell text and moves from cell to cell in the list, your event handler will receive many
XIE_CHAR_CELL, XIE_CHG_CELL, and XIE_OFF_CELL events. These are the events that are
important because they give you an opportunity to filter characters that the user is typing, verify the
contents of cells, convert cell text to data and store the data in the copies of database records stored in
memory.

You will also receive XIE_ON_CELL events, but these are rarely used, if ever.

98

8.4.5.1 Responding to XIE CHAR CELL and
XIE _CHG_CELL Events

XIE_CHAR_CELL events are sent to your event handler when the user types characters into the cell. You
can refuse these events to restrict the kinds of characters the user can type in a cell. You can also modify the
character in this event to force a certain behavior such as converting all characters to uppercase. You’ll find
example code of character filtering in the Using Cells section of this chapter.

XIE_CHG_CELL events are sent whenever the user edits the contents of a cell. It doesn’t tell you what
changes were made or how the user made them. Instead, XIE_CHG_CELL only tells you that something
happened to the cell. You cannot refuse XIE_CHG_CELL events because a change has already happened
by the time you are notified of it.

8.4.5.2 Responding to XIE OFF_CELL Events

When your event handler receives an XIE_OFF_CELL event, it is being notified that the user is done
typing and wants to move the focus off of the cell. This gives you the opportunity to check that the user has
entered valid data. For example, the user may be entering data for a database key field such as a part
number or social security number. Before letting the focus move off of the cell, you will want to check that
the part number or social security number is valid. In addition, it is a good idea to convert the cell text into
data and store it in the appropriate record in memory.

It is important to remember you should wait to store the changes made to the contents of a cell until your
event handler receives an XIE_OFF_CELL event. You cannot store changes in response to
XIE_CHG_CELL events because partially entered data will not be valid. Instead, you should wait until
your event handler receives an XIE_OFF_CELL event which notifies you that the user is attempting to
move off of the cell.

For more information on how to validate cell data, and store record changes, see the code examples in the
Using Cells section of this chapter. For code examples demonstrating how to read and write records to the
database, see the Interfacing to Databases topic found later in this section.

8.4.6 Responding to Focus Movements

In addition to receiving XIE_OFF_CELL events, your event handler will receive other focus events as the
user moves on and off of cells in a list.

XIE_OFF_COLUMN events are generated whenever the user presses the left or right arrow or tab key or
scrolls the list with an up or down arrow. It would not be generated when the user pressed the up or down
arrow within the currently displayed records of the list. This could be useful for applications that perhaps
want to let the user enter a whole column of data, and then when they move off of the column to process it
in some fashion.

XIE_OFF_ROW events are generated whenever the user presses the up or down arrow key, or presses the
tab key in the last column.

Below are some examples of user actions and the resulting events.

1. Here are the events generated when the user presses the tab key, moving the focus from one cell to the
next cell on the right:
XI E_OFF_CELL
XI E_OFF_COLUWN
XI' E_ON_COLUWN
XI'E_ON_CELL

2. Here are the events generated when the user presses the down arrow key, moving the focus from one
cell to the next cell below:

99

3. Here are the events generated when the user presses the down arrow key at the bottom of the list,
causing the list to scroll:

XI E_OFF_CELL

XI E_OFF_COLUWN
Xl E_OFF_ROW

XI E_OFF_LI ST

Xl E_REC ALLOCATE
Xl E_GET_NEXT

XI'E CELL_REQUEST (For each col um)
XIE_ON LI ST

Xl E_ON_ROW

Xl E_ON_COLUWN
XIE_ON _CELL

8.4.7 Updating Databases When Using a List

Most of the time, an XI list will display fewer records than the database contains. Because of this, your
application will need to keep a copy of the database records currently being displayed in memory. Also, it
will need to write the ones changed by the user out to the database. Keep in mind that XI will tell your
application when to read records, but not when to write them. Because of this, there are two issues you
must address when interfacing to a database. You must figure out when to update the memory copy of your
records and when to store updated records in the database. In the following discussion, we describe the
opportunities XI gives you to write records and check that the user has entered valid data. Keep in mind
that our suggestions for interfacing to the database are only suggestions and may not be appropriate for
your application.

8.4.7.1 Getting the Record Handle

As you saw above, you get record handles from XIE GET_* and XIE_CELL_REQUEST events.
However, before you can respond to the opportunities XI gives you to update records and write them to the
database, you will need to know how to find the record that corresponds to the row of interest upon
receiving an event that does not contain a record handle in its XI_EVENT structure.

In the method of interfacing to the database described here, the events that you will need to respond to that
don’t have record handles sent with them are XIE_CHAR_CELL, XIE_CHG_CELL, XIE_OFF_CELL
or XIE_OFF_ROW events. If your event handler receives one of these events, your application will need
to look in the XI_OBJ structure sent with the event to find the row number. Once you know the row
number, you can get the corresponding record handle by calling xi_get list_infoxi_get_list_info.
xi_get_list_info returns an array of record handles. By indexing into the array with the row number, you
can find the record handle associated with the row of interest.

The following function, from “Istdb.c”, demonstrates this process.

static long row to record(XI_OBJ* list, int row num)
i nt count;
I ong* handles = xi _get list_info(list, &ount);
return handl es[row num];

}

You will see examples of calling this function in the code below.

10

8.4.7.2 Marking a Record as Edited

As the user makes changes to text, you will need to track those changes so that you can make sure that the
changes are valid and write modified records to the database at appropriate times. We recommend you do

this by allocating two extra BOOLEAN flags associated with the application data for the interface. These
flags will be used to track the status of each record as the user makes changes.

The information these flags will contain is the status of the text displayed on the list relative to the record in
memory, and the status of the record in memory relative to the record in the database. In one flag, you keep
track of the “edited” state so that you can know when the text of the cell with the focus is different than the
record stored in memory. Likewise, in the second flag, you will need to keep track of the “modified” state
so that you can know when the record in memory for the current row is different than the one in the
database. In the example code, these flags are called cell_changed and row_changed.

When your application receives an XIE_CHG_CELL event for a cell, it will need to set the edited flag to
TRUE to mark the record as “edited”. The following code, from “Istdb.c”, demonstrates this.

case Xl E_CHG CELL:
LIST INFO* list_info = (LIST_INFO*)xi _get_app_data(itf);

l'ist_info->cell_changed = TRUE;
br eak;

}

8.4.7.3 Validating Cell Text

As explained earlier in this section, when your event handler receives an XIE_OFF_CELL event, your
application is being notified that the user is finished typing text in a cell and wants to move the focus to
another place on the interface. At this point your application should verify that text entered is valid and
update the copy of the record stored in memory. If the cell contains valid data, the record will need to be
marked as modified by setting the modified flag to TRUE. At this time, the edited flag should be reset to
FALSE to indicate that the text displayed in the row now represents the record data stored in memory.

If the text does not pass validation, your application should refuse the XIE_OFF_CELL event. After
refusing the event you could either reset the text in the cell to what it was before the user made changes, or
show him that he must try again by selecting the text in the cell. To reset the text in the cell, use

xi_set textxi_set_text. To select the cell text, call xi_set_selxi_set_sel.

If the text was invalid and you chose to reset the text, you will need to mark the record as not edited by
resetting the edited flag to FALSE. If you simply select the cell, you will need to keep the record marked as
edited. This tells you that text currently being displayed still represents different data than the record kept in
memory.

The following code, from “Istdb.c”, demonstrates processing the XIE_OFF_CELL event.

10

case XIE_OFF_CELL:
LIST INFO* list _info = (LIST_INFO*)xi _get app_data(itf);
if (list_info->cell_changed)
Xl _0OBJ* cell = xiev->v.xi_obj;
if (!'enp_set _value(row to record(cell->parent,
cell->v.cell.row), colum_to_field(cell->parent,
cell->v.cell.colum), xi_get _text(cell, NULL, 0)))
xi ev->refused = TRUE;

Xi _set_sel (cell, 0, INT_MAX);
el se

P

list_info->cell_changed = FALSE;
list_info->row changed = TRUE;
xi _cell _request(cell);

}

br eak;

}

8.4.7.4 Marking a Record as Modified

The second flag indicates that the record stored in memory has been modified and no longer matches the
record in the database. You should set this flag to TRUE only after you have verified the text upon
receiving an XIE_OFF_CELL for a record marked as edited, and have updated the copy of the record kept
in memory. Since the text displayed on the screen now reflects the data stored in memory, you will also
need to reset the edited flag to FALSE indicating its new state. This is shown in the example code above.

8.4.7.5 Writing Database Records

The best time for an application to write a record marked as modified to the database is in response to an
XIE OFF ROWXIE_OFF_ROW event. After writing the record, it should reset the modified flag to
FALSE to indicate that the memory copy of the record contains the same data as the one in the database.

The following code, from “Istdb.c”, demonstrates this.
case Xl E_OFF_ROW

LIST_INFO* list_info = (LIST_INFO*)xi_get_app_data(itf);
if (list_info->row changed)
XI _OBJ* row = Xxiev->v.Xxi_obj;

enp_update(row to _record(row >parent, row >v.row data.row));
list_info->row changed = FALSE;

br eak;

}

8.4.8 Scrolling the List

When users want to view records that are not currently displayed on the list, they will attempt to scroll the
list. For example, suppose that a user is entering records in a database application. The user could attempt
to scroll the list by trying to move the focus off the bottom or top of the list by pressing a tab, backtab or an

10

arrow key. In addition, the user could try to scroll the list by clicking on a button or by using a scroll bar if
it is provided by the application developer. Regardless of the method the user uses, XI will generate the
same events that are typically seen in the normal operation of the list. It will generate focus events to check
that it is OK to move the focus, and record request events requesting that the application read records from
the database and fill the corresponding rows with text.

If the user is attempting to scroll the list by pressing either the tab, backtab or arrow keys, XI will
automatically scroll the list. However, if the user is attempting to scroll by using a button or scroll bar
provided by you, then you will need to scroll the list manually by calling xi_scrollxi_scroll.

In the following discussion, you will learn how to respond to the events generated when XI scrolls the list
automatically, how to call xi_scroll yourself, and what sequence of events to expect when you scroll the list
yourself. You will find out what happens to the focus as the list scrolls. In addition, you’ll find some tips on
verifying records before letting the user scroll the list, and will see some example code demonstrating how
to handle the various things that can happen when the user wants to scroll a list.

8.4.8.1 Events Sent While Scrolling

To illustrate the kinds of events your application can receive while scrolling, let’s suppose that the user tries
to scroll the list by pressing the down arrow key. To notify you of this, the first event XI sends you is an
XIE_OFF_CELL. This event indicates that the user has finished typing in a cell and gives your
application the opportunity to check that the text he entered is valid, and to store the valid text as data in a
record kept in memory. Following the XIE_OFF_CELL event, the next event your event handler will
receive is an XIE_OFF_ROW event. This event gives you the opportunity to write the copy of the record
stored in memory to the database if your application needs to. After receiving the XIE_OFF_ROW event,
your event handler may receive XIE_OFF_COLUMN and XIE_OFF_LIST events. These are generated
because XI will move the focus off of the list before automatically scrolling the list. You do not need to
respond to these.

After X1 is finished generating focus events, your event handler will receive an XIE REC_ALLOCATE
event asking your application to allocate space for a record. The XIE_ REC_ALLOCATE event is
followed by the XIE GET NEXTXIE_GET_NEXT event asking your application to read a record. The
XIE_GET_NEXT event is followed by XIE CELL REQUESTXIE_CELL_REQUEST events
requesting text for each visible cell in the row. After the records have been requested and cells have been
filled with text, XI will then generate XIE_ON_* events to put the focus in the correct location on the list.
A summary of the events generated when XI scrolls is shown below.

XI E_OFF_CELL

Xl E_OFF_COLUWN
XI E_OFF_ROW
XIE_OFF_LIST

Xl E_REC_ALLOCATE
XI E_GET_NEXT
XI'E_CELL_REQUEST (For each col um)
XIE_ON_LI ST
XI'E_ON_ROW

XI E_ON_COLUWN
XI'E_ON_CELL

Suppose that in the previous example the user attempted to scroll off of the top of the list instead of the
bottom. In this case, the only difference in the type of events your event handler would receive is that it
would get an XIE_GET_PREYV event instead of an XIE_GET_NEXT event. An XIE_GET_PREYV event
is identical to an XIE_GET_NEXT event except that it asks your application to provide the previous
record instead of the next one.

10

8.4.8.2 Scrolling Under Program Control

To scroll the list from your application, you will need to call xi_scrollxi_scroll and pass it the list object
and either a positive or negative number of rows to scroll. In turn, XI will generate XI_GET_* events
asking you to get that number of records.

An important thing to remember is that xi_scroll may not scroll the number of lines that you request. For
example, if you asked it to scroll up five lines, it will ask for the five records previous to the first one
currently displayed in the list. If you are at the beginning of the file and cannot read any more records
before the one you just read, you can refuse one of the XIE_GET_PREYV events. When this happens, XI
won’t try to fill up those extra rows with blank space. Instead, it will simply scroll as many rows as were
available while requesting records for them. When it is done, it will return the number of rows that were
actually scrolled. Therefore, if you asked it to scroll up five rows, xi_scroll might return 3, indicating that it
could only scroll up three lines. When XI is done requesting records, XI will redisplay the list by using the
XVT function xvt_dwin_scroll_rect. It then issues XI_CELL_REQUEST events asking for text to
display in the newly exposed rows.

8.4.8.3 Scrolling the List to a Specific Record

To scroll the list to a specific record, there is a function that is similar to xi_scroll. This function is
xi_scroll_rec. The difference between xi_scroll and xi_scroll_rec is that xi_scroll_rec takes a record
handle as an argument. That record handle will be the first row shown on the list.

xi_scroll_rec will cause XIE_GET_NEXT events to get the records after the one supplied by the function.
XIE_CELL_REQUEST events will occur for the handle supplied by xi_scroll_rec as well as the other
records that were requested.

8.4.8.4 Placing a Vertical Scroll Bar on a List

To put a vertical scroll bar on a list, after calling the convenience function xi_add_list_def, you should set
the scroll_bar field in the object definition to TRUE. It is very common to use a vertical scroll bar on a
list, but it requires some extra work to support it.

You will need to respond to the XIE_GET_FIRST event slightly differently. When a list has a scroll bar,
the user may move the scroll bar thumb to an arbitrary position in the scroll bar. When they do this, your
event handler will receive an XIE_GET_FIRST event. There is a percent field in the rec_request
structure. This field indicates the percentage through your data for the record to be placed in the data_rec
field of the rec_request member. (For an XIE_GET_FIRST that was not generated as a result of moving
the thumb, the percent field will always be zero.)

There is a special case. If the thumb was dropped at the bottom of the scroll bar, then XI generates an
XIE_GET_LAST event, followed by XIE_GET_PREYV events.

The following function, from “datdb.c”, is called in response to an XIE_GET_FIRST event. It
demonstrates how to get the proper record when the percent field may be set.

10

BOOLEAN enp_get _first(Xl _EVENT* xiev)

{
EMPREC* rec = (EMPREC*) xi ev->v.rec_request.data_rec;
if (enmp_file == NULL)
return FALSE;
if (xiev->v.rec_request.percent == 0)
{
rec->ec_num= db first(enp_file, rec);
rec->position = 0;
} else
{
Il ong rec_count = db_get _record count(enp_file);
if (rec_count == 0)
return FALSE;
rec->position = rec_count * xiev->v.rec_request.percent / 100;
rec->rec_num= db_goto(enp file, rec->position, rec);
}
if (rec->rec_num == NULL_REC NUM)
return FALSE;
return TRUE;
}

In addition, there is another event to which you will need to respond. When the user presses the up arrow
key and causes the list to scroll, the thumb on the scroll bar should move to reflect the percentage through
the database. To implement this behavior, XI sends an event, XIE_GET_PERCENT, to request the
percentage through the database of a specific record. The pertinent record is in the XI_EVENT structure.
XI actually sends two of these events, one for the first visible record, and one for the last visible record.
From this, XI can calculate the position of the thumb. In addition, XI can calculate the thumb proportion on
systems that support this.

The following function, from “datdb.c”, is called in response to an XIE_GET_PERCENT event. It
demonstrates how to respond properly to that event.

voi d enp_get percent (Xl _EVENT* Xxiev)

EMPREC* rec = (EMPREC*) xi ev->v. get_percent.record;
| ong rec_count = db_get _record count(enp_file);

if (rec_count > 1)

{

Xi ev->v. get _percent.percent = (int)(rec->position * 100
(rec_count - 1));

== 0 && rec->position !'=0)
1

(
if (xiev->v.get percent. percent
Xi ev->v. get _percent. percent =

8.4.9 Changing List Attributes

You can dynamically change the look and feel of a list by changing its attributes and the attributes of the
columns, rows and cells contained within it. In XI, attributes affect certain aspects of an object’s behavior
and how it is displayed. For a summary of the attributes a list can have look in Characteristics of XI
Objects.

To change the attributes of an XI object, you call xi_set_attribxi_set_attrib with a pointer to the object
whose attributes you want to change, and a bitwise OR’ed combination of values corresponding to the new
attributes you want the object to have. Like rows and columns, you cannot change the attributes of a list
while a cell in the list has the focus. To move the focus to a safe place, call xi_move_focus passing to it the
interface object. Nothing special happens when the interface gains the focus, it is just a convenient place to

10

park it while you change the attributes of an XI object. When xi_set_attrib returns, you can move the focus
back to the list if you haven’t disabled it or made it invisible.

When you want to change the look and feel of the entire list, the attributes you can set for a list are:
XI_ATR_ENABLED, XI_ATR_VISIBLE, XI_ATR_TABWRAP, and XI_ATR_NAVIGATE. If you
want to know what attributes a list has, you call xi_get_attrib. It returns the current attribute bit values
OR’ed together. If you want to change the look and feel of individual columns and rows in the list, read the
Using Columns and Using Rows sections found later in this chapter.

8.4.9.1 Changing a Single Attribute

In most cases, you will want to change only one attribute of the list such as disabling the list or making it
invisible. You would call xi_get_attrib to get the attributes for the list, change the bit and then call
xi_set_attrib to give the list its new look. The following code segment demonstrates setting the enabled
attribute:

Xi _set _attrib(xi_obj, xi_get _attrib(list_obj) | Xl _ATR ENABLED);

The following code segment demonstrates disabling a list by clearing the enabled attribute:
Xi _set_attrib(xi_obj, xi_get_attrib(list_obj) & ~XI _ATR _ENABLED);

8.4.10 Changing the List Size

Sometimes, when the user resizes the window, you may want the list contained in the window to resize
with the window.

You can enable this behavior by setting list_def->v.list->resize_with_window to TRUE after calling
xi_add_list_def. In this case, XI will resize the list so that the lower right corner of the list is always placed
in the lower right corner of the client area of the window.

However, you may decide that you wish to only size the horizontal component or the vertical component of
the list when the window resizes. To implement this behavior, you can call the function xi_set_list_size
upon the E_SIZE event.

The following code, from “Istsync.c”, demonstrates manual sizing of lists using the xi_set_list_size
function.

case Xl E_XVT_EVENT:
if (xiev->v.xvte.type == E SI ZE)
{
Xl _OBJ* list;
RCT rct;

list = xi_get _obj(itf, LIST2. CD);
Xi _get rect(list, &rct);
if (rct.right != xiev->v.xvte.v.size.width)
Xi_set _list_size(list, rct.bottom- rct.top,
Xiev->v.xvte.v.size.width - rct.left);

list = xi_get _obj(itf, LIST3_CID);
Xi _get _rect(list, &rct);
if (rct.bottom!= xiev->v.xvte.v.size.height)
Xi_set _list_size(list, xiev->v.xvte.v.size.height - rct.top,
rct.right - rct.left);

10

list = xi_get _obj(itf, LIST4_CD);
Xi _get _rect(list, &ct);
if (rct.bottom!= xiev->v.xvte.v.size.height
|| rct.right !'= xiev->v.xvte.v.size.width)
Xi_set _list_size(list, xiev->v.xvte.v.size.height - rct.top,
Xiev->v.xvte.v.size.width - rct.left);

br eak;

8.5 Using Cells

Unlike most other XI objects, cells are never instantiated. Instead, they are created implicitly whenever you
instantiate a list. For example, if a list has five columns and ten rows, it will have fifty cells. Although it
might be useful to instantiate cells, the reason XI does not create real cell objects is to improve the
performance of your application and to save memory.

Because cells are not real objects, they have to be “manufactured” either by your application or by XI.
There are five times XI will make a cell “pseudo-object” for you:

l. When it notifies you of typing in the cell by sending an XIE_CHAR_CELL event.

2. When it notifies you that the contents of a cell has changed by sending an XIE_CHG_CELL
event.

3. When it notifies you that a cell button has been pressed by sending an XIE_BUTTON event.

4. When it sends either an XIE_ON_CELL or XIE_OFF_CELL to notify you that the user wants

to move the focus on or off a cell.
5. When you call xi_get focus and the focus is currently in a cell.

When sending you any of these events, XI manufactures a cell object and gives you a pointer to this object.
You can use this pointer to call XI functions that take an XI object such as xi_set_text, xi_get text and
xi_get_sel. It is important to note that you cannot use this cell object for long. Any of the above cases could
cause XI to reuse the memory to make another cell object.

Whenever your application needs to explicitly refer to a cell, but XI hasn’t made a cell object for you to
use, you will need to manufacture one yourself. For example, suppose that your application wants to set the
text of a cell during the off focus event for a different cell. (You may want to do this because the value is
computed.) In order to call, xi_set_text, you must have a cell object. You will need to use the

XI_ MAKE CELLXI_MAKE_CELL macro to make a temporary cell object that will be passed to the
function.

8.5.1 Cell Request Events

As we mentioned before, after XI generates record request events (XIE_GET_¥), it generates cell request
events (XIE_CELL_REQUEST). Cell request events ask the application for all the information necessary
to display a cell. The information you can supply to XI about a cell is:

. The text for the cell. The source of the text for the cell will be in your own format. You will need
to convert your information to text.

. The icon for the cell if the cell is going to contain an icon instead of text. You can either have text
or an icon in a cell, but not both.

. The attribute of the cell. You can specify that the cell is selected.
. The foreground color of the cell.

. The background color of the cell.

. The font of the cell.

10

. Whether the cell has a cell button, if the cell button is on the right or on the left, and if the cell
button is only visible if the cell has the focus.

Refer to the XI Programmer's Reference for complete details on responding to an XIE_CELL_REQUEST
event. Refer to the example program, especially the “Memory” list, for samples of how to respond to the
XIE _CELL_REQUEST event.

In some situations, you may have changed your data structures underlying the list, and you might wish to
have the list reflect your changes. You can force XI to generate XIE_CELL_REQUEST events by calling
the function xi_cell_request. You can pass four types of objects to xi_cell_request: XIT LIST,
XIT_COLUMN, XIT_ROW, and XIT_CELL. If you pass an object of type XIT LIST, then XI will
generate XIE_CELL_REQUEST events for every cell in the list. If you pass an object of type
XIT_COLUMN, then XI will generate XIE_CELL_REQUEST events for every cell in the column. If
you pass an object of type XIT_ROW, then XI will generate XIE_CELL_REQUEST events for every
cell in the row. If you pass an object of type XIT_CELL, then XI will generate exactly one
XIE_CELL_REQUEST event for the cell that you specified.

8.5.2 Making Cell Objects

When you use a cell, you will have to have a way of referencing it. Often you can get a pointer for a cell
object when receiving a cell event as discussed above. However, there are times when you will need to
make one yourself. This is done by using the XI MAKE CELLXI_MAKE_CELL macro to manufacture
a “cell object”.

Whenever you use the XI_MAKE_CELL macro to manufacture a cell object, you pass the address of an
XI_OBJ structure to it. XI uses the structure to make a valid cell object. Once you’ve got one of these cell
pseudo-objects, you can pass its pointer to any XI function that takes a cell object.

In the following code, from “Istmem.c”, we respond to a row selection by changing the icon for a cell. We
then need to manufacture a cell object in order to call xi_cell_request to update the display.

case Xl E_SELECT:
switch (xiev->v.select.xi_obj->type)

case Xl T_ROW
{

XI_OBJ* list = xiev->v.select.xi_obj->parent;
int row = xi ev->v.sel ect.xi _obj->v.row data.row,

if (colum_to _code(list, xiev->v.select.colum)
== VALUE_| N_STOCK)
{

Xl _0BJ cell;

mem change_stock(row to record(list, row));
XI _MAKE _CELL(&cell, list, row, xiev->v.select.colum);
xi ev->refused = TRUE;
xi _cell _request(&cell);
} else
mem sel ect_row row to record(list, row),
Xi ev->v. sel ect.sel ected);
br eak;

In general, you should not keep a cell object around. As the list scrolls, the row and column for the cell
object change, and are probably not what you intended when you used the XI_MAKE_CELL macro. The
best practice is to use an automatic variable for the object.

10

8.5.3 Being Notified of Typing in a Cell

When the user types into a cell on a list, the event handler containing the list will receive an
XIE_CHAR_CELL event. Your application can refuse this event to disallow the insertion of the character
into the cell, or modify the character to force certain kinds of behavior. This event is most often used to
restrict the kinds of characters the user can type into a cell, such as only letters for a name, digits for a part
number, digits separated by ‘/’ for dates, etc.

When the user changes the contents of a cell, the event handler containing the list will receive an
XIE_CHG_CELL event. Since the purpose of this event is to indicate that the contents of the cell has
changed, you will not be told what keystrokes or commands were used to make the change. Instead,
XIE_CHG_CELL only tells you that something happened to the cell.

8.5.3.1 Character filtering

To limit the kinds of characters the user can type, you need to respond to the XIE_ CHAR_CELL event. To
display only the allowable characters in the cell, you examine the xiev->v.chr.ch field and refuse the event
for any invalid characters.

In the following example, from “Istlink.c”, we demonstrate how this is done.
case Xl E_CHAR CELL.:

Xl _0BJ* cell = xiev->v.chr.xi_obj;
LINK FIELD field = colum_to field(cell->parent,
cell->v.cell.colum);

if (field == LI NK_DATE)
xi ev->refused = !validate_date_char(xiev->v.chr.ch);
br eak;

8.5.4 Validating Cell Text

In addition to receiving an XIE CHAR CELLXIE_CHAR_CELL event, another time you’d want to look
at the contents of a cell is to check that something reasonable was entered before allowing the user to move
off of the cell. For example, the user may be entering data for a database key field such as a part number or
social security number. In this case, you will want to check the database to verify that the user entered a
valid database key before letting the user continue. You could also check for valid dates, currency amounts
and other kinds of data.

The basic idea here is that you let the user freely edit the contents of a cell until he tries to move the focus
to another object in the interface. Users can move the focus by either tabbing off of the cell, or clicking the
mouse on another cell or edit field. When the user tries to change the focus to a different object in the
window, your event handler will be notified of this by an XIE_OFF_CELL event.

It is important to note that you do not receive an XIE_OFF_CELL event when the user switches to
another window. This is because the user may want to switch to another window to browse through some
other data. XI makes sure that a focus event doesn’t occur, and the interface is in the same state as before
the user left.

8.5.4.1 Checking for Valid Data

As mentioned above, when the user attempts to move off of the cell, your event handler for the interface
receives an XIE_ OFF CELLXIE_OFF_CELL event. In response, you should call xi_get_text on the cell,
and hand the text it returns to a validation routine.

10

If your validation routine rejects the data, then you’ll want to refuse the XIE_OFF_CELL event by setting
the refused member of the XI_EVENT structure to TRUE. This will tell XI not to move the focus after all.
To inform the user that the text is invalid, you might want to beep by calling the XVT function xvt_beep,
and select the text by calling xi_set_sel. This will result in highlighting the text so that if the user starts
typing, they overtype the previous text.

The following code, from “Istdb.c”, demonstrates this.
case XIE_OFF_CELL:

LI ST_INFO* list_info = (LIST_INFO*)xi_get_app_data(itf);
if (list_info->cell _changed)
XI _OBJ* cell = xiev->v.xi_obj;

if (!'enp_set_value(row to record(cell->parent,
cell->v.cell.row), colum_to field(cell->parent,

cell->v.cell.colum), xi _get text(cell, NULL, 0)))
{
xi ev->refused = TRUE;
xi _set _sel(cell, 0, INT_MAX);
} el se
{
list_info->cell_changed = FALSE
i st_info->row changed = TRUE;
xi _cell _request(cell);
}
br eak;

}

If the text entered by the user passes validation, then your application will want to convert the text to data
and store it in the memory copy of the record. To do this, the application will need to call

xi_get list infoxi_get list_info to get the array of record handles for the list, and index into that array with
the row number found in the xi_obj->v.cell.row field of the XI_EVENT structure. This will give your
application the record handle for the row of interest, and it can use that handle to store the converted data.
The previous code example calls this function in the row_to_record function, as follows.

static long row to record(Xl_OBJ* list, int row num)
int count;

| ong* handles = xi _get _list_info(list, &ount);
return handl es[row num];

It is important to remember that when your event handler receives an XIE_CHG_CELL event, it is not a
good time to convert the text into data and store it in the data record, because partially entered data will not
be valid. Instead, you should wait until your event handler receives an XIE_OFF_CELL event notifying
your application that the user is attempting to move off of the cell. This is the appropriate time to validate
the data and store it in its record.

8.6 Using Rows

Like cells, rows are never instantiated. Instead, they are created implicitly whenever you instantiate a list.
Although it might be useful to instantiate rows, the reason XI does not create real row objects is to improve
the performance of your application and to save memory.

Because rows are not real objects they have to be “manufactured” either by your application or by XI. XI
will make a row for you when it sends your event handler XIE_ON_ROW, XIE_OFF_ROW, or
XIE_SELECT events. notifying your application that the user wants to move the focus on or off a row.

11

When sending you these events, XI manufactures a row object and gives your event handler a pointer to
this object in the xi_obj field in the XI_EVENT structure. You can use this pointer to call XI functions that
take a row object such as xi_delete_row, xi_set_attrib and xi_get_attrib. It is important to note that you
cannot use the row object once the event handler has returned because XI will reuse the memory to make
another row object.

8.6.1 Responding to Record Request Events

When your application responds to record request events, it has the option of supplying more information
to XI than just the record handle. On a record request event you can supply:

. The record handle.

. The attribute of the row. You can specify that the row is selected.
. The color of the row.

. The height of the row.

Refer to the XI Programmer's Reference for complete details on responding to XIE_GET_* events.

8.6.2 Making Row Objects

There are two times that you would want to manufacture a row object. You would use the row object to set
the attributes for a row when calling xi_set_attrib and xi_get_attrib, and when deleting the contents of the
row by calling xi_delete_row. In this section, you will find information and code examples for
manufacturing row objects and responding to focus events. Specifically, you will see examples of how to
delete the contents of a row, validate the contents of a row, and set its attributes.

When you use a row, you will have to have a way of referencing it. Often you can get a pointer for a row
object when receiving a row event as discussed above. However, there are times when you will need to
make one yourself. This is done by using the XI_ MAKE_ROW macro to manufacture a “row object”.

Whenever you use the XI_ MAKE_ROW macro to manufacture a row object, you pass the address of an
XI_OBJ structure to it. XI uses the structure to make a valid row object. Once you’ve got one of these row
pseudo-objects, you can pass its identifier to any XI function that takes a row object.

The following code, from “Istlink.c”, demonstrates using XI_ MAKE ROW to manufacture row objects in
order to get their attribute.

static long get _unsel ected handl e(XI_OBJ* list)

{
i nt count, num
| ong* handl es;
handl es = xi _get _list_info(list, &count);
for (num= 0; num < count; num++)
{
Xl _OBJ row,
XI _MAKE RON & ow, list, num);
if (!'(xi_get_attrib(& ow) & XI_ATR SELECTED))
return handl es[num];
return O;
}

In general, you should not keep a row object around. As the list scrolls, the row changes, and is probably
not what you intended when you used the XI_MAKE_ROW macro. The best practice is to use an
automatic variable for the object.

111

8.6.3 Deleting a Row

There are two ways to think about deleting a row. One way is to delete the contents of a row, and the other
is to physically make the list shorter by one row. In XI, when we say you can delete a row, we mean that
you can remove the contents of a row from the list, not resize the list. Since XI lists scroll in the vertical
direction, the final result of deleting the contents of a row is to cause the list to scroll to fill in the empty
space while keeping the displayed size of the list fixed.

The function you use to delete the contents of a row is xi_delete rowxi_delete_row. Calling xi_delete_row
causes XI to remove the row from the list and scroll the rows below it up one row to fill in the empty space.
As a result of the scrolling operation, XI will send your event handler an XIE_GET_NEXT event asking it
to get a record to display in the bottom row of the list. Following the XIE_GET_NEXT event, it asks you
to fill the cells with text by sending you XIE_CELL_REQUEST events. Thus the final result of calling
xi_delete_row is removing a row from the list and filling the space created by scrolling the list.

The following code, from “Istlink.c”, demonstrates deleting a row.
case DELETE _CUR Cl D

XI_OBJ* obj = xi_get_focus(itf);

if (obj->type == XIT_CELL)

{ Xl _0OBJ row,

link_delete(row to _record(obj->parent, obj->v.cell.row));
XI _MAKE ROWN &row, obj->parent, obj->v.cell.row);

Xi _delete_row & ow);

updat e_nunber s(obj->parent);

br eak;

}

8.6.4 Inserting a Row

The function you use to insert a row is xi_insert_row. Calling xi_insert_row causes XI to insert space for
arow in the list, then generate a record request to retrieve a record for the inserted row.

If the record is the first record in the list that XI knows about, XI generates an XIE_GET_PREY event to
retrieve the record. If the record is other than the first record, XI generates an XIE_ GET_NEXT event to
retrieve the record. If the list is empty, and has no records, then XI generates an XIE_GET_FIRST event.

The following code, from “Istlink.c”, demonstrates inserting a row.

11

case ADD ONE_CI D

{
XI _OBJ* obj = xi_get focus(itf);
if (obj->type == XIT_CELL)
{
add_records(list_info->link _list, rowto_record(obj->parent,
obj->v.cell.row), 1);
Xi _insert_row obj->parent, obj->v.cell.row + 1);
} else
{
add records(list_info->link list, OL, 1);
refresh_ list(xi_get obj(itf, LIST CID));
}
updat e_nunbers(xi _get obj(itf, LIST. CD));
br eak;
}

8.6.5 Validating the Contents of a Row

Sometimes an application will want to validate the data for a row as a whole before allowing the user to
move the focus to another object on the interface. It is important to remember that when your event handler
receives XIE_OFF_CELL events, it is not a good time to save the memory copy of the record to the
database. This is because you will be updating the memory copy of the record each time the user tries to
move off of a cell. Instead, you should wait until you receive an XIE_OFF_ROW event notifying you that
the user is attempting to move off of the row and is done editing the record.

8.6.5.1 Checking for Valid Data

When the user attempts to move off of the row, your event handler will receive an XIE_OFF_ROW event.
In response, you will need to find out the row number by looking in the XI_EVENT structure (xiev-
>xi_obj->v.row). Once you know the row number you can manufacture cell objects for any cell in the row
by using XI_ MAKE_CELL macro. Making cell objects are discussed in detail in the Using Cells section
of this chapter. When you have cell objects you can call xi_get_text to get the text for those cells in the
row, and perform your validation routine.

Note that cells are usually validated in response to the XIE_OFF_CELL event, but you may need to
validate the row as a whole.

If the text in the cells of the row is invalid, then you should refuse the XIE_OFF_ROW event. Depending
on what is appropriate for your application, you then notify the user that there is a problem by either
resetting the text for the entire row or indicating that the user must re-enter the text for a specific cell. You
might also want to beep by calling the XVT function xvt_beep.

If you chose to set the text for each cell in a row, you will need to reread the record from the database,
manufacture a cell object for each cell in the row, and reset the contents of the cells by calling xi_set_text.
In contrast, if you chose to indicate that the user needs to re-enter the text in a specific cell, you will need to
move the focus to the cell and select it by calling xi_set_sel.

8.7 Using Columns

The most common use of column objects is to change the look and feel of a list. Although there are some
attributes you can apply to affect the whole list, the character of a list is really determined by the nature of
the columns that it contains.

In this section, we will illustrate how to change the way a list looks by changing column headings,
changing column widths, adding and deleting columns and by giving the columns different attributes. Code
examples will be provided to give you a better idea of the options you have when using column objects.

11

8.7.1 Getting a Column Object

To change the width and heading of a column, you will need a pointer to the column object. If you have a
control ID for the column, you can call xi_get obj with the control ID to get the pointer to the column
object. If you have a pointer to the list containing the column, you can call xi_get_member_list to get an
array of pointers to the columns in the list. Once you have the array, you can search through it to locate the
pointer for the column. If you have a cell object, you can get the list object, call xi_get member_list to get
an array of pointers to the columns in the list, and index into the list with the column number stored in the
cell object.

8.7.2 Changing a Column’s Heading

To change a column’s heading, you will need to call xi_set_text with a pointer to the column object you’re
interested in. If you are changing the text in response to an XIE_OFF_COLUMN event, your event
handler can use the pointer sent with the event. Otherwise, you can get the pointer to a specific column by
either using control ID for the column, or pointer to the list as explained above.

8.7.3 Changing the Width of a Column

Your application may allow users to change the width of a column to display different kinds of data in a
column. If this is the case, you can either change the width of the column to accommodate longer strings of
text, or allow cells in the column to contain more text than can be displayed by setting the attribute,
XI_ATR_AUTOSCROLL for the column. If your chosen look and feel is changing the column width,
keep in mind that you cannot change the width of a column when a cell in the column has the focus. If a
cell has the focus in the column of interest, you will need to move the focus to the interface by calling
xi_move_focus with the interface object. Moving the focus to the interface generates the appropriate
XIE_OFF_* events, but no XIE_ON_* events.

To reset the width of a column, you will need to get the pointer to the column object as explained above.

Once you have the object pointer, you will need to call xi_set_column_width passing it the pointer and an

integer width in form units. Changing the width of a column is demonstrated in the following code

example:

col unmm_obj Xi _ge
wi dt

= t_obj(itf, COLUWL_CID);
Xi _set _col unm_ c

h(colum_obj, width_in _chars * XI _FU MJLTIPLE);

8.7.4 Changing Column Attributes

Column attributes determine the look and feel of all cells in a column. Their look and feel may also be
effected by whether or not the row they are a part of is enabled or disabled. You can dynamically change
column attributes by calling xi_set_attrib with a pointer to the column object and a bitwise OR’ed
combination of values corresponding to the new attributes you want the column to have.

As when deleting a column or changing its width, you cannot change the attributes of a column while a cell
in the column has the focus. We recommend that you move the focus to the interface while setting the
attributes for the column, and move it back to the cell after xi_set_attrib returns. To move the focus to the
interface, call xi_move_focus with the interface object. To move the focus back to the cell, call
xi_move_focus with a cell object. Recall that you can get a cell object from an XI event or can
manufacture one yourself using the XI_ MAKE_CELL macro. Manufacturing cell objects is explained in
Using Cells.

The attributes you can set for the cells in a column are : XI_ATR_ENABLED, XI_ATR_EDITMENU,
XI_ATR_AUTOSCROLL, XI_ATR_AUTOSELECT, XI_ATR_RJUST, XI_ATR_PASSWORD,
XI_ATR_SELECTED and XI_ATR_READONLY. If you want to know what attributes a particular
column has, you call xi_get_attrib. It returns the current attribute bit values OR’ed together. See

11

Characteristics of XI Objects for a description of how each attribute affects the behavior of cells in a
column.

8.7.4.1 Changing a Single Attribute

In most cases, you will want to change only one attribute of the column such as disabling the column or
making it “read only”. To apply the attribute, you would call xi_get_attrib to get the current attributes for
the column, change the relevant bit and then call xi_set_attrib to give the column its new look. The
following example illustrates disabling a column.

obj = xi_get _obj(itf, COLUWL_CI D);

Xi _set _attrib(obj, xi_get attrib(obj) & ~XI ATR ENABLED);

The following example illustrates enabling a column.

obj = xi _get_obj (itf, COLUWL_CID);
Xi _set_attrib(obj, xi_get _attrib(obj) | Xl _ATR ENABLED);

8.7.5 Column Events

Users can dynamically adjust columns in a list. They can delete columns by dragging and dropping the
column heading off of the list. They can move columns around by dragging and dropping the column
heading. They can resize columns by grabbing and dragging the border between the column headings.

Each one of these operations generates an event. The events are XIE_COL_DELETE,
XIE_COL_MOVE, and XIE_COL_SIZE. Information about which column will be affected, and how it
will be affected is supplied with these events. In addition, these events are refusable, allowing you to
customize your application and specify which columns can be deleted, moved, or sized. See the X7
Programmer's Reference for more details on these events.

The following code, from “Istdb.c”, demonstrates resizing the window in response to a column resizing.
The actual resizing occurs on the XIE_XVT_POST_EVENT so that XI has completed its recalculation of
the list size.

case Xl E_COL_SI ZE:
LIST INFO* list_info = (LIST_INFO*)xi _get_app_data(itf);

list_info->list_resizing = TRUE;
br eak;

}
case XI E_XVT_POST_EVENT:
if (xiev->v.xvte.type == E MOUSE_UP)

LIST_INFO* list_info = (LIST_INFO*)xi_get_app_data(itf);

if (list_info->list resizing)

{
RCT rct;

WNDOWW n = xi_get_wi ndow itf);

Xi _get _rect(itf, &ct);

xvt _vobj translate points(win, xvt_vobj get parent(win),
(PNT*)&ct, 2);

xvt _vobj _nmove(win, &ct);

}

br eak;

11

8.8 Using Groups

Groups are useful for two reasons. They give your application the opportunity to validate related
information and to check database key references. For example, suppose that an application has two edit
fields in a form that are related to one another such as an invoice and item number. In this application, it is
important to verify that together the text a user enters in these edit fields reference a valid database record.
You could also use a group if you had two columns in a list that were related such as minimum and
maximum salaries. In this case, you would want to make sure that the minimum value is less than the
maximum value, and notify the user that there is a problem if it is not.

You use groups when you want to validate a group of edit fields or cells when the user tries to move the
focus out of the group. Inside the group, the user can freely edit text. It is not until he tries to move outside
the group that the application is notified and can refuse to let the focus move outside the group.

8.8.1 Validating a Group of Edit Fields or Cells

When the user tries to move outside a group, your event handler will receive an XIE_OFF_GROUP event.
Upon receiving this event, you can take one of two approaches to validate the contents of the group. The
first approach is consistent with the recommendations we have made earlier in the Using Forms and Using
List sections of this chapter. This approach involves looking at the data in the memory version of the record
for the data to validate upon receiving the XIE_OFF_GROUP event. If for some reason the
recommendations described earlier were not appropriate for your application, then you will not have the
data stored in memory by the time you receive the XIE_OFF_GROUP event, and will need to take the
second approach to validate the data in the group.

8.8.1.1 Validating a Group Using the First Approach

When validating a group of edit fields or cells using the first approach, recall that you have already
validated text, converted the valid text to data, stored it in the memory copy of the record and marked it as
“modified” by the time you receive an XIE_OFF_GROUP event. This is because you are always
guaranteed to receive an XIE_OFF_FIELD or XIE_OFF_CELL events before an XIE_OFF_GROUP
event.

Therefore, upon receiving the XIE_OFF_GROUP, you only need to look in the edit fields of that group in
the memory record to see if together the data in the group makes sense. Since you have set up the group for
a particular purpose, then you will already know what fields in the database you’ll need to look at, and you
can do this without calling any XI functions.

The following example illustrates using the XIE_OFF_GROUP event to verify that the value of one edit
field (minimum hours in this case) is less than the value of another edit field (maximum hours).

case Xl E_OFF_GROUP:
if (form.info->changed && !enp_validate hours(form.info->handle))

xvt_error("M nimum hours cannot be greater than maxi num");
xi ev->refused = TRUE;

br eak;

The emp_validate_hours function can be found in “datdb.c” as follows.
BOOLEAN enp_val i date_hours(| ong handl e)

EMPREC* rec = (EMPREC*) handl e;

return (rec->mnhrs <= rec->maxhrs);

11

8.8.1.2 Validating a Group Using the Second Approach

The second approach is more appropriate for you if you haven’t responded to the XIE_OFF_FIELD or
XIE_OFF_CELL events by validating the text and converting it to data. Therefore, by the time you
receive the XIE_ OFF_GROUP event, you will not have stored the data in the memory record. If this is the
case, you will want to look at every cell or edit field in the group, get the text from each of them, convert
the text to data and then validate the data as a whole.

To verify that the user entered valid text, you will need to take the group object handed to you in the
XI_OBJ field of the XI event and call xi_get_member _list to get a list of edit fields or columns that
belong to the group. If it is a group of columns, you would need to manufacture cells for them by using the
XI_MAKE_CELL macro as explained in the Using Cells section of this chapter. After you have made the
appropriate cell objects, you can pass their object pointers to xi_get_text to get the text for each of the
cells. If it is a group of edit fields, you can just call xi_get_text since xi_get_member_list gave you the
pointers you need.

8.9 Using Buttons

The only time an event is generated for a button is when the button is pressed by the user. Users can press
buttons by clicking on them with the mouse or tabbing onto them and pressing the space bar or enter key. If
you press the button with the mouse, it does not change the focus.

Buttons are especially useful to allow the user to perform some specific action. For example, your
application might provide a form with an “Add Record”, button to inform you that the user wants to write a
record to the database. Whenever it receives an XIE_BUTTON, your event handler will typically switch
on the control ID of the button and take whatever action is necessary. Since the only purpose of this event is
to notify the application that something has happened, it is not logical to refuse this event.

In addition to using buttons to inform your application that the user wants to do something, you can also
change their text and attributes. Button text is changed by calling xi_set_text with a pointer to the button
object. Unless you are changing the text when responding to an XIE_ BUTTON, you will not have an
object pointer to the button to use to call xi_set_text, but you can get one by calling xi_get_obj with the
control ID for the button.

8.9.1 Changing Button Attributes

You can change the behavior and appearance of a button by changing its attributes. The attributes are
changed by calling xi_set_attrib with a pointer to the button object and passing it a bitwise OR’ed
combination of values corresponding to the new attributes you want the button to have. The only attributes
you can set for buttons are XI_ATR_ENABLED and XI_ATR_VISIBLE. If you want to disable or make
invisible a button that has the focus, you will need to move the focus somewhere else on the interface
before you can call xi_set_attrib. You move the focus by calling xi_move_focus with the appropriate XI
object.

If you want to know whether or not a button is enabled or visible, you need to call xi_get_attrib. It returns
the current attribute bit values for the button OR’ed together.

8.9.1.1 Disabling a Button

To enable or disable a button, you would call xi_get_attrib to get the attributes for the button, change the
relevant bit and then call xi_set_attrib to give the button its new look. The following example illustrates
disabling a button.

obj = xi _get _obj(itf, BUTTONL_Cl D);
Xi _set _attrib(obj, xi_get _attrib(obj) & ~XI _ATR ENABLED);

The following example illustrates enabling a button.

11

obj = xi_get _obj(itf, BUTTONL_Cl D);
Xi _set_attrib(obj, xi_get_attrib(obj) | Xl _ATR ENABLED);

8.9.2 Checking Radio Buttons and Check Boxes

With XI, you can make buttons be either radio buttons, check boxes, or tab buttons. When you do this, it is
necessary to check the button when the user presses the button. The function xi_checkxi_check checks a
radio button, check boxes, or tab button.

The following code, from “Istlink.c”, demonstrates using xi_check:

case SECTI ON_ONE_CI D:
case SECTION_TWO Cl Dt

{
SECTION I NFO* info = (SECTION I NFO*)xi _get app_data(button);

if (form.info->cur_section !=info)

change_section(form.info->cur_section, FALSE);
change_section(info, TRUE);
form.info->cur_section = info;

}
Xi _check(button, TRUE);
br eak;

}

If a radio button is part of a container, then calling xi_check unchecks any radio buttons that are also part of
the container.

8.10 Using Static Text

Static text is used to put labels on the interface such as text to describe edit fields on a form. You may want
to change the attributes of the text to make it visible or invisible, enabled or disabled, using xi_set_attrib.
You may want to set the text of static text using xi_set_text. In either case, you will need to get a pointer to
the appropriate static text object using one of the methods mentioned earlier in this chapter.

11

Managing Application

Data

XI gives you the ability to associate a long integer with any XI object once the interface containing the
object has been instantiated. The integer can be any kind of data you like, including a pointer cast into a
long. The ability to associate a long integer with an XI object is especially useful in event driven
programming, because you are often given an event that contains an object. Upon receiving the event, your
application must somehow figure out what data is associated with the object.

To associate application data with an XI object, you call xi_set app dataxi_set_app_data. To retrieve the
data at a later time, you call xi_get app dataxi_get app_data. As you might expect, xi_get app_data
returns the long integer you set with xi_set_app_data. In the following example, you will see how to
associate data with button objects. Later in this chapter you will see how associated data can be
automatically freed when the object is freed by using XI’s tree memory functions.

9.1 Associating Record Data with an Object

The “layered” form in the “Link List” example is a typical situation that uses xi_set_app_data and
xi_get_app_data for buttons. The idea is that each of the buttons, which are tab buttons, have a set of XI
object associated with them. These objects should be visible when the tab button is checked.

The following code, from “Istlink.c”, is the structure definition that will be used for application data for the
buttons.

typedef struct
i nt count;

XI_OBJ* objs[MAX_SECTI ON_OBJS];
} SECTI ON_I NFQ,

The following code, from “Istlink.c”, demonstrates the initialization of these structures and the setting of
application data for the buttons. This code appears in the XIE_INIT event for the window.

i nt num
SECTI ON_I NFO* i nfo[2];

info[0] = (SECTION_INFO*)xi _tree_malloc(sizeof (SECTION_INFO), itf);
info[1l]] = (SECTION INFO*)xi _tree_malloc(sizeof(SECTIONINFO), itf)
Xi _set _app_data(xi _get _obj(itf, SECTION.ONE CID),

PTR_LONGE i nfo[Q])
Xi _set _app_data(xi _get _obj(itf, SECTION.TWO CID),

PTR_LONE info[l]));

form.info->cur_section = info[0];

for (num= 0; textdefs[] num].text !'= NULL;, numt+)
int section;

section = textdefs[num].section - 1;
if (section!=-1)
info[section]->o0bjs[info[section]->count++]
= Xi_get_obj(itf, TEXT_BASE CID + num);
}

for (num= 0; fielddefs[num].width != 0; numt+)
int section;

section = fielddefs[num].section - 1;
if (section!=-1
info[section]->objs[info[section]->count++]
= xi_get _obj(itf, FIELD BASE CI D
+ fielddefs[num].type);
}

The next step in this process is using the application data when a button is pressed. This is handled in the
XIE_BUTTON event, which calls the form_process_button function. That code, from “Istlink.c”, is as
follows:

void formprocess_button(Xl _OBJ* itf, Xl _OBJ* button)
FORM INFO* forminfo = (FORMINFO*)xi _get app_data(itf);

switch (button->cid)

case SECTI ON ONE Ol D:
case SECTION_TWO CI D:

{
SECTI ONLI NFO* info = (SECTI ON_I NFO*) xi _get _app_data(button);

if (forminfo->cur_section !=info)
change_section(form.info->cur_section, FALSE);
change_section(info, TRUE);
form.info->cur_section = info;

}
xi _check(button, TRUE);
br eak;

Notice how the return value of the call to xi_get _app_data is cast into the same structure that was set for
the buttons. It then becomes quite easy to process the change in visibility for the layered objects.

If we were not using tree memory, it would also be necessary to respond to the XIE_CLEANUP event in
order to free the allocated structures. Since they were parented to the interface object, they will be freed
when the interface is deleted. Tree memory is covered more in the next section and the next chapter.

9.2 Using Tree Memory for Application Data

Your application can allocate memory for its data in such a way that it is freed automatically whenever an
interface is closed or the XI object is deleted. XI has a mechanism called tree memory allocation that XI
uses to allocate memory for objects in an interface hierarchy in such a way that when a parent object is
freed, all of its children and grandchildren are automatically freed with it. Your application can take
advantage of this by using XI tree memory functions to allocate the memory used for application data
associated with XI objects. The result of using tree memory is that when the interface is deleted, all
application memory associated with the interface is freed as well. If you want to use tree memory, your
only constraint is that you must not try to reference any application data after your event handler has
returned to XI after receiving an XIE_CLEANUP event. Details on using tree memory are discussed in the
next chapter, Memory Allocation.

10

Memory Allocation

We highly recommend using tree memory allocation to increase the reliability of your program. Providence
Software Solutions, Inc.. has implemented tree memory allocation, at first simply as a tool to make our own
product more reliable. We did this because memory allocation bugs are one of the most annoying aspects of
C programming since it is very easy to forget to free something, or free something when it shouldn’t be
freed. Problems with freeing memory always causes spurious bugs that are hard to track down and don’t
happen when you want to reproduce them. We made tree memory to eliminate a lot of this uncertainty.

Tree memory allocation is a means of keeping track of memory objects that are logical children of other
memory objects. When you allocate a block of tree memory, you can associate it with a parent. When that
parent is freed, all associated blocks are also freed.

122

r-r—-r———~~>~>"~~>~""~>""~""™~""~""~“"™>"™"™>"™""™>"™"™"™7 _;
I Calling
| M1 | xi_tree_free on
' | M1 will free all
: ___________ L | of these memory
| Ir | r _: I blocks.
|
: I M2 : : M3 I M4 |
l |
I Il | |
I I | |
[1 |
I | | M5 M6 [11]| M7 | |
[I | |
| ________ [T S — —_——
Lo { _______ F e
Calling xi_tree_free on M2 Calling xi_tree_free on M3
will free M2, M5 and M6. will free M3 and M7.
Figure 28 - Freeing Tree Memory

The three main tree memory functions are xi_tree mallocxi_tree_malloc, xi_tree reallocxi_tree_realloc,
and xi_tree freexi_tree_free. These are analogous to the normal memory allocation functions, but with a
couple of differences. First, the function xi_tree_malloc takes a paranet pointer. This sets up the
association of parents and children. There is another function xi_tree_reparent that allows you to change
this association at a later time. The other difference is that xi_tree_free will free everything that is
associated with the block being freed.

Of course, all of these associations have to start somewhere, so you can pass NULL as the parent pointer to
create a “root” for your allocation. These “root” blocks can be associated later using xi_tree_reparent. XI
keeps track of these “root” blocks by making them children of an internal root node that is the parent of all
“root” blocks.

NOTE: It is unnecessary and a bad idea to use tree memory allocation for C++ objects. The integrity of a
C++ program depends on the execution of “destructor” functions for objects. The freeing of tree memory
interferes with this constraint. However, the constructor and destructor mechanisms in C++ remove the
need for tree memory.

10.1 Performance Considerations

Because of the way XI manages tree memory, it is better to have fewer children associated with each parent
node because this will help the performance of the tree memory. As a general rule, freeing a node or
reallocating a node is going to be as slow as the number of siblings that node has. For example, if you have
one parent node with 200 children, a free or realloc operation is going to perform 10 times slower than
during the same operation with a parent node of 20 children. This rule also applies to the root node that XI
keeps internally for an object hierarchy.

Recall that whenever you allocate tree memory with a parent of NULL, this is equivalent to giving the root
tree memory node one more child. Thus, if you allocate lots and lots of objects whose parents are NULL,
then you will overload the root node with children, and will slow down the tree memory operations. By
structuring your memory allocation trees properly you will avoid this problem. A properly structured tree is
one where the average number of children per node is less than 100.

In addition, it is always faster to let xi_tree_free free of all of the children of the nodes for you rather than
trying to do it yourself. Whenever you delete a child from a tree, XI will rummage around in the link list
and rearrange it properly. In contrast, when you ask XI to free an entire tree, XI knows to skip this step
because the entire tree will be deleted.

123

Finally, each piece of memory allocated with xi_tree_malloc carries a 12 byte overhead. Therefore, if
memory conservation is critical in your application, you may want to use another scheme.

10.2 Automatic Freeing of Tree Memory

Recall that when a piece of tree memory is freed, all of its children and grandchildren are freed with it. This
is useful for having memory allocated for application data automatically freed when XI frees its memory.

The key to using tree memory in this fashion is knowing which types of XI objects use tree memory. Any
object pointers in the interface hierarchy that are not pseudo-objects (cells and rows) are pointers to tree
memory. If you use any of these pointers as the parent argument to xi_tree_malloc, then that memory that
you allocate will be freed automatically whenever XI frees its memory. The interface object is most
commonly used as a parent for your own allocations. Object definitions are also allocated using tree
memory.

Now that you know which objects use tree memory, it is necessary to know when XI frees its memory. XI
will free memory for an interface after the interface is deleted. The interface can be deleted in one of two
ways: First, when the user clicks on a close box in the window, XI will send your event handler an
XIE_CLOSE event. If the event is not refused, XI will close the window, send your event handler an
XIE_CLEANUP event, and then free the XI object structures. The second way an interface can be deleted
is when your event handler calls xi_delete with the interface object. In this case, your event handler will
not receive an XIE_CLOSE event, but it will receive an XIE_ CLEANUP event. It is not until after XI has
sent your application an XIE_CLEANUP event that XI frees tree memory.

10.3 Debugging Tree Memory

A common problem with C programming is making sure that your application frees every piece of memory
that it allocates. If an application does not free all the memory in a certain routine, as this routine gets
called over and over, less and less memory is available to your application. This type of bug is called a
memory leak.

The main advantage of using tree memory is that it helps you prevent memory leaks by allowing you to
free an entire structure of memory with one call instead of using a separate call to free each node in the
tree. In addition, there are times when you might allocate tree memory by calling xi_tree_malloc without
calling xi_tree_free to free it later. This is the case if you are using xi_tree_malloc to allocate memory for
data associated with an XI interface. Here, you will not need to explicitly call to xi_tree_ free when
responding to an XIE_CLEANUP event. The memory will be freed automatically.

If you are using tree memory for data other than that associated with an interface, and you suspect that you
might have a memory leak, you can locate the problem by using the tree debugging features of the XI tool
kit. When searching for the leak, you can start by calling xi_tree_dbg anywhere in your application.
xi_tree dbgxi_tree_dbg will give you a status report of all of the memory blocks currently allocated.

One of the more useful ways to use tree debugging in this fashion is to set up operations in the program that
shouldn’t result in an accumulation of memory. For example, you could call xi_tree_dbg at the beginning
of your program just to get a dump of all of the memory. Then, allocate memory by creating an interface,
editing it, scrolling a list, etc. After you have done some of these operations, delete the interface, and call
xi_tree_dbg again. At this point, the number of allocated items should equal to the number allocated at the
start of the program, because theoretically you don’t have more memory allocated after deleting the
interface than before creating it. Thus, using tree debugging in this fashion will help you find some memory
leaks without using the special debugging libraries.

The DEBUG file after calling xi_tree_dbg with no data allocated

TREE MEMORY DEBUG TRACE (Tree debug out put)

node 3b551858: par=00000000, si b=3b551858, ch=00000000

The DEBUG file after calling xi_tree_dbg with some data allocated

124

TREE MEMORY DEBUG TRACE (Tree debug out put)

node 3bd71858: par=00000000, sib=3bd71858, ch=32f b0000
node 32f b0000: par=3bd71858, si b=330d0000, ch=00000000
node 330d0000: par=3bd71858, si b=34ef 0000, ch=34ff 0000
node 34ff0000: par=330d0000, si b=34ff0000, ch=00000000
node 34ef0000: par=3bd71858, si b=32f b0000, ch=34f 30000
node 34f 30000: par=34ef 0000, si b=364f 0000, ch=00000000

node 33030000: par=35190000, si b=35210000, ch=00000000
node 35110000: par=35030000, si b=35070000, ch=00000000

When you examined the debugging files illustrated, you might have noticed that these files only tell you
what memory was allocated, not where. To find out where in the code the memory was allocated, we have
provided another means to use XI tree debugging. By defining a preprocessor constant, TREEDEBUG,
and linking a special XI library when compiling your application, XI can tell you the file and line number
where each piece of memory was allocated. As you might suspect, using the alternate library makes your
application less efficient, but you will have more information stored with each piece of memory allocated.

You can define the constant, TREEDEBUGTREEDEBUG, on the compiler command line when
programming on all platforms except for the Mac. On the Mac, you will need to define it in a header file.
Once you have defined the constant, you must recompile all of your *.c files so that the tree memory
functions will be turned into macros. These macros will access the debugging version of XI internal
functions with extra parameters. After recompiling and linking with the debugging version of the XI
libraries, you run your application. However, when you look at the summary of memory usage, you’ll see
extra information attached to each memory item. If you come across a suspected leak, you can find out
where the memory was allocated, and then deduce why it wasn’t freed. An example file created by calling
xi_tree_dbg is shown below.

The DEBUG file after calling xi_tree_dbg with some data allocated and TREEDEBUG defined
TREE MEMORY DEBUG TRACE (Tree debug out put)

node 1dd51888: par =00000000, si b=1dd51888, ch=1e250000, file=FI RSTNODE, |ine=0
node 1e250000: par=1dd51888, si b=21d50000, ch=00000000, file=xi _test.c, |ine=568
node 21d50000: par=1dd51888, sib=21ad0000, ch=21e50000, file=\xi\src\xi.c, |ine=362
node 21e50000: par=21d50000, si b=21e50000, ch=00000000, file=\xi\src\xi.c, |ine=363
node 21ad0000: par=1dd51888, sib=1e250000, ch=21bd0000, file=\xi\src\xi.c, |ine=1060
node 21bd0000: par=21ad0000, sib=26750000, ch=00000000, file=\xi\src\xi.c
l'i ne=1094
node 26750000: par=21ad0000, si b=26550000, ch=26850000, file=\xi\src\xi.c
| i ne=1060
node 26850000: par=26750000, sib=26cd0000, ch=00000000, file=\xi\src\xi.c
l'ine=1151
node 26cd0000: par=26750000, sib=26bd0000, ch=26dd0000, file=\xi\src\xi.c
l'i ne=1060

125

11

Modifying an XI Interface

When programming an application containing XI interfaces, you may need to add and delete XI objects
after the interface has been instantiated. For example, you might have a spreadsheet where you “hide” and
“show” columns. To “hide” the column, you simply delete the column object from the list. To “show” the
column, you would define and instantiate the column object — in effect, “adding” it to the list. The
“Memory” list is an example of this.

Changing the compositions of objects in an interface is what we mean by “modifying” it. While in previous
chapters, you learned how to define and instantiate an entire interface tree, in this chapter you learn how to
define and instantiate individual objects. In our discussion, we will show you how the convenience
functions and xi_create operate internally so that you will have some insight into how these functions are
used. In addition, you will learn how to adjust the size of the XVT window containing the interface so that
it can grow or shrink to accommodate your modifications.

11.1 Adding Objects

When adding an object to an interface, you will need to do two things: define the object and instantiate it by
calling xi_create. When defining it, you would most likely use the convenience function that creates the
object definition structures for the object. To illustrate how to define and instantiate a single object, we
have included two code examples in this section: adding a column to a list, and adding an edit field to a
form

11.2 Defining an Object

When reading the previous chapters, you saw that object definition structures are created for each object,
and that those structures store information that XI needs to create the object. You saw that each definition
contains two structures — an XI_OBJ_DEF which is generic to all objects, and a unique structure specific
to the object such as an XI_COLUMN_DEF for a column or an XI_FIELD_ DEF for an edit field. You
also saw that convenience functions are used to create these structures and that they sometimes don’t set all
of the fields used to describe an object. Because of this, you will need to know how to set any fields you
want to use that aren’t normally set by the convenience functions.

126

Until now, you’ve seen how to call convenience functions in the context of defining an entire interface.
When defining an object to be added to an existing interface, you will call the appropriate convenience as
before, except that you pass in NULL for the parent. This is because the parent object has already been
defined and instantiated, and you will not need to create a new definition for it. In fact, if you passed in a
parent definition for the column, XI would try to attach the column to a different list than the one you have
already created. Please remember that it is not until you call xi_create to create the column, that XI will
know which list will get the column.

Of course, you can also add composite objects to an interface such as forms, lists and containers. To define
a composite object, you would call the appropriate convenience function passing in NULL for its parent.
Once you have an XI_OBJ_DEF for the composite object, you would add children definitions to it by
calling the appropriate convenience function with the XI_OBJ_DEF for the composite object. When
calling the convenience functions to define its children, you will need to pass in its object definition as the
parent.

There is one other way to get an object definition and that is to get it from an existing object using
xi_get_def. This is what happens in the “Memory” list example when you delete a column.

11.3 Instantiating an Object

Once you have created a stand-alone object definition, you are ready to call xi_create with the
XI_OBJ_DEF for the object and a pointer to the object’s future parent. To get the object pointer, you can
call xi_get _obj with the interface object and control ID of the future parent.

The above discussion gives you a general idea of how to add an object to an XI interface. However, we
didn’t describe the details of adding an object to an interface in use. In the remaining portion of this section,
we will describe the ways you will need to prepare the interface to receive an extra column or edit field. We
will also give you samples of code to illustrate these two examples.

11.4 Adding a Column

Before you can add a column to a list, you will need to move the focus from the list to the interface. To
move the focus, you can call either xi_set_focus or xi_move_focus with the interface object.
xi_move_focus is a more gentle approach in that it will generate focus events so that you can validate a
cell's data before moving the focus. In contrast, xi_set_focus will move the focus to another object without
generating focus events.

In addition to moving the focus, you may need to resize the XVT window containing the interface to make
room for the wider list. You will find a discussion on resizing the XVT window at the end of this chapter.

As mentioned before, the first thing you would need to do is define the column by calling
xi_add_column_def, passing in NULL for the parent. Keep in mind that the position field in the
XI_COLUMN_DETF structure determines where the column will be placed in the list. If you want to insert
a column before another column of a certain position, set position to that column number. If you want to
insert the column at the end of the list, then set position to a value greater than the number of columns.

Once you have an XI_OBJ_DEF for the column, the next thing you must do is get the object pointer of the
column’s future parent by calling xi_get_obj with the interface object and control ID for the list. Now you
are ready to call xi_create to instantiate the column. XI will insert the column into the list and will generate
cell request events for each cell in the column.

After xi_create returns, you may want to free the column definition by calling xi_tree_ free or xi_def free
with the XI_OBJ_DEF to free both definition structures. You may also want to move the focus back to a
cell in the list by calling either xi_set_focus or xi_move_focus with the appropriate cell pseudo-object,
manufactured with the XI_ MAKE_CELL macro or returned from xi_get focus. The steps you’ll need to
take to add a column to a list is summarized in the following code example.

127

XI _OBJ_DEF *col def;
XI_0OBJ *list;

if (itf &% xi_nove_focus(itf))

{
col def = xi _add_columm_def(NULL, COL2 CI D, XI_ATR ENABLED, O,

20 * XI_FU MULTIPLE, 30, "Colum 2");
col def ->v. col um->position = 1;
list = xi_get _obj(itf, LIST CID);
Xi _create(list, coldef);
Xi _tree_free(col def);

}
11.5 Adding an Edit Field

Adding an edit field to a form is a little simpler than adding a column to a list. In this case, you don’t have
to move the focus to the interface. Because edit fields are seldom created without a static text control to
identify them, you might want to create both objects at the same time. However, you must do this with two
separate calls to xi_create because xi_create can only define either trees of related objects or one object at
a time. Since static text is a child of an interface and the edit field is a child of a form, the two objects are
not related. Similarly, you could not add two edit fields at the same time because they are related to one
another only by the parent they share, and the parent has already been instantiated.

To add an edit field to a form, you would need to define the edit field by calling xi_add_field_def, passing
in NULL as the parent. Then, you would need to get the form object by calling xi_get obj. Once you have
the edit field definition and parent object, you can call xi_create. After the edit field is instantiated, you
may want to call xi_tree free or xi_def free with the XI_OBJ_DEF to free the edit field definition. The
following code illustrates how to add an edit field to a form.

XI _OBJ_DEF *fiel ddef;
Xl _0BJ *form

if (itf && xi_nove_focus(itf))

form= xi_get obj(itf, FORMCD);
fielddef = xi_add_field_def(NULL, FIELD2_Cl D,
13 * XI_FU MULTIPLE, Xl _FU MJLTI PLE,
16 * XI_FU MULTI PLE, Xl _ATR_ENABLED
XI _ATR BORDER | XI _ATR VI SI BLE,
FI ELD2_CI D, 20, COLOR_BLACK,
COLOR_VHI TE,
COLOR _BLACK, COLOR WH TE, COLOR BLACK);
Xxi _create(form fielddef);
xi _tree_free(fielddef);

11.6 Deleting Objects

In X1, there are two notions of “deleting an object”. When deleting a row in a list, XI will remove the
contents of the row and automatically scroll the list to fill in the empty space. The list doesn’t change. In
contrast, when you delete a column, you are physically removing the column object from the interface and
the list will become narrower (if the list is not a horizontally scrolling list). Therefore, the difference
between deleting a row and deleting a column is that deleting a row does not change the size of the
displayed list.

The function you call to delete an object is xi_delete. If you are deleting an object with children, the
children will be deleted at the same time. Unlike when creating object definitions, you will not have to call
xi_tree_free to free the objects. This happens automatically.

128

11.7 Deleting a Column

To delete a column, you call xi_deletexi_deletexi_deletexi_delete passing it the object pointer to the
column. To get the object pointer, you call xi_get obj with the interface object and control ID for the
column.

Because you cannot delete a column when any cell in the list has the focus, you will need to move the focus
to the interface before you call xi_delete. You can move the focus by calling either xi_set_focus or
xi_move_focus. The difference between the two functions is that xi_move_focus will generate focus
events and xi_set_focus will not. After xi_delete returns, you may want to move the focus back to the list
by calling either xi_set_focus or xi_move_focus with the appropriate cell pseudo-object, manufactured
with the XI MAKE_CELL macro.

Keep in mind that when you delete a column, XI will not generate any list events. This is because XI will
not need to ask you to fill in any new information. The XIE_COL_DELETE event is only generated when
the user drops a movable column off of the list in order to delete it. The following line of code
demonstrates how to delete a column.
if (itf & & xi _nove_focus(itf)

xi _delete(xi_get_obj(itf, COL2_CID));

11.8 Deleting an Edit Field

To delete an edit field you call xi_delete with the edit field’s object pointer. To get the object pointer, you
call xi_get obj with the interface object and control ID for the edit field. If the edit field you are deleting
has the focus, you will need to move it to the interface before calling xi_delete. Depending on whether you
want to receive focus events or not you can call either xi_set focus or xi_move_focus to move the focus.
After xi_delete returns, you may want to move the focus to another edit field in the form by either setting
or moving it. The following lines of code demonstrate how to delete an edit field.
if (itf &% xi_nove_focus(itf))

xi _delete(field);

11.9 Resizing an XVT Window

After modifying an interface, you may want to resize the XVT window containing it. This is especially the
case if you added an object that makes the interface larger than the client area of the XVT window
containing it. To resize the window, you will need to do several things: get the XVT window for the
interface; get the bounding rectangle for the modified interface; determine the correct client window size by
adding white space to the bounding rectangle; position the window with respect to its parent window, and
perform the window resizing operation.

From the user’s perspective, the result of the above operations will be the following. First the user will see
the new XI object displayed in the window, perhaps being cut off by the window if the modified interface is
larger than the window. Then, the window will “grow” or “shrink” to accommodate the modified interface.
If the window grows, the exposed portions of the interface will be redrawn.

Before you can resize the window, you will need to get the object pointer for the interface. Once you have
the pointer, you can call xi_get windowxi_get_window to get the XVT window handle, and
xi_get rectxi_get rect to get the bounding rectangle for the modified interface.

After getting the new desired bounding rectangle of the window, it is necessary to translate the rectangle to
the parent window’s coordinate space. You do this by calling the XVT function
xvt_vobj_translate points.

The following code, from “Istdb.c”, shows how to modify the XVT window size to match the current size
of the interface.

129

RCT rct;
W NDOW w n = xi_get_wi ndow itf);

Xi_get rect(itf, &ct);

xvt _vobj _translate_points(win, xvt_vobj_get_parent(win),
(PNT*) &rct, 2);

xvt _vobj _nove(win, &ct);

130

12

Integrating XI with XVT

Applications

There are times when you will want to go outside of XI to do things in a window containing an XI
interface. For example, you may want to draw graphical objects, use XVT controls, or provide menus. You
can put XVT code in either your XVT event handler, or in your XI event handler. Putting XVT code in your
XI event handler may make your application more modular.

In this chapter, we will describe how to use XVT drawing primitives to draw graphical objects, create and
manipulate XVT controls, and put menus in the window with an XI interface. In all of these examples, we
will be assuming that you will be putting the XVT code in your XI event handler.

12.1 Using XVT Controls

To create an XVT control, you will need to call the XVT function, xvt_ctl_create. The most appropriate
time to call xvt_ctl_create is while processing an XIE_INIT event. Recall that an XIE_INIT event is the
first event your event handler will receive after defining and instantiating your interface. This is also the
appropriate time to allocate memory with xi_tree_malloc. We recommend that you use xi_tree_malloc
because it will then be unnecessary to free the memory when the user closes the window. The memory will
be freed automatically when the interface it is associated with is freed.

When responding to the XIE_INIT event, you will also need to associate data with the XI interface. You
will need to call xi_set_app_data with the pointer to the interface object and a long for your application
data. See Managing Application Data for more information on using XI functions to manipulate application
data.

Once you have created the control, and have data to keep track of it, you can use XVT functions to
manipulate the control in response to the events the control will generate. In addition, you will likely need
to write code to update database records in response to the user manipulating the controls.

131

The other issue with XVT controls is that they are not a part of the standard XI keyboard navigation. If you
want the tab key to work with the XVT controls, you will have to handle the E_CHAR event and
determine the tabbing sequence for the XVT controls.

We have tried to provide all of the controls that you will need within the XI framework. We hope that you
will not need to use the native XVT controls with the XI controls.

12.2 Drawing Graphics

Drawing graphics in a window with an XI interface is done with the XVT drawing functions. These
functions are described in the XVT Programmer s Manual. Like other XVT code, you can use these
functions in your XI event handler if you observe two rules. First, you should draw upon the
XIE_UPDATE event. That event comes after XI is done drawing all of the rest of the interface. (However,
if you are drawing things that you want to appear as “background” for the interface, you should draw
during the E_UPDATE event in XIE_XVT_EVENT.) Second, you should always set the XVT drawing
tools explicitly when you start to draw, including the clipping rectangle. In general, XI will ignore how you
set drawing tools, and will change them to suit its needs. Therefore, you will need to explicitly set them
every time your XI event handler receives an XIE UPDATE event.

Since the XVT drawing functions requirec a WINDOW handle, you will need to call xi_get window to get
that handle.

12.3 Menus

When adding menus to an XVT window containing an XI interface, you will need to create an XVT URL
file as explained in the XVT Programmer's Manual, or use the XVT function xvt_menu_set_tree.

You will also need to create a switch statement to respond to the XIE_ COMMAND event. Notice that in
the case of menus, your event handler should respond to the XI event instead of the corresponding XVT
event coming in through XIE_XVT_EVENT. To understand how the event is generated, whenever a user
selects a menu item, XVT generates an E_COMMAND event. Upon receiving the E_COMMAND event,
XI will stuff it into into XI_EVENT; thereby turning it into an XIE_COMMAND event. When responding
to the XIE_ COMMAND event, you determine which menu item was selected by switching on the XVT
menu tag (defined in the URL file or in the XVT MENU_ITEM structure).

132

Appendix A

The XI Example

This appendix is simply a catalog of the various screens that appear in the example program. It’s main
purpose is to let you know what you should be seeing when you run the examples. All of the screens were
captured on MS-Windows. The exact appearance will vary on other platforms, with character-based being

radically different.
= (]
Description s Pri
1000 |WWidget Q/ 12.99 100 110 120
1001 Gadget 8.99 50 58
1002 |Socket 4.95 500 490
1003 |Bauble Q/ 1.95 280 264
1004 |Sprocket \\/ 5.95 aon 305 310
10048 |WWidget 2 Q/ 12.99 100 110 120
1006 |Gadget 2 8.99 50 54 58
1007 dSocket 2 4 95 a00 495 490
-

Figure 29 - The Memory List

The memory list demonstrates colors, fonts and attributes in cells, icons in cells, variable row heights. It
also allows for user resizing, deleting and adding of columns. It uses an in-memory array to keep track of

the data for the list.

133

Linked List
Add All Recs Add One Rec Delete All Recs

Delete Current Rec | Delete Selected Recs

Mumber| Date Description Wiho

0101185 This is description #1 which iz |Person
long enaugh far word wirap.

01015845 Alternate description #1 FPerzon 2
0110194 Miscellaneous description 31 Ferson 3
01101594 Description #2 Ferson 4

Figure 30 - The Linked List

The linked list uses a doubly linked list as its data structure for the list data. It demonstrates gridded
buttons, cells with word wrap, drop down lists from cells and row insert and delete. Double-clicking on a
cell will popup an editing dialog as show below.

Record # 1

'LE-:'%EiE-r:\ Lilizy \ Save I
Date 01r015945 Cancel
Who Persan 1
Estimated Hours _

Actual Hours El

Figure 31 - The Linked List Change Dialog

The linked list dialog is a modal XI window. It also demonstrates the “layering” of XI controls within the
interface. The “Who” edit field demonstrates a drop down list on an edit field.

134

+Ha

+
Julianna Aberle Stitcher 1200040 (B0
I ey 0.0ojo 1]
Baoh mMecClellan Programmg 14.00] 3% a0
Gls Smedstad FProgrammdg 16.00(30 40
Doug Earhart Programmg 20.00|&60 100

+

Figure 32 - The Employee List

The employee list uses a text file database as its data structure. It is the list that will probably be most
interesting to you if you are using a database system. It also demonstrates icon buttons and grouped
columns to validate the minimum and maximum hours.

= Add Employee

Wanerhr
Min hourshweek EI Max hoursiweek EI

Add Cancel

Figure 33 - The Add Employee Dialog

The add employee dialog is used to add employee records to the database. It demonstrates updating a list
from a dialog and grouped edit fields to validate the minimum and maximum hours.

135

= Change Employee

Wageihr
Min hourshweek Max hoursiweelk

| Changel Cancel

Figure 34 - The Change Employee Dialog

The change employee dialog is very similar to the add employee dialog. It also demonstrates updating a list

from a dialog.
= Delete Employee

Bk | [McClellan |

Delete I Cancel I

Figure 35 - The Delete Employee Dialog

The delete employee dialog demonstrates updating a list from a dialog and disabled edit fields.

136

= i (-
| Column 1 Column d_‘* Column 1 Column 4+
Line 1 Line 1 | Line 1 Line 1
Line 2 Line 2 Line 2 Line 2
Line 3 Line 3 Line 3 Line 3
Line 4 Line 4 Line 4 Line 4
Line & Line & Line & Line &
Line & Line & Line & Line &
Line ¥ Line 7 [§] Line ¥ Line ¥ +
« | [+ « | [+
Colurmn 1 Colurmn 14 Colurmn 1 Colurmn 4.4
Line 1 Line 1 | Line 1 Line 1
Line 2 Line 2 Line 2 Line 2
Line 3 Line 3 Line 3 Line 3
Line 4 Line 4 | Line 4 Line 4
e - 1* T ——— +
+- - +- +

Figure 36 - The Synchronized Lists

The synchronized lists interface demonstrates lists that are connected so that they scroll together. It also
demonstrates manual resizing of lists.

Index

A

attribute, changing * 88
attributes, fields ¢ 88
automatic_back color * 21

B

button attributes * 117
buttons ¢ 117
C

cell object, making * 108
cell request event * 98, 107
cells, using * 107
character filtering ¢ 109
children of objects * 84
column attributes * 114

137

column events ¢ 115

column heading, changing * 114
column object, getting from a cell » 114
column width, changing « 114

column, adding « 127

column, using * 113

columns, deleting « 129

convenience functions ¢ 12

creating an interface ¢ 63

D

drawing in an interface * 132
drop_and delete « 27
E

edit fields « 86

edit_ menu ¢ 22

event handler « 68

event handler per object * 11
EVENT _HANDLER - 66
events * 9

events, scrolling ¢ 103

F

field attributes « 88

field, adding * 128

field, deleting * 129

filtering characters * 86

focus model « 73

focus movement 99

form events ¢ 79

forms, using * 89

forms, validating contents ¢ 89

G

getting an object from an event * 83
getting an object pointer * 83
group, using * 116

group, validating « 116

I

interface events * 76
interface, modifying ¢ 126
L

list attributes ¢ 105

list events * 76

list size, changing on E_SIZE « 106
list, scroll bar * 104

lists, using * 93

M

main * 1, 4, 64
menu_bar rid ¢ 22
menus * 132
metatab ¢ 32

N

non-refusable events ¢ 73

P

parent of objects * 85
R

radio button, checking « 118

138

record request events ¢ 111
records, managing ¢ 94
refusing events * 71
retrieving records ¢ 97
row object, making ¢ 111
row, deleting * 112

rows, using * 110

S

scrolling a list « 102

scrolling the list to a record * 104
static text, using * 118

T

TREEDEBUG - 125
\'%

validating fields * 87
virtual interface * 73

X

XI Interface « 7

xi_add button_def « 48, 50, 60
xi_add_column_def* 32, 59
xi_add_container_def * 14, 60
xi_add_field def+ 42, 43, 44, 58, 93
xi_add form_def . 14, 57
xi_add group def 14, 61
xi_add line def~ 14, 54, 62
xi_add list def« 14, 59

xi_add rect defe 14, 61
xi_add_text def* 14, 61
XI_ATR_AUTOSCROLL » 32,43, 58, 59
XI_ATR_AUTOSELECT -« 32, 42
XI_ATR_ENABLED - 25
XI_ATR_NAVIGATE -« 30
XI_ATR_PASSWORD - 33, 43
XI_ATR_READONLY - 32,42
XI_ATR_RJUST » 32,43, 53
XI_ BTN TYPE - 47

xi_cell request * 31, 108
xi_check ¢ 47, 50, 118
xi_create ¢ 12, 13, 19, 20, 54, 62, 63, 64, 84
xi_create_itf defe 14, 56
xi_delete « 129

xi_delete_row « 112
xi_draw_line * 52

xi_event * 68

XI_EVENT » 69
XI_EVENT_HANDLER - 56
xi_get app data* 119

Xi_get attrib ¢ 19, 88

xi_get def+27
xi_get def rect« 63

xi_get list_info < 100, 110
xi_get member list * 84, 89
xi_get_obj * 84, 89

xi_get rect* 129

xi_get text e 83, 87

xi_get window ¢ 129

Xi_init * 4, 65

xi_insert row ¢ 112
XI_INTERNAL - 20, 92
XI_ITF DEF - 14, 63

139

XI LIST DEF - 14

XI_ MAKE CELL - 85,107, 108
XI_ MAKE ROW -« 85, 111
xi_move_column « 27
xi_move_focus ¢ 88

XI_OBJ DEF - 14
xi_obj->v.field->tab_cid * 92
XI_PREF_3D_LOOK - 53
XI_PREF_COLOR_CTRL 53
XI_PREF_COLOR_DARK - 53
XI_PREF_COLOR_LIGHT - 53
XI_PREF NATIVE CTRLS - 48, 50, 52
xi_scroll * 31, 103, 104
XI_SCROLL_FIRST 31
xi_scroll rec 31
xi_set app datae 119
xi_set_attrib « 19, 88, 105

xi_set bufsize * 43

xi_set fixed columns * 30
xi_set focus * 88

xi_set sel * 87, 101

xi_set text*9, 86, 101
xi_tree_dbg e+ 124

xi_tree_free * 62, 64, 123
xi_tree_malloc * 123
xi_tree_realloc ¢ 123

xi.h 4

XIBT BUTTON - 47
XIBT_BUTTON_CHECKBOX - 48
XIBT_BUTTON_RADIOBTN - 48
XIBT_CHECKBOX * 47, 50
XIBT_RADIOBTN -« 47, 50
XIBT _TABBTN « 47
XIE_BUTTON - 28, 52,79, 92
XIE_CELL_REQUEST - 10, 36, 76, 77, 97, 103, 107
XIE_CHAR_CELL + 77, 109
XIE CHAR FIELD -« 86

XIE CHG CELL - 77

XIE CHG FIELD -« 86

XIE CLEANUP - 71
XIE_COL_DELETE - 77, 115
XIE_COL_MOVE -« 77, 115
XIE_COL_SIZE « 77, 115
XIE_COMMAND - 80
XIE_DBL_CELL* 77
XIE_GET _*+97
XIE_GET_FIRST « 36, 76, 96
XIE GET LAST - 36, 76, 96
XIE GET NEXT - 36, 76, 96, 103
XIE GET PREV ¢ 36, 76, 96
XIE_INIT « 50

XIE _OFF _*«97
XIE_OFF_CELL- 10, 77, 109
XIE_OFF_COLUMN - 77
XIE_OFF_FIELD - 83, 86, 87, 92
XIE_OFF_GROUP « 77
XIE_OFF_LIST 77
XIE_OFF_ROW « 77, 102
XIE_ON_*+«97
XIE_ON_CELL + 25,32, 77
XIE_ON_COLUMN - 32,77
XIE ON_FIELD -« 42

140

XIE_ON_GROUP « 77
XIE_ON_LIST » 25,77
XIE_ON_ROW 25,77
XIE_REC_ALLOCATE » 76, 94, 95, 103
XIE _REC FREE -« 76,97

XIE ROW _SIZE « 77
XIE_SELECT » 77

XIE_UPDATE - 80

XIE_VIR PAN - 80

XIE XVT EVENT « 22, 80

XIE XVT POST EVENT - 22, 80
XIT COLUMN -« 31

XIT FORM - 8

XIT_GROUP « 8

XIT_ITF « 19

XIT _LINE 8

XIT LIST -8, 24

XIT RECT +8

xvt.h e 4

XVT/CH « 48

141

	Table of Contents
	Table of Figures
	1
Introduction
	1.1 What is XI?
	1.2 Layers Upon Layers
	1.2.1 XI
	1.2.2 XVT
	1.2.3 The Native System

	1.3 Constructing an XI Application
	1.3.1 XI Programming
	1.3.2 XVT Programming

	1.4 Summary

	2
An XI Interface
	2.1 Summary of XI Objects
	2.1.1 Objects
	2.1.2 Events
	2.1.3 XI Event Handler

	2.2 Summary

	3
Creating an Object Definition Tree
	3.1 Designing an Interface Hierarchy
	3.2 Using the Convenience Functions

	4
Characteristics of XI Objects
	4.1 Coordinate System
	4.1.1 Form Units -vs- Pixels

	4.2 Control IDs
	4.3 XI Attributes
	XIT_ITF4.4 Interface Objects
	4.4.1 Modal Interfaces
	4.4.2 Virtual Interfaces
	4.4.3 Putting XI Interfaces in Existing Windows
	4.4.4 Background Color
	4.4.5 Menu Bars on Windows
	4.4.6 Cutting and Pasting with XI
	4.4.7 Scroll Bars
	4.4.8 Close Box
	4.4.9 Size Controls
	4.4.10 Iconize Controls
	4.4.11 Border Style

	XIT_LIST4.5 List Objects
	4.5.1 Disabled lists
	4.5.2 Enabled lists
	4.5.3 No Column Headings
	4.5.4 Horizontal Scrolling
	4.5.5 Movable Columns
	4.5.6 Resizing Columns	
	4.5.7 Dynamically Deleting Columns
	4.5.8 Positioning and Inserting Columns in a List
	4.5.9 List Button
	4.5.10 Removing Horizontal and Vertical Rules of a List
	4.5.11 Resizing the List when the Window is Resized
	4.5.12 Changing the Number of Fixed Columns
	4.5.13 List Mouse Cursors
	4.5.14 Tabwrap Navigation
	4.5.15 Arrow Key Navigation
	4.5.16 Refreshing a List

	XIT_COLUMN4.6 Columns
	4.6.1 Disabled Columns
	4.6.2 Enabled columns
	4.6.3 Autoselected Cells in a Column
	4.6.4 Read-Only Columns
	4.6.5 Autoscroll Cells in a Column
	4.6.6 Right-justified Columns
	4.6.7 Password Columns
	4.6.8 Platform and Well Columns
	4.6.9 Centered Column Headings
	4.6.10 Fonts for Column Headings
	4.6.11 Icons in Column Headings
	4.6.12 Multiline Column Headings
	4.6.13 Platform and Well Headings

	4.7 Cells and Rows
	4.7.1 Selected Rows and Enabled Rows
	4.7.2 Colors Per Cell
	4.7.3 Fonts Per Cell
	4.7.4 Cell Range Selection
	4.7.5 Putting Icons in Cells
	4.7.6 Putting Bitmaps in Cells

	4.8 Forms
	4.9 Edit Fields
	4.9.1 Disabled Edit Fields
	4.9.2 Enabled Edit Fields
	4.9.3 Autoselected Edit Fields
	4.9.4 Read-Only Edit Fields
	4.9.5 Autoscroll Edit Fields
	4.9.6 Right-justified Edit Fields
	4.9.7 Password Edit Fields
	4.9.8 Platform and Well Edit Fields
	4.9.9 Edit Field Buttons
	4.9.10 Using XI_ATR_FOCUSBORDER
	4.9.11 Multiline Edit Fields
	4.9.12 Edit Field Fonts

	4.10 Groups
	4.11 Containers
	4.12 Buttons
	4.12.1 Types of XI Buttons
	4.12.2 Using XVT Buttons
	4.12.3 Disabled Buttons
	4.12.4 Enabled Buttons
	4.12.5 Icon and Bitmap Buttons
	4.12.6 Radio Buttons
	4.12.7 Check Boxes
	4.12.8 Tab Buttons
	4.12.9 Default Button
	4.12.10 Drawing in Buttons

	4.13 Static Text
	4.13.1 Right-justified Static Text
	4.13.2 Enabled/Disabled Static Text
	4.13.3 Fonts for Static Text

	4.14 Rectangles
	4.15 Lines
	4.16 Working with XVT/CH
	4.17 Summary

	5
Defining XI Objects
	5.1 Object Definition Structures
	5.2 Defining an Interface Object
	5.3 Defining Forms
	5.4 Defining Edit Fields
	5.5 Defining Lists
	5.6 Defining Columns
	5.7 Defining Containers
	5.8 Defining Buttons
	5.9 Defining Groups
	5.10 Defining Static Text
	5.11 Defining Rectangles
	5.12 Defining Lines
	5.13 Summary

	6
Creating an XI Interface
	6.1 Sizing the Interface
	6.2 Instantiating the Interface
	6.3 Hooking It Up to XVT
	6.3.1 Programming the Task Window's Event Handler
	6.3.2 Connecting XI Interfaces to XVT
	6.3.3 Approach 1: Let XI Create the Window For You
	6.3.4 Approach 2: Create the XVT Window with xi_event as Event Handler
	6.3.5 Approach 3: Create the XVT Window with Your Own Event Handler
	6.3.6 Putting an XI Interface in the Task Window

	6.4 Summary

	7
XI Events
	7.1 XI Event Handlers
	7.2 Responding to XI Events
	7.3 Refusing XI Events
	7.4 XI Focus Model
	7.4.1 Basic Focus Rules

	7.5 Event Categories
	7.5.1 Interface Events
	7.5.2 List Events
	7.5.3 Form Events
	7.5.4 Button Events
	7.5.5 Focus Events
	7.5.6 Special Events

	7.6 The XI_EVENT Structure

	8
Using XI Objects
	getting an object pointer8.1 Getting an Object Pointer
	getting an object from an event8.1.1 Getting an Object from an Event Structure
	8.1.2 Using a Control ID
	children of objects8.1.3 Getting an Object’s Children
	parent of objects8.1.4 Getting the Parent of an Object
	8.1.5 Getting the Object With Focus
	8.1.6 Making a Pseudo-Object

	8.2 Using Edit Fields
	8.2.1 Being Notified of Typing in an Edit Field
	8.2.2 Filtering characters
	8.2.3 Validating Edit Field Text
	8.2.4 Changing Edit Field Attributes
	8.2.5 Changing a Single Attribute

	8.3 Using Forms
	8.3.1 Validating the Contents of a Form
	8.3.2 Interfacing to Databases When Using a Form
	8.3.3 Setting the Keyboard Navigation Sequence

	8.4 Using Lists
	8.4.1 Record Handles
	8.4.2 How XI Manages the Record Handle Array
	8.4.3 Managing Records
	8.4.4 Displaying Text
	8.4.5 Processing User Input
	8.4.6 Responding to Focus Movements
	8.4.7 Updating Databases When Using a List
	8.4.8 Scrolling the List
	8.4.9 Changing List Attributes
	8.4.10 Changing the List Size

	8.5 Using Cells
	8.5.1 Cell Request Events
	8.5.2 Making Cell Objects
	8.5.3 Being Notified of Typing in a Cell
	8.5.4 Validating Cell Text

	8.6 Using Rows
	8.6.1 Responding to Record Request Events
	8.6.2 Making Row Objects
	8.6.3 Deleting a Row
	8.6.4 Inserting a Row
	8.6.5 Validating the Contents of a Row

	8.7 Using Columns
	8.7.1 Getting a Column Object
	8.7.2 Changing a Column’s Heading
	8.7.3 Changing the Width of a Column
	8.7.4 Changing Column Attributes
	8.7.5 Column Events

	8.8 Using Groups
	8.8.1 Validating a Group of Edit Fields or Cells

	8.9 Using Buttons
	8.9.1 Changing Button Attributes
	8.9.2 Checking Radio Buttons and Check Boxes

	8.10 Using Static Text

	9
Managing Application Data
	9.1 Associating Record Data with an Object
	9.2 Using Tree Memory for Application Data

	10
Memory Allocation
	10.1 Performance Considerations
	10.2 Automatic Freeing of Tree Memory
	10.3 Debugging Tree Memory

	11
Modifying an XI Interface
	11.1 Adding Objects
	11.2 Defining an Object
	11.3 Instantiating an Object
	11.4 Adding a Column
	11.5 Adding an Edit Field
	11.6 Deleting Objects
	11.7 Deleting a Column
	11.8 Deleting an Edit Field
	11.9 Resizing an XVT Window

	12
Integrating XI with XVT Applications
	12.1 Using XVT Controls
	12.2 Drawing Graphics
	12.3 Menus

	Appendix A
The XI Example
	Index

